蔗糖水解反应速率常数的测定
蔗糖水解速率常数的测定

ln(αtα∞)1
A B
ln(αt-α∞)2
0
t1
t2
t(min)
反应速率常数: K k
半衰期:
t1
2
ln 2 K
实验结果与讨论
⑴结果:实测值为K= ⑵计算实验偏差: ⑶分析产生偏差的原因: ⑷有何建议与想法?
注意事项:
1.装上溶液后的样品管内不能有气泡产生,样 品管要密封好,不要发生漏液现象;
α=βC
式中:比例常数β与物质旋光能力、溶剂性 质、样品管长度及温度等有关。
物质的旋光能力用比旋光度来度量,
比旋光度用下式表示:
[ ]2D0
l
100 CA
[ ]2D0右上角的20表示实验时温度为200C,
D是指用钠灯光源D线的波长(即589nm),
为测得的旋光度, l为样品管长度(dm),
CA为浓度(g /100ml).
即可开始测量。 (二)旋光仪零点的校正 1.取1 dm 长的盛液管,装满蒸馏水,使液面凸出管,将小圆 玻片沿管口边沿平推盖好,不能带入气泡,然后装上橡皮圈, 旋紧螺帽至不漏水,螺帽不宜旋得太紧,否则使玻片产生扭力, 影响读数。用擦镜纸将管两端的玻片及外壁残液擦干。打开镜 盖,将盛液管置于旋光仪镜筒中,若有气泡,应将气泡放在中 间球形的上面,盖好盖子。 2.调节目镜上视度螺旋至视场中三分视场明暗程度清晰为止。 3.转动刻度盘手轮,使刻度盘的0º线与固定游标尺0º线重合, 从目镜观察三分视场消失,出现较暗的零度视场。如不一致, 缓慢转动刻度盘手轮,直到出现较暗的零度视场,记录刻度盘 读数,此数即为零点。
数据处理
1.计算αt-α∞和ln(αt-α∞);
2.作ln(αt-α∞) ~ t关系图; 3.计算直线斜率k,反应速率常数K;
蔗糖水解反应速率常数的测定

蔗糖水解反应速率常数的测定引言:蔗糖是一种常见的碳水化合物,由葡萄糖和果糖分子组成。
在一定条件下,蔗糖可以被水分解成葡萄糖和果糖,这个过程被称为蔗糖水解反应。
研究蔗糖水解反应的速率常数对于理解反应机理以及工业应用具有重要意义。
本文将介绍蔗糖水解反应速率常数的测定方法及其应用。
一、测定方法1. 酶催化法测定蔗糖酶是一种特定的酶,能够促进蔗糖水解反应的进行。
因此,酶催化法是一种常用的测定蔗糖水解反应速率常数的方法之一。
实验步骤如下:(1) 准备一定浓度的蔗糖溶液。
(2) 在一组实验中,分别加入不同浓度的酶溶液,并在一定的时间间隔内测量蔗糖浓度的变化。
(3) 根据蔗糖浓度的变化曲线,绘制反应速率随酶浓度变化的图表。
(4) 通过线性拟合,得到反应速率常数。
2. pH法测定pH值是影响酶催化反应速率的重要因素之一。
通过在不同pH条件下测量蔗糖水解反应的速率常数,可以了解pH对反应速率的影响。
实验步骤如下:(1) 准备一定浓度的蔗糖溶液。
(2) 在一组实验中,分别调节不同pH值的缓冲溶液,并在一定的时间间隔内测量蔗糖浓度的变化。
(3) 根据蔗糖浓度的变化曲线,绘制反应速率随pH值变化的图表。
(4) 通过线性拟合,得到反应速率常数。
二、应用蔗糖水解反应速率常数的测定在许多领域中具有广泛的应用。
以下是一些典型的应用:1. 食品工业蔗糖是食品中一种常用的甜味剂,通过测定蔗糖水解反应的速率常数,可以优化食品加工过程,提高产品质量和口感。
2. 生物学研究蔗糖水解反应是生物体内能量代谢的重要过程之一。
通过测定蔗糖水解反应速率常数,可以研究代谢途径以及相关酶的催化效率,进一步了解生物体的生理活动。
3. 化学工业蔗糖水解反应也在化学工业中有重要应用。
通过测定蔗糖水解反应速率常数,可以优化催化剂的选择和反应条件的控制,提高生产效率和降低成本。
结论:蔗糖水解反应速率常数的测定是研究反应机理和优化工业应用的重要手段之一。
酶催化法和pH法是常用的测定方法。
蔗糖水解反应速率常数的测定

蔗糖⽔解反应速率常数的测定姓名: 肖池池序号: 31 周次: 第⼋周指导⽼师: 张⽼师蔗糖⽔解反应速率常数的测定⼀、实验⽬1. 了解蔗糖⽔解反应体系中各物质浓度与旋光度之间的关系。
2. 测定蔗糖⽔解反应的速率常数k、半衰期t1/2和活化能E a。
3. 了解旋光仪的简单结构原理和测定旋光物质旋光度的原理,正确掌握旋光仪的使⽤⽅法。
⼆、基本原理蔗糖在⽔中转化成葡萄糖与果糖,其反应为:C12H22O11 + H2O C6H12O6 + C6H12O6(蔗糖) (葡萄糖) (果糖)它是⼀个⼆级反应,在纯⽔中此反应的速率极慢,通常需要在H+离⼦催化作⽤下进⾏。
由于反应时⽔是⼤量存在的,尽管有部分⽔分⼦参加了反应,仍可近似地认为整个反应过程中⽔的浓度是恒定的,⽽且H+作为催化剂,其浓度也保持不变.因此蔗糖⽔解反应可近似为⼀级反应。
⼀级反应的速率⽅程可由下式表⽰:c为时间t时的反应物浓度,k为反应速率常数。
积分可得:c0为反应开始时反应物浓度。
从上式不难看出,在不同时间测定反应物的相应浓度,并以ln c对t作图,可得⼀直线,由直线斜率即可得反应速率常数k o然⽽反应是在不断进⾏的,要快速分析出反应物的浓度是困难的.但蔗糖及其转化物,都具有旋光性,⽽且它们的旋光能⼒不同,故可以利⽤体系在反应进程中旋光度的变化来度量反应的进程。
旋光度错误!未找到引⽤源。
与反应物浓度c呈线性关系,即:错误!未找到引⽤源。
式中⽐例常数A与物质旋光能⼒、溶液性质、溶液浓度、样品管长度、温度等有关。
物质的旋光能⼒⽤⽐旋光度来度量,⽐旋光度⽤下式表⽰:式错误!未找到引⽤源。
中右上⾓的“20”表⽰实验时温度为20℃,D是指⽤钠灯光源D线的波长(即589nm),错误!未找到引⽤源。
为测得的旋光度,L为样品管长度(dm),C为试样浓度(g/mL)。
设体系最初的旋光度为: 错误!未找到引⽤源。
(t=0,蔗糖尚未转化)体系最终的旋光度为: 错误!未找到引⽤源。
蔗糖水解反应速率常数的测定

蔗糖水解反应速率常数的测定实验目的(1)明了旋光度法测定化学反应速率的原理;(2)测定蔗糖水解反应速率常数;(3)掌握旋光仪的使用方法;(4)掌握用图解法求反应速率常数。
实验原理蔗糖溶液在H+离子存在时,按下式进行水解:C12H22O11 + H2O → C6H12O6 + C6H12O6蔗糖葡萄糖果糖时间t=0 c00 0t=t c0-c x c x c xt=∞0 c0c0其中,c0为反应物初始浓度,c x为反应进行至t时间的产物浓度,c0-c x为反应进行t时间后反应物的浓度。
此反应中H+离子为催化剂。
当H+离子浓度一定时,此反应在某时间t的反应速率与蔗糖及水浓度一次方的乘积成正比,故为二级反应。
由于在反应过程中水是大大过量,故认为水的浓度在反应过程中不变,这样蔗糖水解反应就可以作为一级反应处理,起速率方程的积分式为:(1)式中,c0为反应开始时蔗糖的浓度;c0-c x为反应至时间t时蔗糖的浓度;k为速率常数。
若测得在反应过程中不同时刻对应的蔗糖浓度,代入上式就可以求出此反应的速率常数k。
而测定各时间所对应的反应物浓度的方法有化学方法与物理方法两种。
化学方法是在反应过程中反应进行若干时间,取出一部分反应混合物,并让其迅速停止反应,记录时间,然后分析与此时间相对应的反应物浓度。
但是要时反应迅速停止在实验上是很困难的,因而所分析的浓度总与取样的时间存在偏差,所以此方法是不够准确的;而物理方法则是利用反应系统中某一物理性质(如电导率、折射率、旋光度、吸收光谱、体积、气压等)与反应物的浓度有直接关系时,通过测量该物理性质的变化就可相应知道反应物浓度的改变。
不过对物理性质有以下要求:(1)物理性质和反应物的浓度要有简单的线性关系,最好是正比关系;(2)在反应过程中反应系统的物理性质要有明显的变化;(3)不能有干扰因素。
这个方法的优点是不需要从反应物系中取出样品,可直接测定,而且可连续地进行分析,方便迅速,还可将物理性质变成电信号进行自动记录等。
物化实验蔗糖水解反应速率常数的测定

蔗糖水解反应速率常数的测定一. 实验目的1. 了解旋光仪的基本原理,掌握旋光仪的正确使用方法。
2. 熟悉反应物和产物的浓度与其旋光度之间的关系。
3. 用自动旋光仪测定蔗糖在酸催化下水解的反映速率常数和半衰期。
二. 实验原理1. 蔗糖在水中转化为葡萄糖和果糖,反应式为:C 12H 22O 11(蔗糖)+H 2O →C 6H 12O 6(葡萄糖)+C 6H 12O 6(果糖)此反应的反应速率与蔗糖,水及催化剂H +离子的浓度有关。
由于H +离子及水的浓度可近似认为不变,因此,蔗糖水解反应可看作为一级反应(假一级反应)。
2. 此反应速率可由下式表示:-dc/dt=kc积分后可得lnc t =lnc 0-ktc t 为时间t 时反应物的浓度, c 0为反应开始时反应物的浓度,k 为反应速率常数。
3. 反应速率还可以用半衰期t 1/2表示,即反应物浓度为反应开始浓度的一半时所需要的时间。
4. 由2式子可得 -d (c 0-x )/dt=k (c 0-x )积分后可得ln(00C C X -)=KX t=0.693k ln 00C C X -当反应进行一半时:t1/2=1k ln000cc1/2c=1kln0c1/2c=ln2k=0.693k5.蔗糖是右旋性物质,比旋光度为66.6°,生成物葡萄糖也是右旋性物质,比旋光度为52.5°,果糖是左旋性物质,比旋光度为-91.9°。
由于果糖的左旋光性比葡萄糖的右旋光性大,所以生成物呈左旋光性。
故随着反应的不断进行,反应体系的旋光性将由右旋变为左旋,直到蔗糖完全水解,这时的左旋角度达到最大值。
三.仪器与试剂WZZ-2B自动旋光仪带塞锥形瓶(150ml)烧杯(100ml)秒表电子台秤移液管(25ml)玻璃棒洗耳球铁夹子HCL(4mol/L)蔗糖(分析纯)四.实验步骤1.插上电源,打开仪器电源开关。
这时钠光灯在交流工作状态下起辉,预热5min,至钠光灯从紫色变到黄色,钠光灯才发光稳定。
蔗糖水解反应速度常数

(3)
(t=∞,蔗糖已完全转化)
当时间为t时,蔗糖浓度为C,此时 旋光度为αt,即:
t 反C 生 (C0 C)
(4)
将(2)、(3)和(4)式代入(1)式即得:
ln(t ) Kt ln(0 )
显然,以ln(αt-α∞)对t作图可得 一直线,从直线斜率即可求得反应速率
常数K。 若知道不同温度下的速率常数,则
溶液的旋光度与溶液中所含旋光物 质的旋光能力、溶剂性质、溶液浓度、样 品管长度及温度等均有关系。当其它条件 均固定时,旋光度α与反应物浓度C呈线 性关系,即:α=βC
式中:比例常数β与物质旋光能力、溶剂性质、样 品管长度及温度等有关。
物质的旋光能力用比旋光度来度量, 比旋光度用下式表示:
[ ]2D0
0.4169
1.738
6.213
0.2512
2.255
9.355
35.86
0.4137
Hale Waihona Puke 4.04317.00
60.62
0.9000
11.16
46.76
148.8
1.214
17.455
75.97
注:蔗糖溶液的浓度均为10% 活化能Ea=108kJ/mol
实验结果与讨论
⑴结果:实测值为K= ⑵计算实验偏差: ⑶分析产生偏差的原因: ⑷有何建议与想法?
t1 t2
反应速率常数: K k
半衰期:
t1
2
ln 2 K
文献值:
温度和盐酸浓度对蔗糖水解速率常数K的影响
K× 103/min-1 HCl/mol·L-1
25 ℃(298.15K)
K× 103/min-1 30 ℃(308.15K)
蔗糖水解速率常数的测定

蔗糖水解速率常数的测定一、引言蔗糖是一种重要的天然产物,广泛应用于食品、化妆品、医药等领域。
蔗糖水解是制备其他产品的关键步骤,因此对蔗糖水解速率常数进行准确测定具有重要意义。
本文将介绍蔗糖水解速率常数的测定方法。
二、理论背景蔗糖水解反应为:C12H22O11 + H2O → C6H12O6 + C6H12O6该反应为一级反应,其速率方程为:r = k[C12H22O11]其中,r为反应速率,k为速率常数,[C12H22O11]为蔗糖浓度。
三、实验步骤1. 实验器材准备:取一定量的蔗糖和适量的水,在恒温搅拌器中进行溶解;准备pH计和温度计。
2. 实验条件设置:将恒温搅拌器的温度设定在40℃左右,并保持恒温;将pH设置在5.0左右。
3. 反应开始:将适量酵母加入溶液中,并开始计时。
4. 反应过程监测:每隔一定时间,取出一定量的反应液,用酵母浸膏停止反应,然后用pH计测定溶液的pH值。
5. 数据处理:根据反应过程中蔗糖浓度和反应时间的变化关系,计算出速率常数k。
四、实验注意事项1. 实验器材要干净、无杂质,以免影响实验结果。
2. 反应过程中需要严格控制温度和pH值,以确保实验结果准确可靠。
3. 取出反应液时要注意不要污染样品或破坏反应体系。
4. 实验结束后要及时清洗器材并妥善处理废液。
五、实验结果分析通过上述实验方法可以得到蔗糖水解速率常数k的测定结果。
该结果可用于指导工业制备过程中的蔗糖水解反应控制和优化。
六、结论本文介绍了一种简单易行的蔗糖水解速率常数测定方法。
该方法具有可靠性高、精度高等优点,在工业生产中具有广泛的应用前景。
一级反应-蔗糖水解反应速率常数的测定

一级反应-蔗糖水解反应速率常数的测定材料1班倪靖 200892044035实验九一级反应,蔗糖水解反应速率常数的测定一实验目的1(测定蔗糖转化反应的速率常数和半衰期;2(了解反应物浓度与旋光度之间的关系;3(了解旋光仪的基本原理,掌握旋光仪的正确使用方法二实验原理蔗糖在酸性条件下水解反应为:,H 2HO,,,,,,COCOCOHHH12662212121166(蔗糖) (葡萄糖) (果糖)+ 它是一个二级反应,在纯水中此反应的速率极慢,通常需要在H催化作用下进行。
由于反应时水是大量存在的,尽管有部分水分子参加了反应,仍可近似地认为整个反应过程中+ 水的浓度是恒定的,而且H是催化剂,其浓度也保持不变。
因此蔗糖转化反应可看作为一级反应。
一级反应的速率方程可表示为:dc,,kclnc,,kt,lnco 其积分式: (10-1) dtc及c分别为反应开始时及t时刻的反应物浓度,k为反应速率常数。
01,,cc当时,时间t可用t表示,即为反应半衰期: 01/22ln20.693,,1t (10-2) 2kk从(10-1)式不难看出,在不同时间测定反应物的相应浓度,并以ln c对t作图,可得一直线,由直线斜率即可得反应速率常数k。
然而反应是在不断进行的,要快速分析出反应物的浓度是困难的。
但蔗糖及其转化物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应的进程。
测量物质旋光度的仪器称为旋光仪。
溶液的旋光度与溶液中所含物质的旋光能力、溶液性质、溶液浓度、样品管长度及温度等均有关系。
当其它条件固定时,旋光度α与反应物浓度c呈线形关系,即α = βc (10-3) 式中比例常数β与物质旋光能力、溶液性质、溶液浓度、样品管长度、温度等有关。
物质的旋光能力可用“比旋光度”来量度。
其定义为:,tt,,,,,L,c,k,c,,,,,,, (10-4) DDL,ct式中[α]为物质的比旋光度;上标“t”表示实验时溶液的温度,λ是指所用光源的波长,一般Do用钠光的D线,其波长为589 nm;α为测得的旋光度( ),L 为样品管长度( dm ),c为旋光物质的质量浓度( g/100mL )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蔗糖水解反应速率常数的测定
一、实验目的
1、根据物质的光学性质研究蔗糖水解反应,测定其反应速率常数。
2、了解旋光仪器仪的基本原理,掌握其使用方法。
二、实验原理
蔗糖在水中转化成葡萄糖与果糖,其反应为:
612661262112212O H C O H C O H O H C +→+
它属于二级反应,在纯水中此反应的速率极慢,通常需要在H+
离子催化作用下进行。
由于反应时水大量存在,尽管有部分水分子参与反应,仍可近似地认为整个反应过程中水的浓度是恒定的,而且H+是催化剂,其浓度也保持不变。
因此在一定浓度下,反应速度只与蔗糖的浓度有关,蔗糖转化反应可看作为一级反应。
一级反应的速率方程可由下式表示:
式中:c 为蔗糖溶液浓度,k 为蔗糖在该条件下的水解反应速率常数。
令蔗糖开始水解反应时浓度为c0,水解到某时刻时的蔗糖浓度为ct ,对上式进
行积分得: 该反应的半衰期与k 的关系为:
蔗糖及其转化产物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应进程。
测量物质旋光度所用的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质,溶液浓度,样品管长度及温度等均有关系。
当温度、波长、溶剂一定时,旋光度的数值为:
[]t D C L αα⋅⋅=
或 KC
=α
L 为液层厚度,即盛装溶液的旋光管的长度;C 为旋光物质的体积摩尔浓度;[]t D α为比旋光度;t 为温度;D 为所用光源的波长。
比例常数'K 与物质旋光能力,溶剂性质,样品管长度,光源的波长,溶液温度等有关。
可见,旋光度与物质的浓度有关,且溶液的旋光度为各组分旋光度之和。
作为反应物的蔗糖是右旋性物质,其比旋光度[]020
65.66=D 蔗α;生成物中葡
萄糖也是右旋性物质,其比旋光度[]020
5.52=D 葡α;但果糖是左旋性物质,其比旋
光度[]020
9.91-=D 果α。
由于生成物中果糖的左旋性比葡萄糖右旋性大,所以生成
物呈左旋性质。
因此随着反应的进行,体系的右旋角不断减小,反应至某一瞬间,体系的旋光度可恰好等于零,而后就变成左旋,直至蔗糖完全转化,这时左旋角达到最大值∞α。
反应过程浓度变化转变为旋光度变化:
当t=0时,溶液中只有蔗糖,溶液的旋光度值为:
00C k 蔗糖=α (1)
当t=∞时,蔗糖完全水解,溶液中只有葡萄糖和果糖。
旋光度为: ()0C k k 果葡+=∞α (2) 当t=t 时,溶液中有蔗糖、果糖和葡萄糖,此时旋光度为: ()()t t t C C k k C k -++=0果葡蔗糖α (3) 经数学处理得:
()()[]果葡蔗糖k k k C +--=∞αα00 (4)
()()[]果葡蔗糖k k k C t t +--=∞αα (5) 即得: ()()∞∞-+-=-αααα0ln ln kt t
三、仪器与试剂
旋光仪(1台);50ml 容量瓶(1个);5mL 移液管(1支);25ml 移液管(1支);锥形瓶(3个);恒温水水浴(1台);秒表 (1个);蔗糖;分析台秤(1台);蔗糖;HCL 溶液(2mol/L )。
四、实验步骤 1.溶液配制:
称取10克蔗糖放在烧杯中,加蒸馏水溶解,移至50ml 容量瓶,加水稀释至刻度。
用25ml 移液管移取蔗糖溶液于2个锥形瓶,准确加入5ml 2mol/L 的HCl 溶液,按下秒表开始计时(注意:秒表一经启动,勿停直至实验完毕)。
将其中一份放入恒温水浴中加热,另一份用另一个锥形瓶相互倾倒2~3次,使溶液混合均匀。
2. t α测定:
迅速用反应混合液将旋光管管洗涤1次后,将反应混合液装满旋光管,擦净后放入旋光仪,测定规定时间的旋光度。
反应前期可2min 测一次,反应速度变慢后可5 ~10min 测一次,测至60min 即可。
3. ∞α的测量:
将放入恒温水浴中加热的溶液使反应充分后拿出,冷却至室温后测定体系的旋光度。
五、实验数据记录和处理
室温: 22.4C ο 大气压: 101.36 KPa 反应温度: 22.4C ο HCl C = 2 1-L mol ⋅ ∞α= -4.67
表1 蔗糖反应液所测时间与旋光度数据
()min t
4 6 8 10 1
5 20 30 40 50 60
t α
12.55 12.36 12.26 12.01 11.49 10.79 9.58 7.63 5.84 4.01
()∞-ααt ln 2.846 2.835 2.829 2.814 2.783 2.738 2.657 2.510 2.352 2.161
根据上表数据,算出相应的ln(αt -α∞)的数值计入表格,并以In(αt -α∞)对t 作图。
图1
()t
t ~ln ∞-αα
由线性拟合得到:
() 2.93779
0.01174ln +-=-∞t t αα
由直线斜率求出反应速率常数k (直线斜率的相反数即为速率常数k ),并计算反应的半衰期
2
1t
即: 0.01174--=k
则速率常数: 1
2min 10174.1--⨯=k
半衰期: min
04.592ln 21==k t
六、思考题
1. 蔗糖水解反应速率常数和哪些因素有关? 与反应温度和反应活化能有关
2. 反应开始时,为什么将盐酸倒入蔗糖溶液,而不是相反?
因为盐酸与蔗糖溶液反应是个放热的过程,盐酸的比重比蔗糖溶液的比重 大,如果将蔗糖溶液倒入盐酸中会由于热量不能及时散发而发生溶液飞溅。
3. 记录反应开始的时间迟点或早点,是否影响值的测定? 影响值的测定。