【精品】2017年吉林省长春市五县联考高一上学期期末数学试卷

合集下载

2017-2018学年吉林省吉林市高一上期末数学试卷有答案

2017-2018学年吉林省吉林市高一上期末数学试卷有答案

2017-2018学年吉林省吉林市高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)若集合A={x|(x﹣1)(x+2)>0},集合B={﹣3,﹣2,﹣1,0,1,2},则A∩B 等于()A.{0,1}B.{﹣3,﹣2}C.{﹣3,2}D.{﹣3,﹣2,1,2}2.(5分)函数y=的定义域是()A.(,+∞)B.[,+∞)C.(﹣∞,) D.(﹣∞,]3.(5分)tan690°的值为()A.﹣B.C.﹣D.4.(5分)已知扇形的面积为π,半径是1,则扇形的圆心角是()A.πB.πC.πD.π5.(5分)函数图象的对称轴方程可以为()A.B.C.D.6.(5分)函数y=﹣cos2x+sinx的值域为()A.[﹣1,1]B.[﹣,﹣1] C.[﹣,1]D.[﹣1,]7.(5分)已知f(x)满足f(a•b)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=()A.2pq B.2(p+q)C.p2q2 D.p2+q28.(5分)要得到函数y=cos2x的图象,只需将y=cos(2x+)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.(5分)已知向量,满足⊥,||=1,||=2,则|2﹣|=()A.0 B.2 C.4 D.810.(5分)D是△ABC的边BC上的一点,且BD=BC,设=,=,则等于()A.(﹣)B.(﹣)C.(2+)D.(2﹣)11.(5分)已知函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,则f(1)=()A.3 B.﹣3 C.0 D.4﹣112.(5分)用二分法求函数f(x)=3x﹣x﹣4的零点时,其参考数据如下)A.1.55 B.1.56 C.1.57 D.1.58二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=log a(2x﹣1)+1(a>0,且a≠1)的图象必过定点.14.(5分)设f(x)=,则f(f(2))等于.15.(5分)已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.16.(5分)已知向量=(2sinx,cosx),=(2,1),若∥,则sinx•cosx=.三、解答题(本大题共4小题,共40分)17.(10分)已知角α终边上一点P(﹣4,3),求下列各式的值..18.(10分)设=(﹣1,1),=(4,3).(1)求,;(2)求与的夹角的余弦值;(3)求在方向上的投影.19.(10分)已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,)在一个周期内,当时,y有最大值为2,当时,y有最小值为﹣2.(1)求函数f(x)表达式;(2)若g(x)=f(﹣x),求g(x)的单调递减区间.20.(10分)已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,且a≠1).(1)写出函数f(x)的定义域,判断f(x)奇偶性,并证明;(2)当0<a<1时,解不等式f(x)>0.2017-2018学年吉林省吉林市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)若集合A={x|(x﹣1)(x+2)>0},集合B={﹣3,﹣2,﹣1,0,1,2},则A∩B 等于()A.{0,1}B.{﹣3,﹣2}C.{﹣3,2}D.{﹣3,﹣2,1,2}【解答】解:由A中不等式解得:x<﹣2或x>1,即A=(﹣∞,﹣2)∪(1,+∞),∵B={﹣3,﹣2,﹣1,0,1,2},∴A∩B={﹣3,2},故选:C.2.(5分)函数y=的定义域是()A.(,+∞)B.[,+∞)C.(﹣∞,) D.(﹣∞,]【解答】解:要使函数有意义,则需2x﹣1≥0,即x≥,所以原函数的定义域为[,+∞).故选:B.3.(5分)tan690°的值为()A.﹣B.C.﹣D.【解答】解:tan690°=tan(720°﹣30°)=﹣tan30°=﹣,故选A.4.(5分)已知扇形的面积为π,半径是1,则扇形的圆心角是()A.πB.πC.πD.π【解答】解:设扇形的圆心角是α.则=,解得.故选:C.5.(5分)函数图象的对称轴方程可以为()A.B.C.D.【解答】解:函数图象的对称轴方程∴k=0时,∴函数图象的对称轴方程可以为故选A.6.(5分)函数y=﹣cos2x+sinx的值域为()A.[﹣1,1]B.[﹣,﹣1] C.[﹣,1]D.[﹣1,]【解答】解:y=﹣cos2x+sinx,=sin2x+sinx﹣1,=,当,.当sinx=1时.,故函数的值域为:.故选:C7.(5分)已知f(x)满足f(a•b)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=()A.2pq B.2(p+q)C.p2q2 D.p2+q2【解答】解:由f(a•b)=f(a)+f(b),得f(36)=f(6)+f(6)=2f(6)=2[f(2)+f(3)]=2(p+q),故选B.8.(5分)要得到函数y=cos2x的图象,只需将y=cos(2x+)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:设将y=cos(2x+)的图象,向右平移A个单位长度后,得到函数y=cos2x的图象则cos[2(x﹣A)+)]=cos(2x)易得A=故选B9.(5分)已知向量,满足⊥,||=1,||=2,则|2﹣|=()A.0 B.2 C.4 D.8【解答】解:由已知向量,满足⊥,||=1,||=2,则|2﹣|2=4=4+4=8,所以|2﹣|=;故选B.10.(5分)D是△ABC的边BC上的一点,且BD=BC,设=,=,则等于()A.(﹣)B.(﹣)C.(2+)D.(2﹣)【解答】解:由向量的运算法则可得=+=+=+(﹣)=+=+=故选C.11.(5分)已知函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,则f(1)=()A.3 B.﹣3 C.0 D.4﹣1【解答】解:∵函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,∴f(﹣1)=asin(﹣1)﹣btan(﹣1)+4×=﹣asin1+btan1+2=1,∴asin1﹣btan1=1,∴f(1)=asin1﹣bsin1+4×=1+2=3.故选:A.12.(5分)用二分法求函数f(x)=3x﹣x﹣4的零点时,其参考数据如下)A.1.55 B.1.56 C.1.57 D.1.58【解答】解:由图表知,f(1.5625)=0.003>0,f(1.5562)=﹣0.0029<0,∴函数f(x)=3x﹣x﹣4的一个零点在区间(1.5625,1.5562)上,故函数的零点的近似值(精确到0.01)为1.56,可得方程3x﹣x﹣4=0的一个近似解(精确到0.01)为1.56,故选:B二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=log a(2x﹣1)+1(a>0,且a≠1)的图象必过定点(1,1).【解答】解:由对数函数的定义,令2x﹣1=1,此时y=1,解得x=1,故函数y=log a(2x﹣1)+1的图象恒过定点(1,1)故答案为(1,1)14.(5分)设f(x)=,则f(f(2))等于2.【解答】解:∵f(x)=,∴f(2)==1,f(1)=2e1﹣1=2.则f(f(2))=f(1)=2.故答案为:2.15.(5分)已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.【解答】解:向量,∴又A、B、C三点共线故(4﹣k,﹣7)=λ(﹣2k,﹣2)∴k=故答案为16.(5分)已知向量=(2sinx,cosx),=(2,1),若∥,则sinx•cosx=.【解答】解:∵向量=(2sinx,cosx),=(2,1),∥,∴=,∴sinx=cosx,∴sin2x+cos2x=2sin2x=1,∴si nx•cosx=sin2x=.故答案为:.三、解答题(本大题共4小题,共40分)17.(10分)已知角α终边上一点P(﹣4,3),求下列各式的值..【解答】解:∵角α终边上一点P(﹣4,3),∴tanα===﹣,∴(1)===;(2)==tanα=﹣.18.(10分)设=(﹣1,1),=(4,3).(1)求,;(2)求与的夹角的余弦值;(3)求在方向上的投影.【解答】解:(1)根据题意,=(﹣1,1),=(4,3),则+=(3,4),•=(﹣1)×4+1×3=﹣1;(2)设与的夹角为θ,由(1)的结论,•=(﹣1)×4+1×3=﹣1,且||=,||=5,则cosθ==﹣,(3)在方向上的投影为=﹣.19.(10分)已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,)在一个周期内,当时,y有最大值为2,当时,y有最小值为﹣2.(1)求函数f(x)表达式;(2)若g(x)=f(﹣x),求g(x)的单调递减区间.【解答】解:(1)∵在一个周期内,当时,y有最大值为2,当时,y有最小值为﹣2.∴可得A=2,且函数的周期T=2(﹣)=π,得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)把代入f(x)=2sin(2x+ϕ),得∴,结合取k=0,得∴函数f(x)表达式为:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)结合(1)的表达式,得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)由﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)得:所以g(x)的单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)20.(10分)已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,且a≠1).(1)写出函数f(x)的定义域,判断f(x)奇偶性,并证明;(2)当0<a<1时,解不等式f(x)>0.【解答】解:(1)由题设可得,解得﹣1<x<1,故函数f(x)定义域为(﹣1,1)从而:f(﹣x)=log a[1+(﹣x)]﹣log a[1﹣(﹣x)]=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x)故f(x)为奇函数.(2)由题设可得log a(1+x)﹣log a(1﹣x)>0,即:log a(1+x)>log a(1﹣x)∵0<a<1,∴y=log a x为(0,∞)上的减函数∴0<1+x<1﹣x,解得:﹣1<x<0故不等式f(x)>0的解集为(﹣1,0).。

吉林省长春2016-2017学年高一上学期期末考试数学Word版含答案

吉林省长春2016-2017学年高一上学期期末考试数学Word版含答案

长春外国语学校2016-2017学年第一学期期末考试高一年级数学试卷出题人 :王先师 审题人:于海君本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

考试结束后,将答题卡交回。

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 210sin 的值为( )A .21 B. 23 C. 21- D. 23- 2. 18sin 27cos 18cos 27sin +的值为( )A .22 B. 23 C. 21 D. 1 3. 已知集合}821|{<<=x x A ,集合}1log 0|{2<<=x x B ,则A B =( )A .}31|{<<x x B. }21|{<<x x C. }32|{<<x x D. }20|{<<x x4. 已知 80sin =a ,1)21(-=b ,3log 21=c ,则( )A .c b a >> B. c a b >> C. b a c >> D. a c b >>5. 一扇形的圆心角为 60,所在圆的半径为6 ,则它的面积是( )A .π6 B. π3 C. π12 D. π96. 若),0(,πβα∈且 31tan ,21tan ==βα,则=+βα( )A .4π B. 43π C. 45π D. 47π 7. )32sin(3π-=x y 的一条对称轴是( ) A .32π=x B. 2π=x C. 3π-=x D. 38π=x 8. 要得到)32cos(3π-=x y 的图象,只需将x y 2cos 3=的图象( ) A .右移3π B. 左移3π C. 右移6π D. 左移6π 9. 函数1)2sin(2--=x y π的定义域为( )A .},65262|{Z k k x k x ∈+≤≤+ππππ B.},656|{Z k k x k x ∈+≤≤+ππππ C. },32232|{Z k k x k x ∈+≤≤+ππππ D. },12512|{Z k k x k x ∈+≤≤+ππππ 10. 函数x x y cos sin +=的值域是( )A .]2,2[- B. ]1,1[- C. ]2,2[- D. ]2,0[11. 下列函数中既是偶函数,最小正周期又是π的是( )A .x y 2sin = B. x y cos = C. x y tan = D. |tan |x y =12. 函数1ln )(2-++=a x x x f 有唯一的零点在区间),1(e 内,则实数a 的取值范围是 ( )A .)0,(2e - B. )1,(2e - C. ),1(e D. ),1(2e第Ⅱ卷二、填空题:本题共4小题,每小题5分。

2017年上学期高一期末考试数学试卷 精品

2017年上学期高一期末考试数学试卷 精品

2017年上学期高一期末考试数学试卷(时间 120分钟满分 150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A = ,则实数a 的取值范围是()A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞ 2.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率()(A )15(B )35(C )45(D )133.设m =-)80cos(0,那么=0100tan ()A .m m 21-B .m m 21-- C .21m m - D .21m m --4.等差数列的公差,且,,称等比数列,若,为数列的前项和,则的最大值为()A. B. C. D.5.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于cm 3. ()A. 6+ 32πB. 6 23π+C. 4+ 32πD. 4+ 23π6.函数()sin y A x ωϕ=+(0,,2x R πωϕ><∈)的部分图像如图所示,则函数表达式为()A. 4sin 84y x ππ⎛⎫=-- ⎪⎝⎭B. 4sin 84y x ππ⎛⎫=-+ ⎪⎝⎭C. 4sin 84y x ππ⎛⎫=- ⎪⎝⎭D. 4sin 84y x ππ⎛⎫=+ ⎪⎝⎭7.执行如右图程序框图,输出的S 为()A. 17B. 27C. 47D. 678.圆224410x y x y +-+-=与圆222410x y x y ++-+=的位置关系是() A. 相离 B. 相交 C. 内切 D. 外切9.已知等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 依次成等差数列,若11a =,则5S =( )A.16B.31C.32D.6310.函数()122xf x x ⎛⎫=-+ ⎪⎝⎭的零点所在的一个区间是()A. ()01,B. ()12,C. ()23,D. ()34, 11.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A. b a c >>B. c a b >>C. c b a >>D. b c a >>12.定义在R 上的奇函数()f x 满足()()2f x f x =-+,且在[]1,2上是减函数,则()A. ()13322f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭B. ()31322f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭C. ()13322f f f ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭D. ()13322f f f ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭二、填空题:本题共4小题,每小题5分,共20分。

吉林省长春市高一上学期期末数学试卷

吉林省长春市高一上学期期末数学试卷

吉林省长春市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高一下·衡阳期末) 已知,且,则()A .B .C .D .2. (2分)△ABC的内角A满足,则角A的取值范围是()A .B .C .D .3. (2分)函数的最小正周期是()A .B .C .D .4. (2分) (2016高二下·丰城期中) 已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A . 8B . 6C . 4D . 25. (2分)下列图形可以表示为以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数是()A .B .C .D .6. (2分) (2016高一下·新余期末) 函数f(x)=Asin(ωx+φ)(A>0,|φ|<)其中的图象如图所示,为了得到g(x)=cos(2x﹣)的图象,只需将f(x)的图象()A . 向左平移个单位B . 向右平移个单位C . 向左平移个单位D . 向右平移个单位7. (2分) (2016高二上·山东开学考) 若将函数y=2sin(x+φ)的图象上每个点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位后得到的图象关于点(,0)对称,则|φ|的最小值是()A .B .C .D .8. (2分)(2017·漳州模拟) 已知函数,若,则f(1﹣m)=()A . ﹣1B . ﹣4C . ﹣9D . ﹣169. (2分) (2016高三上·安徽期中) 设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=()A .B .C . ﹣D . ﹣10. (2分) (2017高一上·武清期末) 要得到函数y=3cosx的图象,只需将函数y=3sin(2x﹣)的图象上所有点的()A . 横坐标缩短到原来的(纵坐标不变),所得图象再向左平移个单位长度B . 横坐标缩短到原来的(纵坐标不变),所得图象再向右平移个单位长度C . 横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移个单位长度D . 横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移个单位长度11. (2分)已知直线x=和x=是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)图象的两条相邻的对称轴,则φ的值为()A .B .C .D .12. (2分)若函数在内无极值,则实数的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)若0<y≤x<且tanx=3tany,则x﹣y的最大值为________14. (1分)(2016·大连模拟) 若函数f(x)= ,则f(7)+f(log36)=________.15. (1分)将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是________16. (1分)奇函数f(x)满足:①f(x)在(0,+∞)内是单调递减函数;②f(2)=0.则不等式(x﹣1)•f(x)>0的解集为________.三、解答题 (共6题;共50分)17. (5分)已知函数f(x)=sinx+acosx(x∈R)的一条对称轴是x=﹣.(Ⅰ)求a的值,并求函数f(x)的单调递增区间;(Ⅱ)若α,β∈(0,),且f(α+ )= ,f()= ,求sin(α+β)18. (10分) (2019高三上·广东月考) 已知函数,.(1)求的解集;(2)若有两个不同的解,求的取值范围.19. (10分) (2016高一上·金华期中) 已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2﹣2x.(1)画出偶函数f(x)的图像的草图,并求函数f(x)的单调递增区间;(2)当直线y=k(k∈R)与函数y=f(x)恰有4个交点时,求k的取值范围.20. (10分) (2015高三上·巴彦期中) 在△ABC中,a,b,c分别是三内角A,B,C所对应的三边,已知b2+c2=a2+bc(1)求角A的大小;(2)若,试判断△ABC的形状.21. (10分) (2017高一上·孝感期末) 某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生一些次品,根据经验知道,次品数P(万件)与日产量x(万件)之间满足关系:已知每生产l万件合格的元件可以盈利2万元,但每生产l万件次品将亏损1万元.(利润=盈利一亏损)(1)试将该工厂每天生产这种元件所获得的利润T(万元)表示为日产量x(万件)的函数;(2)当工厂将这种仪器的元件的日产量x定为多少时获得的利润最大,最大利润为多少?22. (5分) (2016高三上·晋江期中) 已知函数f(x)=2cos2ωx+2 sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3、答案:略4-1、5-1、6-1、7、答案:略8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、第11 页共11 页。

(全优试卷)版吉林省长春高一上学期期末考试 数学 Word版含答案

(全优试卷)版吉林省长春高一上学期期末考试 数学 Word版含答案

长春外国语学校2016-2017学年第一学期期末考试高一年级数学试卷出题人 :王先师 审题人:于海君本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

考试结束后,将答题卡交回。

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 210sin 的值为( )A .21 B. 23 C. 21- D. 23- 2. 18sin 27cos 18cos 27sin +的值为( )A .22 B. 23 C. 21 D. 1 3. 已知集合}821|{<<=x x A ,集合}1log 0|{2<<=x x B ,则A B =( )A .}31|{<<x x B. }21|{<<x x C. }32|{<<x x D. }20|{<<x x4. 已知 80sin =a ,1)21(-=b ,3log 21=c ,则( )A .c b a >> B. c a b >> C. b a c >> D. a c b >>5. 一扇形的圆心角为 60,所在圆的半径为6 ,则它的面积是( )A .π6 B. π3 C. π12 D. π96. 若),0(,πβα∈且 31tan ,21tan ==βα,则=+βα( )A .4π B. 43π C. 45π D. 47π 7. )32sin(3π-=x y 的一条对称轴是( ) A .32π=x B. 2π=x C. 3π-=x D. 38π=x 8. 要得到)32cos(3π-=x y 的图象,只需将x y 2cos 3=的图象( ) A .右移3π B. 左移3π C. 右移6π D. 左移6π 9. 函数1)2sin(2--=x y π的定义域为( )A .},65262|{Z k k x k x ∈+≤≤+ππππ B.},656|{Z k k x k x ∈+≤≤+ππππ C. },32232|{Z k k x k x ∈+≤≤+ππππ D. },12512|{Z k k x k x ∈+≤≤+ππππ 10. 函数x x y cos sin +=的值域是( )A .]2,2[- B. ]1,1[- C. ]2,2[- D. ]2,0[11. 下列函数中既是偶函数,最小正周期又是π的是( )A .x y 2sin = B. x y cos = C. x y tan = D. |tan |x y =12. 函数1ln )(2-++=a x x x f 有唯一的零点在区间),1(e 内,则实数a 的取值范围是 ( )A .)0,(2e - B. )1,(2e - C. ),1(e D. ),1(2e第Ⅱ卷二、填空题:本题共4小题,每小题5分。

【精品】2016-2017年吉林省长春市五县联考高一(上)期末数学试卷带解析

【精品】2016-2017年吉林省长春市五县联考高一(上)期末数学试卷带解析

2016-2017学年吉林省长春市五县联考高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)若集合A={x|y=lg(2x+3)},B={﹣2,﹣1,1,3},则A∩B等于()A.{3}B.{﹣1,3}C.{﹣1,1,3}D.{﹣1,﹣1,1,3}2.(5.00分)已知直线l1:(a+2)x+3y=5与直线l2:(a﹣1)x+2y=6平行,则a 等于()A.﹣1 B.7 C.D.23.(5.00分)若log545=a,则log53等于()A. B. C. D.4.(5.00分)以(1,﹣1)为圆心且与直线相切的圆的方程为()A.(x+1)2+(y﹣1)2=6 B.(x﹣1)2+(y+1)2=6 C.(x+1)2+(y﹣1)2=3 D.(x﹣1)2+(y+1)2=35.(5.00分)已知幂函数f(x)=xα的图象过点,则函数g(x)=(x﹣2)f(x)在区间上的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣46.(5.00分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()A.若m∥n,m∥α,则n∥αB.若α⊥β,m∥α,则m⊥βC.若α⊥β,m⊥β,则m∥αD.若m⊥n,m⊥α,n⊥β,则α⊥β7.(5.00分)已知圆M:x2+y2﹣2x+ay=0(a>0)被x轴和y轴截得的弦长相等,则圆M被直线x+y=0截得的弦长为()A.4 B.C.2 D.28.(5.00分)若x>0,则函数与y2=log a x(a>0,且a≠1)在同一坐标系上的部分图象只可能是()A.B.C.D.9.(5.00分)如图是一个几何体的三视图,在该几何体的各个面中.面积最小的面的面积为()A.4 B.4 C.4 D.810.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(1,+∞)B. C.(1,3]D.(1,5]11.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为()A.B.C.D.12.(5.00分)若关于x的不等式在上恒成立,则实数a的取值范围是()A. B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=x•2x+a﹣1,若f(﹣1)=,则a=.14.(5.00分)已知集合A={0,1,log3(x2+2),x2﹣3x},若﹣2∈A,则x=.15.(5.00分)已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2,棱锥O﹣ABCD的体积为8,则R=.16.(5.00分)已知圆C:(x﹣3)2+(y﹣4)2=1,点A(0,﹣1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,则d的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10.00分)已知集合A=[a﹣3,a],函数(﹣2≤x≤5)的单调减区间为集合B.(1)若a=0,求(∁R A)∪(∁R B);(2)若A∩B=A,求实数a的取值范围.18.(12.00分)已知不过第二象限的直线l:ax﹣y﹣4=0与圆x2+(y﹣1)2=5相切.(1)求直线l的方程;(2)若直线l1过点(3,﹣1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.20.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.21.(12.00分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.2016-2017学年吉林省长春市五县联考高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)若集合A={x|y=lg(2x+3)},B={﹣2,﹣1,1,3},则A∩B等于()A.{3}B.{﹣1,3}C.{﹣1,1,3}D.{﹣1,﹣1,1,3}【解答】解:∵集合A={x|y=lg(2x+3)}={x|x>﹣},B={﹣2,﹣1,1,3},∴A∩B={﹣1,1,3}.故选:C.2.(5.00分)已知直线l1:(a+2)x+3y=5与直线l2:(a﹣1)x+2y=6平行,则a 等于()A.﹣1 B.7 C.D.2【解答】解:由﹣=﹣,解得a=7,经过验证两条直线平行.故选:B.3.(5.00分)若log545=a,则log53等于()A. B. C. D.【解答】解:∵log545=a=1+2log53,则log53=.故选:D.4.(5.00分)以(1,﹣1)为圆心且与直线相切的圆的方程为()A.(x+1)2+(y﹣1)2=6 B.(x﹣1)2+(y+1)2=6 C.(x+1)2+(y﹣1)2=3 D.(x﹣1)2+(y+1)2=3【解答】解:圆的半径,则所求圆的方程为(x﹣1)2+(y+1)2=3.5.(5.00分)已知幂函数f(x)=xα的图象过点,则函数g(x)=(x﹣2)f(x)在区间上的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【解答】解:∵幂函数f(x)=xα的图象过点,∴2α=,解得:α=﹣1,故g(x)==1﹣,而g(x)在[,1]递增,故g(x)min=g()=﹣3,故选:C.6.(5.00分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()A.若m∥n,m∥α,则n∥αB.若α⊥β,m∥α,则m⊥βC.若α⊥β,m⊥β,则m∥αD.若m⊥n,m⊥α,n⊥β,则α⊥β【解答】解:A选项不正确,因为n⊂α是可能的;B选项不正确,因为α⊥β,m∥α时,m∥β,m⊂β都是可能的;C选项不正确,因为α⊥β,m⊥β时,可能有m⊂α;D选项正确,可由面面垂直的判定定理证明其是正确的.故选:D.7.(5.00分)已知圆M:x2+y2﹣2x+ay=0(a>0)被x轴和y轴截得的弦长相等,则圆M被直线x+y=0截得的弦长为()A.4 B.C.2 D.2【解答】解:由题意,圆心坐标为(1,﹣),∵圆M:x2+y2﹣2x+ay=0(a>0)被x轴和y轴截得的弦长相等,∴a=2,∴圆心坐标为(1,﹣1),圆的半径为,圆心在直线x+y=0上,∴圆M被直线x+y=0截得的弦长为2,故选:C.8.(5.00分)若x>0,则函数与y2=log a x(a>0,且a≠1)在同一坐标系上的部分图象只可能是()A.B.C.D.【解答】解:当a>1时,函数为增函数,且图象过(0,﹣1)点,向右和x轴无限接近,函数y2=log a x(a>0,且a≠1)为增函数,且图象过(1,0)点,向左和y轴无限接近,此时答案B符合要求,当0<a<1时,函数为减函数,且图象过(0,﹣1)点,函数y2=log a x(a>0,且a≠1)为减函数,且图象过(1,0)点,向左和y轴无限接近,此时无满足条件的图象.故选:B.9.(5.00分)如图是一个几何体的三视图,在该几何体的各个面中.面积最小的面的面积为()A .4B .4C .4D .8【解答】解:根据三视图作出物体的直观图如图所示:显然S △PCD >S △ABC . 由三视图特征可知PA ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,PA=AB=AC=4,DB=2, ∴BC=4,∴S △ABC ==8,S △PAC ==8,S △BCD ==4.S梯形PABD==12.∴△BCD 的面积最小. 故选:B .10.(5.00分)已知函数f (x )=a x ﹣1(a >0,且a ≠1),当x ∈(0,+∞)时,f (x )>0,且函数g (x )=f (x +1)﹣4的图象不过第二象限,则a 的取值范围是( ) A .(1,+∞) B .C .(1,3]D .(1,5]【解答】解:当a >1时,函数f (x )在(0,+∞)上单调递增,f (x )=a x ﹣1>0;当0<a <1时,函数f (x )在(0,+∞)上单调递减,f (x )=a x ﹣1<0,舍去.故a>1.∵函数g(x)=f(x+1)﹣4的图象不过第二象限,∴g(0)=a1﹣5≤0,∴a≤5,∴a的取值范围是(1,5].故选:D.11.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为()A.B.C.D.【解答】解:以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,A(0,0,0),B(0,2,0),C(2,2,0),D(6,0,0),P(0,0,3),设E(a,0,c),,则(a,0,c﹣3)=(6λ,0,﹣3λ),解得a=6λ,c=3﹣3λ,∴E(6λ,0,3﹣3λ),=(6λ﹣2,﹣2,3﹣3λ),平面ABP的法向量=(1,0,0),∵CE∥平面PAB,∴=6λ﹣2=0,解得,∴E(2,0,2),∴E到平面ABC的距离d=2,∴三棱锥C﹣ABE的体积:V C﹣ABE=V E﹣ABC===.故选:D.12.(5.00分)若关于x的不等式在上恒成立,则实数a的取值范围是()A. B. C. D.【解答】解:由题意得在上恒成立,即当时,函数的图象不在y=log a x图象的上方,由图知:当a>1时,函数的图象在y=log a x图象的上方;当0<a<1时,,解得.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=x•2x+a﹣1,若f(﹣1)=,则a=﹣3.【解答】解:由题意,f(1)=21+a﹣1,f(1)=﹣f(﹣1)═﹣,∴a=﹣3,故答案为﹣3.14.(5.00分)已知集合A={0,1,log3(x2+2),x2﹣3x},若﹣2∈A,则x=2.【解答】解:因为集合A={0,1,log3(x2+2),x2﹣3x},﹣2∈A,所以x2﹣3x=﹣2,解得x=2或者x=1(舍去)故答案为:2.15.(5.00分)已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2,棱锥O﹣ABCD的体积为8,则R=4.【解答】解:由题可知矩形ABCD所在截面圆的半径即为ABCD的对角线长度的一半,∵AB=6,BC=2,∴r==2,由矩形ABCD的面积S=AB•BC=12,则O到平面ABCD的距离为h满足:=8,解得h=2,故球的半径R==4,故答案为:4.16.(5.00分)已知圆C:(x﹣3)2+(y﹣4)2=1,点A(0,﹣1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,则d的取值范围是[34,74] .【解答】解:设P点的坐标为(3+sinα,4+cosα),则d=|PA|2+|PB|2=(3+sinα)2+(5+cosα)2+(3+sinα)2+(3+cosα)2=54+12sinα+16cosα=54+20sin(θ+α)∴当sin(θ+α)=1时,即12sinα+16cosα=20时,d取最大值74,当sin(θ+α)=﹣1时,即12sinα+16cosα=﹣20,d取最小值34,∴d的取值范围是[34,74].故答案为[34,74].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10.00分)已知集合A=[a﹣3,a],函数(﹣2≤x≤5)的单调减区间为集合B.(1)若a=0,求(∁R A)∪(∁R B);(2)若A∩B=A,求实数a的取值范围.【解答】解:(1)由题意知函数f(x)的定义域是:[﹣2,5],则函数y=x2﹣4x=(x﹣2)2﹣4的减区间为[﹣2,2],又,则函数f(x)的减区间[﹣2,2],即集合B=[﹣2,2],当a=0时,A=[﹣3,0],则∁R A=(﹣∞,﹣3)∪(0,+∞),(∁R B)=(﹣∞,﹣2)∪(2,+∞);所以(∁R A)∪(∁R B)=(﹣∞,﹣2)∪(0,+∞);(2)由A∩B=A得,A⊆B=[﹣2,2],所以,解得1≤a≤2,即实数a的取值范围为[1,2].18.(12.00分)已知不过第二象限的直线l:ax﹣y﹣4=0与圆x2+(y﹣1)2=5相切.(1)求直线l的方程;(2)若直线l1过点(3,﹣1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.【解答】解:(1)∵直线l与圆x2+(y﹣1)2=5相切,∴,…(2分)∵直线l不过第二象限,∴a=2,∴直线l的方程为2x﹣y﹣4=0;…(4分)(2)∵直线l1过点(3,﹣1)且与直线l平行,∴直线l1的方程为2x﹣y+b=0,…(6分)∵直线l1过点(3,﹣1),∴b=﹣7,则直线l1的方程为2x﹣y﹣7=0,…(7分)∵直线l2与l1关于y=1对称,∴直线l2的斜率为﹣2,且过点(4,1),…(9分)∴直线l2的斜率为y﹣1=﹣2(x﹣4),即化简得2x+y﹣9=0.…(10分)19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.【解答】解:(1)∵log a3>log a2,∴a>1,又∵y=log a x在[a,2a]上为增函数,∴log a2a﹣log a a=1,即log a2=1,∴a=2.(2)依题意可知解得,∴所求不等式的解集为.(3)∵g(x)=|log2x﹣1|,∴g(x)≥0,当且仅当x=2时,g(x)=0.则∴函数在(0,2)上为减函数,在(2,+∞)上为增函数,g(x)的减区间为(0,2),增区间为(2,+∞).20.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.【解答】证明:(1)∵FD⊥底面ABCD,∴FD⊥AD,FD⊥BD∵AF=BF,∴△ADF≌△BDF,∴AD=BD,连接DM,则DM⊥AB,∵AB∥CD,∠BCD=90°,∴四边形BCDM是正方形,∴BD⊥CM,∵DF⊥CM,∴CM⊥平面BDF.解:(2)当CN=1,即N是CE的中点时,MN∥平面BEF.证明如下:过N作NO∥EF,交ED于O,连结MO,∵EC∥FD,∴四边形EFON是平行四边形,∵EC=2,FD=3,∴OF=1,∴OD=2,连结OE,则OE∥DC∥MB,且OE=DC=MB,∴四边形BMOE是平行四边形,则OM∥BE,又OM∩ON=O,∴平面OMN∥平面BEF,∵MN⊂平面OMN,∴MN∥平面BEF.21.(12.00分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.【解答】解:(1)由于圆C:x2+y2﹣6x+4y+4=0的圆心C(3,﹣2),半径为3,|CP|=,而弦心距d=,所以d=|CP|=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(2)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,∴k AB=a=,由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.【解答】解:(1)定义域为(﹣∞,0)∪(0,+∞).(2)==,∴f(x)是偶函数.(3)∵函数f(x)在定义域上是偶函数,∴函数y=f(2x)在定义域上也是偶函数,∴当x∈(0,+∞)时,f(x)+f(2x)>0可满足题意,∵当x∈(0,+∞)时,x3>0,∴只需,即,∵a2x+a x+1>0,∴(a x)2﹣1>0,解得a>1,∴当a>1时,f(x)+f(2x)>0在定义域上恒成立.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

吉林省2017—2018学年高一数学上学期期末考试试卷(二)

吉林省2017—2018学年高一数学上学期期末考试试卷(二)

吉林省2017—2018学年高一数学上学期期末考试试卷(二)(考试时间90分钟满分100分)一、单项选择题(每题4分,共计40分)1.设集合U={0,1,2,3,4,5},M={0,3,5},N={1,4,5},则M∩(∁U N)=()A.{5}B.{0,3}C.{0,2,3,5}D.∅2.已知函数f(x)=x2+1,那么f(a+1)的值为()A.a2+a+2 B.a2+1 C.a2+2a+2 D.a2+2a+13.如果m>n>0,那么下列不等式成立的是()A.log3m<log3n B.log0.3m>log0.3nC.3m<3n D.03m<0.3n4.函数f(x)=e x+x﹣2的零点所在的区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)5.下列各图是正方体或正四面体,P,Q,R,S分别是所在棱的中点,这四个点中不共面的一个图是()A. B.C.D.6.已知a∥平面α,b⊂α,那么a,b的位置关系是()A.a∥b B.a,b异面C.a∥b或a,b异面D.a∥b或a⊥b7.某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+16C.48 D.16+328.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25πB.50πC.125πD.都不对9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有.则()A.f(3)<f(﹣2)<f(1)B.f(1)<f(﹣2)<f(3)C.f(﹣2)<f (1)<f(3)D.f(3)<f(1)<f(﹣2)10.如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角等于()A.45°B.60°C.90°D.120°二、填空题(每小题4分,共计20分)11.若函数f(x)=(a﹣2)x2+(a﹣1)x+3是偶函数,则a=.12.函数f(x)=的定义域是.13.若2a=5b=10,则=.14.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有个直角三角形.15.将正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个结论:(1)AC⊥BD;(2)△ACD是等边三角形(3)AB与平面BCD所成的角为60°;(4)AB与CD所成的角为60°.则正确结论的序号为.三、解答题(每小题8分,共计40分)16.(1)计算:2××(2)计算:2log510+log50.25.17.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH ∥FG.求证:EH∥BD.18.已知函数f(x)=lg(2+x),g(x)=lg(2﹣x),设h(x)=f(x)+g(x)(1)求函数h(x)的定义域.(2)判断函数h(x)的奇偶性,并说明理由.19.如图:在四棱锥V﹣ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形.(1)求二面角V﹣AB﹣C的平面角的大小;(2)求四棱锥V﹣ABCD的体积.20.已知正方体ABCD﹣A1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O∥面AB1D1;(2)平面A1AC⊥面AB1D1.参考答案一、单项选择题1.B2.C.3.D.4.C.5.D.6.C.7.B8.B 9.A.10.B.二、填空题11.答案为:112.答案为:[﹣2,0)∪(0,+∞).13.答案为1.14.答案为:415.答案为:(1),(2),(4)三、解答题16.解(1)计算:2××===;(2)2log510+log50.25==log5100×0.25=log525=2log55=2.17.证明:∵EH∥FG,EH⊄面BCD,FG⊂面BCD∴EH∥面BCD,又∵EH⊂面ABD,面BCD∩面ABD=BD,∴EH∥BD18.解:(1)由,得﹣2<x<2所以函数h(x)的定义域是{x|﹣2<x<2}(2)∵h(﹣x)=lg(2﹣x)+lg(2+x)=h(x)∴函数h(x)为偶函数19.解(1)取AB的中点M,CD的中点N,连MN、VM、VN,∵底面ABCD是边长为2的正方形,∴MN⊥AB,MN=2又∵VA=VB=,M为AB的中点,∴VM⊥AB∴∠VMN是二面角V﹣AB﹣C的平面角在Rt△VAM中,AM=1,VA=,∴VM==2,同理可得VN=2∴△VMN是正三角形,可得∠VMN=60°即二面角V﹣AB﹣C的大小为60°(2)由(1)知AB⊥平面VMN∵AB⊂平面ABCD,∴平面ABCD⊥平面VMN过V作VO⊥MN于点O,∵平面ABCD⊥平面VMN,平面ABCD∩平面VMN=MN,VO⊂平面VMN ∴VO⊥平面ABCD,得VO是四棱锥V﹣ABCD的高∵VM=MN=NV=2,∴VO=因此,四棱锥V﹣ABCD的体积为V=S ABCD×VO==20.证明:(1)连结A1C1,设A1C1∩B1D1=O1,连结AO1,因为ABCD﹣A1B1C1D1是正方体∴A1ACC1是平行四边形∴AC∥A1C1且AC=A1C1.又O,O1分别是AC,A1C1的中点,∴O1C1∥AO且O1C1=AO,∴O1C1AO是平行四边形∴OC1∥AO1,AO1⊂面AB1D1,O1C⊄面AB1D1∴C1O∥面AB1D1.(2)∵CC1⊥面A1B1C1D1,∴CC1⊥B1D1,又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1,同理可证A1C⊥AB1,又AB1∩B1D1=B1,∴A1C⊥面AB1D1,∴平面A1AC⊥面AB1D1.。

【期末试卷】吉林省长春市2016-2017学年高一上学期期末考试联考试卷 数学 Word版含答案.doc

【期末试卷】吉林省长春市2016-2017学年高一上学期期末考试联考试卷 数学 Word版含答案.doc

长春十一高 白城一中2016-2017学年上学期期末联合考试高一数学试题第Ⅰ卷一.选择题(本大题共12小题,每小题5分,共60分) 1.如果集合A ={x |ax 2-2x -1=0}只有一个元素则a 的值是( )A .0B .0或1C .-1D .0或-12.sin36cos6sin54cos84- 的值为( )A .21-B .21C .23-D .233.若tan α=2,tan β=3,且α,β∈⎝⎛⎭⎫0,π2,则α+β的值为( ) A .π6 B .π4 C .3π4 D .5π44.已知137cos sin =+αα()πα<<0,则=αtan ( ) A .125- B .512- C .125 D .125-或512-5.设,53sin π=a ,52cos π=b ,52tan π=c 则( ) A c a b << B a c b << C c b a << D b c a << 6.若x ∈[0,1],则函数y =x +2-1-x 的值域是( )A .[2-1,3-1]B .[1, 3 ]C .[2-1, 3 ]D .[0,2-1]7若31)3sin(=+απ,则=-)23cos(απ( )A .97B .31C .-97D .31-8.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x =( )A.12π B.512π C.6π D.4π 9.已知函数⎩⎨⎧≥<-+=3,log 3,2)1()(3x x a x a x f x的值域为R ,则实数a 的范围是( ) A .[]1,1- B .(]1,1-C .),1(+∞-D .)1,(--∞10.将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( ) A .在区间⎣⎡⎦⎤π12,7π12上单调递减 B .在区间⎣⎡⎦⎤π12,7π12上单调递增 C 在区间⎣⎡⎦⎤-π6,π3上单调递减 D 在区间⎣⎡⎦⎤-π6,π3上单调递增11.函数x x x f cos 2sin )(+=的值域为( )A .[1,5]B .[1,2]C .[2,5]D .[5,3]12.设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当[]02,-∈x时,1)21()(-=xx f ,若在区间]62(,- 内关于x 的方程)1(0)2(log )(>=+-a x x f a 恰有3个不同的实数根,则a 的取值范围是( )A. )3,2(B.)2,3(3C.)2,4(3D.)3,2(3第II 卷(非选择题,共70分)二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上) 13.已知cos ,1()(1)1,1,x x f x f x x π<⎧=⎨-->⎩则)34()31(f f +的值为------14.3tan 12°-3(4cos 212°-2)sin 12°=________.15.已知⎥⎦⎤⎢⎣⎡∈+=4,41,log 2)(2x x f x,试求y=[])()(22x f x f +的值域—16.设f (x )=a sin 2x +b cos 2x ,其中a ,b ∈R ,ab ≠0.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对一切x ∈R 恒成立,则以下结论正确的是_____(写出所有正确结论的编号). ①0)125(=πf ; ②)127(πf ≥)3(πf ; ③f (x )的单调递增区间是⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z );④f (x )既不是奇函数也不是偶函数;17.(本题满分8分)已知:02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-= 求)2cos(βα+18.(本题满分10分)已知函数=)(x f a ),(1+∈+-N b a x b x ,21)1(=f 且2)2(<f (Ⅰ)求b a ,的值; (Ⅱ)判断并证明函数)(x f y =在区间()+∞-,1上的单调性.19.(本题满分10分)已知函数32cos 62cos2sin 32)(2-+=xxxx f ωωω()0>ω(1)若()(0)2y f x πθθ=+<<是最小正周期为π的偶函数,求ω和θ的值;(2)若()(3)g x f x =在(0 )3π,上是增函数,求ω的最大值.20(本题满分12分)已知函数2()231f x x x =-+,()sin()6g x A x π=-,(0A ≠)(1)当 0≤x ≤2π时,求(sin )y f x =的最大值;(2)若对任意的[]10,3x ∈,总存在[]20,3x ∈,使12()()f x g x =成立,求实数A 的取值范围;(3)问a 取何值时,方程(sin )sin f x a x =-在[)π2,0上有两解?21.(附加题)(本题满分10分)已知函数12,0,21()23,0.12x x x e f x x e ⎧-≥⎪⎪+=⎨⎪-<⎪+⎩(1)求函数()f x 的零点;(2)若实数t 满足221(log )(log )2(2)f t f f t+<,求()f t 的取值范围.高一数学参考答案.....一.选择题:DBCBA CCCCB AC二.填空题:13. 0 14.34- 15. []13,1 16. ①②④.17.解:,332)4s i n (20,31)4c o s (=+∴<<=+αππααπ33)24c o s (=-βπ ,02<<-βπ,∴36)24s i n (=-βπ,∴)]24()4cos[()2cos(βπαπβα--+=+=)24sin()4sin()24cos()4cos(βπαπβπαπ-++-+=363323331⨯+⨯=935......8分18.【解答】解:(Ⅰ)∵,,由,∴,又∵a ,b ∈N *,∴b=1,a=1;………………3分(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x 1,x 2且﹣1<x 1<x 2,=,∵﹣1<x 1<x 2,∴,∴,即f (x 1)<f (x 2),故函数在(﹣1,+∞)上单调递增.………………10分19.解:(1)由32cos 62cos2sin 32)(2-+=xxxx f ωωω=2)3sin(3πω+x ()0>ω∵())3f x x πθωωθ+=++…………又()y f x θ=+是最小正周期为π的偶函数,∴2ππω=,即2ω=, …………3分且232k ππθπ+=+,即()212k k Z ππθ=+∈ ……6分02πθ<<,∴2 12πωθ==,为所求;…………………………………………………5分(2)因为)(x g 在(0 )3π,上是增函数,∴53023212()12326332k k k Z k k ππωππππωωπ⎧⎧⨯+≥-≤⎪⎪⇒∈⎨⎨≤+⨯+≤+⎪⎪⎩⎩, (7)分∵0ω>,∴1206k +>,∴151212k -<<, 于是0k =,∴106ω<≤,即ω的最大值为61,………此时()3sin()23x g x π=+510sin()1()3236223x x x g x πππππ≤≤⇒≤+≤⇒≤+≤⇒∈……10分20.试题分析:(1)2(sin )2sin 3sin 1y f x x x ==-+ 设sin ,[0,]2t x x π=∈,则01t ≤≤∴223312()12()248y t t t =-+=-- ∴当0t =时,max 1y =……4分(2)当1[0,3]x ∈ ∴1()f x 值域为1[,10]8-当2[0,3]x ∈时,则23666x πππ-≤-≤-有21sin()126x π-≤-≤ ①当0A >时,2()g x 值域为1[,]2A A -②当0A <时,2()g x 值域为1[,]2A A -而依据题意有1()f x 的值域是2()g x 值域的子集则0101182A A A ⎧⎪>⎪≤⎨⎪⎪-≥-⎩ 或 0110218A A A ⎧⎪<⎪⎪≤-⎨⎪⎪-≥⎪⎩ ∴10A ≥或20A ≤-......8分(3)22sin 3sin 1sin x x a x -+=-化为 22sin 2sin 1x x a -+=在[0,2)π上有两解,令sin t x = 则t ∈[1,1]- 2221t t a -+=在[1,1]-上解的情况如下:①当在(1,1)-上只有一个解或相等解,x 有两解(5)(1)0a a --<或0∆=∴(1,5)a ∈或12a =②当1t =-时,x 有惟一解32x π= ③当1t =时,x 有惟一解2x π= 故 (1,5)a ∈或12a = ……12分21.(1))(x f 的零点分别为3ln -=x 和3ln =x ......2分(2)由题意,当0x >时,1223()()02112x x f x f x e e -⎛⎫--=---= ⎪++⎝⎭, 同理,当0x <时,()()0f x f x --=,1(0)2f =-,所以函数()f x 是在R 上的偶函数,…5分所以2221log (log )(log )f f t f t t ⎛⎫=-= ⎪⎝⎭,由221(log )log 2(2)f t f f t ⎛⎫+< ⎪⎝⎭,22212(log )2(2)(|log |)(2)2log 244f t f f t f t t <⇒<⇒-<<⇒<<.………………144x << 时,()f x 为增函数,1()(4)4f f t f ⎛⎫∴<< ⎪⎝⎭,即14414433()2(1)2(1)e ef t e e --<<++.………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年吉林省长春市五县联考高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)若集合A={x|y=lg(2x+3)},B={﹣2,﹣1,1,3},则A∩B等于()A.{3}B.{﹣1,3}C.{﹣1,1,3}D.{﹣1,﹣1,1,3}2.(5.00分)已知直线l1:(a+2)x+3y=5与直线l2:(a﹣1)x+2y=6平行,则a 等于()A.﹣1 B.7 C.D.23.(5.00分)若log545=a,则log53等于()A. B. C. D.4.(5.00分)以(1,﹣1)为圆心且与直线相切的圆的方程为()A.(x+1)2+(y﹣1)2=6 B.(x﹣1)2+(y+1)2=6 C.(x+1)2+(y﹣1)2=3 D.(x﹣1)2+(y+1)2=35.(5.00分)已知幂函数f(x)=xα的图象过点,则函数g(x)=(x﹣2)f(x)在区间上的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣46.(5.00分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()A.若m∥n,m∥α,则n∥αB.若α⊥β,m∥α,则m⊥βC.若α⊥β,m⊥β,则m∥αD.若m⊥n,m⊥α,n⊥β,则α⊥β7.(5.00分)已知圆M:x2+y2﹣2x+ay=0(a>0)被x轴和y轴截得的弦长相等,则圆M被直线x+y=0截得的弦长为()A.4 B.C.2 D.28.(5.00分)若x>0,则函数与y2=log a x(a>0,且a≠1)在同一坐标系上的部分图象只可能是()A.B.C.D.9.(5.00分)如图是一个几何体的三视图,在该几何体的各个面中.面积最小的面的面积为()A.4 B.4 C.4 D.810.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(1,+∞)B. C.(1,3]D.(1,5]11.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为()A.B.C.D.12.(5.00分)若关于x的不等式在上恒成立,则实数a的取值范围是()A. B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=x•2x+a﹣1,若f(﹣1)=,则a=.14.(5.00分)已知集合A={0,1,log3(x2+2),x2﹣3x},若﹣2∈A,则x=.15.(5.00分)已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2,棱锥O﹣ABCD的体积为8,则R=.16.(5.00分)已知圆C:(x﹣3)2+(y﹣4)2=1,点A(0,﹣1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,则d的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10.00分)已知集合A=[a﹣3,a],函数(﹣2≤x≤5)的单调减区间为集合B.(1)若a=0,求(∁R A)∪(∁R B);(2)若A∩B=A,求实数a的取值范围.18.(12.00分)已知不过第二象限的直线l:ax﹣y﹣4=0与圆x2+(y﹣1)2=5相切.(1)求直线l的方程;(2)若直线l1过点(3,﹣1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.20.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.21.(12.00分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.2016-2017学年吉林省长春市五县联考高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)若集合A={x|y=lg(2x+3)},B={﹣2,﹣1,1,3},则A∩B等于()A.{3}B.{﹣1,3}C.{﹣1,1,3}D.{﹣1,﹣1,1,3}【解答】解:∵集合A={x|y=lg(2x+3)}={x|x>﹣},B={﹣2,﹣1,1,3},∴A∩B={﹣1,1,3}.故选:C.2.(5.00分)已知直线l1:(a+2)x+3y=5与直线l2:(a﹣1)x+2y=6平行,则a 等于()A.﹣1 B.7 C.D.2【解答】解:由﹣=﹣,解得a=7,经过验证两条直线平行.故选:B.3.(5.00分)若log545=a,则log53等于()A. B. C. D.【解答】解:∵log545=a=1+2log53,则log53=.故选:D.4.(5.00分)以(1,﹣1)为圆心且与直线相切的圆的方程为()A.(x+1)2+(y﹣1)2=6 B.(x﹣1)2+(y+1)2=6 C.(x+1)2+(y﹣1)2=3 D.(x﹣1)2+(y+1)2=3【解答】解:圆的半径,则所求圆的方程为(x﹣1)2+(y+1)2=3.5.(5.00分)已知幂函数f(x)=xα的图象过点,则函数g(x)=(x﹣2)f(x)在区间上的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【解答】解:∵幂函数f(x)=xα的图象过点,∴2α=,解得:α=﹣1,故g(x)==1﹣,而g(x)在[,1]递增,故g(x)min=g()=﹣3,故选:C.6.(5.00分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()A.若m∥n,m∥α,则n∥αB.若α⊥β,m∥α,则m⊥βC.若α⊥β,m⊥β,则m∥αD.若m⊥n,m⊥α,n⊥β,则α⊥β【解答】解:A选项不正确,因为n⊂α是可能的;B选项不正确,因为α⊥β,m∥α时,m∥β,m⊂β都是可能的;C选项不正确,因为α⊥β,m⊥β时,可能有m⊂α;D选项正确,可由面面垂直的判定定理证明其是正确的.故选:D.7.(5.00分)已知圆M:x2+y2﹣2x+ay=0(a>0)被x轴和y轴截得的弦长相等,则圆M被直线x+y=0截得的弦长为()A.4 B.C.2 D.2【解答】解:由题意,圆心坐标为(1,﹣),∵圆M:x2+y2﹣2x+ay=0(a>0)被x轴和y轴截得的弦长相等,∴a=2,∴圆心坐标为(1,﹣1),圆的半径为,圆心在直线x+y=0上,∴圆M被直线x+y=0截得的弦长为2,故选:C.8.(5.00分)若x>0,则函数与y2=log a x(a>0,且a≠1)在同一坐标系上的部分图象只可能是()A.B.C.D.【解答】解:当a>1时,函数为增函数,且图象过(0,﹣1)点,向右和x轴无限接近,函数y2=log a x(a>0,且a≠1)为增函数,且图象过(1,0)点,向左和y轴无限接近,此时答案B符合要求,当0<a<1时,函数为减函数,且图象过(0,﹣1)点,函数y2=log a x(a>0,且a≠1)为减函数,且图象过(1,0)点,向左和y轴无限接近,此时无满足条件的图象.故选:B.9.(5.00分)如图是一个几何体的三视图,在该几何体的各个面中.面积最小的面的面积为()A .4B .4C .4D .8【解答】解:根据三视图作出物体的直观图如图所示:显然S △PCD >S △ABC . 由三视图特征可知PA ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,PA=AB=AC=4,DB=2, ∴BC=4,∴S △ABC ==8,S △PAC ==8,S △BCD ==4.S梯形PABD==12.∴△BCD 的面积最小. 故选:B .10.(5.00分)已知函数f (x )=a x ﹣1(a >0,且a ≠1),当x ∈(0,+∞)时,f (x )>0,且函数g (x )=f (x +1)﹣4的图象不过第二象限,则a 的取值范围是( ) A .(1,+∞) B .C .(1,3]D .(1,5]【解答】解:当a >1时,函数f (x )在(0,+∞)上单调递增,f (x )=a x ﹣1>0;当0<a <1时,函数f (x )在(0,+∞)上单调递减,f (x )=a x ﹣1<0,舍去.故a>1.∵函数g(x)=f(x+1)﹣4的图象不过第二象限,∴g(0)=a1﹣5≤0,∴a≤5,∴a的取值范围是(1,5].故选:D.11.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为()A.B.C.D.【解答】解:以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,A(0,0,0),B(0,2,0),C(2,2,0),D(6,0,0),P(0,0,3),设E(a,0,c),,则(a,0,c﹣3)=(6λ,0,﹣3λ),解得a=6λ,c=3﹣3λ,∴E(6λ,0,3﹣3λ),=(6λ﹣2,﹣2,3﹣3λ),平面ABP的法向量=(1,0,0),∵CE∥平面PAB,∴=6λ﹣2=0,解得,∴E(2,0,2),∴E到平面ABC的距离d=2,∴三棱锥C﹣ABE的体积:V C﹣ABE=V E﹣ABC===.故选:D.12.(5.00分)若关于x的不等式在上恒成立,则实数a的取值范围是()A. B. C. D.【解答】解:由题意得在上恒成立,即当时,函数的图象不在y=log a x图象的上方,由图知:当a>1时,函数的图象在y=log a x图象的上方;当0<a<1时,,解得.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=x•2x+a﹣1,若f(﹣1)=,则a=﹣3.【解答】解:由题意,f(1)=21+a﹣1,f(1)=﹣f(﹣1)═﹣,∴a=﹣3,故答案为﹣3.14.(5.00分)已知集合A={0,1,log3(x2+2),x2﹣3x},若﹣2∈A,则x=2.【解答】解:因为集合A={0,1,log3(x2+2),x2﹣3x},﹣2∈A,所以x2﹣3x=﹣2,解得x=2或者x=1(舍去)故答案为:2.15.(5.00分)已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2,棱锥O﹣ABCD的体积为8,则R=4.【解答】解:由题可知矩形ABCD所在截面圆的半径即为ABCD的对角线长度的一半,∵AB=6,BC=2,∴r==2,由矩形ABCD的面积S=AB•BC=12,则O到平面ABCD的距离为h满足:=8,解得h=2,故球的半径R==4,故答案为:4.16.(5.00分)已知圆C:(x﹣3)2+(y﹣4)2=1,点A(0,﹣1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,则d的取值范围是[34,74] .【解答】解:设P点的坐标为(3+sinα,4+cosα),则d=|PA|2+|PB|2=(3+sinα)2+(5+cosα)2+(3+sinα)2+(3+cosα)2=54+12sinα+16cosα=54+20sin(θ+α)∴当sin(θ+α)=1时,即12sinα+16cosα=20时,d取最大值74,当sin(θ+α)=﹣1时,即12sinα+16cosα=﹣20,d取最小值34,∴d的取值范围是[34,74].故答案为[34,74].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10.00分)已知集合A=[a﹣3,a],函数(﹣2≤x≤5)的单调减区间为集合B.(1)若a=0,求(∁R A)∪(∁R B);(2)若A∩B=A,求实数a的取值范围.【解答】解:(1)由题意知函数f(x)的定义域是:[﹣2,5],则函数y=x2﹣4x=(x﹣2)2﹣4的减区间为[﹣2,2],又,则函数f(x)的减区间[﹣2,2],即集合B=[﹣2,2],当a=0时,A=[﹣3,0],则∁R A=(﹣∞,﹣3)∪(0,+∞),(∁R B)=(﹣∞,﹣2)∪(2,+∞);所以(∁R A)∪(∁R B)=(﹣∞,﹣2)∪(0,+∞);(2)由A∩B=A得,A⊆B=[﹣2,2],所以,解得1≤a≤2,即实数a的取值范围为[1,2].18.(12.00分)已知不过第二象限的直线l:ax﹣y﹣4=0与圆x2+(y﹣1)2=5相切.(1)求直线l的方程;(2)若直线l1过点(3,﹣1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.【解答】解:(1)∵直线l与圆x2+(y﹣1)2=5相切,∴,…(2分)∵直线l不过第二象限,∴a=2,∴直线l的方程为2x﹣y﹣4=0;…(4分)(2)∵直线l1过点(3,﹣1)且与直线l平行,∴直线l1的方程为2x﹣y+b=0,…(6分)∵直线l1过点(3,﹣1),∴b=﹣7,则直线l1的方程为2x﹣y﹣7=0,…(7分)∵直线l2与l1关于y=1对称,∴直线l2的斜率为﹣2,且过点(4,1),…(9分)∴直线l2的斜率为y﹣1=﹣2(x﹣4),即化简得2x+y﹣9=0.…(10分)19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.【解答】解:(1)∵log a3>log a2,∴a>1,又∵y=log a x在[a,2a]上为增函数,∴log a2a﹣log a a=1,即log a2=1,∴a=2.(2)依题意可知解得,∴所求不等式的解集为.(3)∵g(x)=|log2x﹣1|,∴g(x)≥0,当且仅当x=2时,g(x)=0.则∴函数在(0,2)上为减函数,在(2,+∞)上为增函数,g(x)的减区间为(0,2),增区间为(2,+∞).20.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.【解答】证明:(1)∵FD⊥底面ABCD,∴FD⊥AD,FD⊥BD∵AF=BF,∴△ADF≌△BDF,∴AD=BD,连接DM,则DM⊥AB,∵AB∥CD,∠BCD=90°,∴四边形BCDM是正方形,∴BD⊥CM,∵DF⊥CM,∴CM⊥平面BDF.解:(2)当CN=1,即N是CE的中点时,MN∥平面BEF.证明如下:过N作NO∥EF,交ED于O,连结MO,∵EC∥FD,∴四边形EFON是平行四边形,∵EC=2,FD=3,∴OF=1,∴OD=2,连结OE,则OE∥DC∥MB,且OE=DC=MB,∴四边形BMOE是平行四边形,则OM∥BE,又OM∩ON=O,∴平面OMN∥平面BEF,∵MN⊂平面OMN,∴MN∥平面BEF.21.(12.00分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.【解答】解:(1)由于圆C:x2+y2﹣6x+4y+4=0的圆心C(3,﹣2),半径为3,|CP|=,而弦心距d=,所以d=|CP|=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(2)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,∴k AB=a=,由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.【解答】解:(1)定义域为(﹣∞,0)∪(0,+∞).(2)==,∴f(x)是偶函数.(3)∵函数f (x )在定义域上是偶函数, ∴函数y=f (2x )在定义域上也是偶函数,∴当x ∈(0,+∞)时,f (x )+f (2x )>0可满足题意, ∵当x ∈(0,+∞)时,x 3>0, ∴只需,即,∵a 2x +a x +1>0,∴(a x )2﹣1>0,解得a >1,∴当a >1时,f (x )+f (2x )>0在定义域上恒成立.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

相关文档
最新文档