热处理-铁碳相图-Fe3C-奥氏体,马氏体,铁素体(特选内容)

合集下载

热处理-铁碳相图-Fe3C-奥氏体,马氏体,铁素体参考幻灯片

热处理-铁碳相图-Fe3C-奥氏体,马氏体,铁素体参考幻灯片

Definition of structures
Pearlite is the eutectoid mixture containing 0.80 % C and is formed at 723°C on very slow cooling.
It is a very fine platelike or lamellar mixture of ferrite and cementite.
IRON IRON-CARBON DIAGRAM
IRON IRON-CARBON DIAGRAM
eutectoid
Eutectic
Pearlite and Cementine
Austenite
Ferrite Pearlite
Pearlite and Carbide
Steel
Cast iron
Outline
Definition of structures
Ferrite
Average properties are:
Tensile strength = 40,000 psi;
Elongation
= 40 % in 2 in;
Hardness
> Rockwell C 0 or > Rockwell B 90
The white ferritic background or matrix contains thin plates of cementite (dark).
Definition of structures
Pearlite
Average properties are:
Tensile strength = 120,000 psi;
brittle intermetallic compound of iron & carbon, as Fe3C, contains 6.67 % C. It is the hardest structure that appears on the diagram, exact melting point unknown. Its crystal structure is orthorhombic. It is has low tensile strength (approx. 5,000 psi),

做热处理的人都要知道的金相组织图

做热处理的人都要知道的金相组织图

做热处理的人都要知道的金相组织图搞热处理和材料这么多年,下面这15个金相组织搞不清楚,等于白混了!!1.奥氏体定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。

有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。

奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。

在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。

经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。

铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。

当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。

2.铁素体定义:碳与合金元素溶解在a-Fe中的固溶体特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体定义:碳与铁形成的一种化合物特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。

渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。

•在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状•过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状•铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状4.珠光体定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物特征:珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

•在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

•在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

金相组织识别铁碳相图

金相组织识别铁碳相图
热处理:780℃退火1小时后徐冷
当前第22页\共有29页\编于星期五\13点
金相组织识别——典型钢铁组织
屈氏体 成分:C 0.81%, Si 0.25%, Mn 0.36%, P 0.014%, S 0.009% 热处理:850℃水淬后,350℃回火
当前第23页\共有29页\编于星期五\13点
金相组织识别——典型钢铁组织
高温相,因此也称为高温铁素体。铁素体的含碳量 非常低(727℃时, α-Fe最大溶碳量仅为0.0218%,
室温下含碳仅为0.005%),所以其性能与纯铁 相似:硬度(HB50~80)低,塑性(延伸率δ为
30%~50%)高。铁素体的显微组织与工业纯铁相似。
当前第4页\共有29页\编于星期五\13点
铁素体
金相组织识别——铁碳合金的基本相
奥氏体 Austenite
碳溶解于γ-Fe中形成的固溶体称为奥氏体
(Austenite),用γ或A表示。具有面心立方晶体结
构的奥氏体可以溶解较多的碳,碳原子存在于面
心立方晶格中正八面体的中心, 1148℃时最多 可以溶解的碳,到727℃时含碳量降到 0.77%。奥氏体的硬度(HB170~220)较低,塑性 (延伸率δ为40%~50%)高。
索氏体
成分:C 0.81%, Si 0.18%, Mn 0.33%, P 0.022%, S 0.014% 热处理:820℃水淬;580℃回火
当前第24页\共有29页\编于星期五\13点
金相组织识别——典型钢铁组织
残留奥氏体 成分:C 1.13%, Si 0.17%, Mn 0.45%, P 0.022%, S 0.009% 热处理:1030℃油冷
当前第19页\共有29页\编于星期五\13点

热处理基本知识及工艺原理

热处理基本知识及工艺原理
分类:渗碳、渗氮、渗硼、渗铬、碳氮共渗等 基本过程:分解、吸附和扩散三个基本过程
2
钢的热处理工艺
1 渗碳
目的:提高表面硬度(62-68HRC),耐磨性,而使心部仍保持一定 的强度和良好的塑性 和韧性。 分类:气体渗碳、液体渗碳及固体渗碳 气体渗碳原理:在高温(900~950℃)气体介质中的渗碳
碳原子的分解
基本组元: Fe、C
基本相:
铁素体 C在体心立方α-Fe (α或 F ) 中的间隙固溶体;
0.0218%(727℃)
强硬度低; 塑韧性好; 与工业纯铁相同
奥氏体 (γ或 A )
渗碳体 (Fe3C)
C在面心立方γ-Fe 中的间隙固溶体
强硬度较低;
塑性较好, 变形抗力较低, 易于锻压成形; 顺磁性。
Fe与C形成的金属化 强度低;硬度高;
金 含碳量为2.11%—6.69%的铁碳合金。
白口铸铁
共晶白口铸铁: 含碳量为4.3% ; 亚共晶白口铸铁:含碳量在2.11%—4.3%之间; 过共晶白口铸铁:含碳量在4.3%—6.69%之间;
1
金属学与热处理原理
二 热处理基本原理
1 热处理基本概念与知识 定义:在一定介质中,通过加热、保温、冷却以使金属的组织发生转变
650-400℃,快,避免C曲线 400℃以下,慢,减轻相变应力
T
A1
MS 水 理想 油
t
2
钢的热处理工艺
5.淬透性与淬硬性 淬透性:淬火条件下得到M组织的能力,取决于 VK(上临界 冷却速度) 淬硬性:钢在淬火后获得硬度的能力,取决于M中C%, C%↑→淬硬性↑
2
钢的热处理工艺
淬透层深度:由工件表面→半马氏体点(50%M)的深度。

热处理 铁碳相图 Fe3C 奥氏体

热处理 铁碳相图 Fe3C 奥氏体
Carbon dissolved in ? (F.C.C.) iron.
? Maximum solubility is 2.0 % C at 1130 °C. ? High formability, most of heat treatments
begin with this single phase. ? It is normally not stable at room temperature.
6
Microstructure of different phases of steel
7
Definition of structures
? Ferrite is known as α solid solution. ? It is an interstitial solid solution of a small
3
Cooling curve for pure iron
4
Definition of structures
Various phases that appear on the Iron-Carbon equilibrium phase diagram are as under: ?Austenite ?Ferrite ?Pearlite ?Cementite ?Martensite* ?Ledeburite
5
Unit Cells of Various Metals
? FIGURE - The unit cell for (a) austentite, (b) ferrite, and (c) martensite. The effect of the percentage of carbon (by weight) on the lattice dimensions for martensite is shown in (d). Note the interstitial position of the carbon atoms and the increase in dimension c with increasing carbon content. Thus, the unit cell of martensite is in the shape of a rectangular prism.

最全的铁碳相图

最全的铁碳相图

最全的铁碳相图首先,想要了解铁碳合金、铁碳相图,则需要一些准备知识,比如合金、相、组元成分的概念等,基本如下:合金:一种金属元素与另外一种或几种元素,通过熔化或其他方法结合而成的具有金属特性的物质。

相:合金中同一化学成分、同一聚集状态,并以界面相互分开的各个均匀组成部分。

固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。

固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。

金属化合物:合金的组元间以一定比例发生相互作用儿生成的一种新相,通常能以化学式表示其组成。

铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。

铁存在着同素异晶转变,即在固态下有不同的结构。

不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。

由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。

在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。

1.铁素体铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。

δ=30%~50%,A KU=128~160J,σb=180~280MPa,50~80HBS.铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。

2.奥氏体奥氏体是碳在γ-Fe中的间隙固溶体,用符号“A”(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有%(1148℃时),727℃时为%。

铁碳合金相图与热处理

铁碳合金相图与热处理

1 铁碳合金的基本组织1.1. 铁素体:碳与α-F e 中形成的间隙固溶体称为铁素体,用F 表示。

强度和硬度低,塑性和韧性好。

纯铁由液态结晶为固态后,继续冷却到1394℃及912℃时,先后发生两次晶格类型的转变。

金属在固态下发生的晶格类型的转变称为同素异晶转变。

同素异构转变伴有热效应产生,因此在纯铁的冷却曲线上,在1394℃及912℃处出现平台。

铁的同素异晶转变如下:温度低于912℃的铁为体心立方晶格,称为α-F e ;温度在912~1394℃间的铁为面心立方晶格,称为γ-F e ;温度在1394~1538℃间的铁为体心立方晶格,称为δ-F e 。

1.2. 奥氏体:碳与γ-Fe 中形成的间隙固溶体称为铁素体,用A表示或γ表示,其最大溶解度为2.11wt%C ,发生于1148℃,碳多存在于面心立方γ结构的八面体空隙。

奥氏体与γ-Fe 均具有顺磁性,高温组织,在大于727℃时存在。

塑性好,强度和硬度高于F,在锻造、轧制时常要加热到A ,提高塑性,易于加工。

碳的原子半径较小,在α-Fe 和γ-Fe 中均可进入Fe 原子间的空隙而形成间隙固溶体。

碳在α-Fe 中形成的间隙固溶体称为铁素体(ferri te ),常用符号F 或α表示,其最大溶解度为0.0218wt %C,发生于727℃,碳多存在于体心立方α结构的八面体空隙。

铁素体与α-F e 在居里点770℃以下均具有铁磁性。

2 铁碳合金状态图1.3. 渗碳体:铁与碳形成的金属化合物,硬度高,脆性大。

用Fe 3C 表示A11.4. 珠光体:F与F e3C混合物。

强度,硬度,塑性,韧性介于两者之间。

1.5. 莱氏体:A与F e3C混合物硬度高,塑性差。

在HJ B 水平线(1495℃)发生包晶转变:转变产物是γ。

此转变仅发生在含碳0.09~0.53%的铁碳合金中。

ECF 水平线(1148℃)发生共晶转变:转变产物是γ和Fe3C 的机械混合物,称为莱氏体(le deb uri te),用符号L d或L e表示。

铁碳合金相图(超清楚版)

铁碳合金相图(超清楚版)

600700800900
F 温度/
℃Fe-Fe 3C 合金相图
Fe K
D
1、铁素体:碳在α-Fe 中形成的间隙固溶体称为铁素体,用符号F 或α表示。

碳在α-Fe 中的溶解度很低,因此,铁素体的机械性能与纯铁相近,其强度、硬度较低,但具有良好的塑性、韧性。

2、奥氏体: 碳在γ-Fe 中形成的间隙固溶体称为奥氏体,用符号A 或γ表示。

3、渗碳体: 渗碳体是一种具有复杂晶体结构的间隙化合物,它的分子式为Fe 3C ,渗碳体既是组元,又是基本相。

4、珠光体:用符号P 表示,它是铁素体与渗碳体薄层片相间的机械机械混合物。

5、莱氏体:用符号Ld 表示,奥氏体和渗碳体所组成的共晶体。

特性点符号 温度/℃ ωc (%)含义
A 1538 0熔点:纯铁的熔点
C 1148 4.3共晶点:发生共晶转变L4.3→Ld(A2.11%+Fe3C 共晶)
D 1227 6.69熔点:渗碳体的熔点
E 1148 2.11碳在γ-Fe 中的最大溶解度点
G 912 0同素异构转变点
S 727 0.77共析点:发生共析转变A0.77%→p(F0.0218%+Fe3C 共析)P 727 0.0218碳在α-Fe 中的最大溶解度点
Q 室温 0.0008室温下碳在α-Fe 中的最大溶解度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
transformation ➢ Nucleation & growth of pearlite ➢ Effect of C %age on the microstructure of steel ➢ Relationship b/w C %age & mechanical
properties of steel
Elongation
= 20 % in 2 in.;
Hardness
= Rockwell C 20, Rockwell B 95-100, or BHN 250-300.
优选内容
11
Definition of structures
Austenite is an interstitial solid solution of
优选内容
8
Definition of structures
Ferrite
Average properties are:
Tensile strength = 40,000 psi;
Elongation
= 40 % in 2 in;
Hardness
> Rockwell C 0 or > Rockwell B 90
优选内容
6
Microstructure of different phases of steel
优选内容
7
Definition of structures
Ferrite is known as α solid solution. It is an interstitial solid solution of a small
amount of carbon dissolved in α (BCC) iron. stable form of iron below 912 deg.C The maximum solubility is 0.025 % C at
723C and it dissolves only 0.008 % C at room temperature. It is the softest structure that appears on the diagram.
The white ferritic background or matrix contains thin plates of cementite (dark).
优选内容
10
Definition of structures
Pearlite
Average properties are:
Tensile strength = 120,000 psi;
Carbon dissolved in (F.C.C.) iron.
Maximum solubility is 2.0 % C at 1130°C. High formability, most of heat treatments
begin with this single phase. It is normally not stable at room temperature.
But, under certain conditions it is possible to obtain austenite at room temperature.
优选内容
5
Unit Cells of Various Metals
FIGURE - The unit cell for (a) austentite, (b) ferrite, and (c) martensite.
The effect of the percentage of carbon (by weight) on the lattice dimensions
优选内容
9
Definition of structures
Pearlite is the eutectoid mixture containing 0.80 % C and is formed at 723°C on very slow cooling.
It is a very fine platelike or lamellar mixture of ferrite and cementite.
优选内容
2
Outline
➢ Introduction ➢ Cooling curve for pure iron ➢ Definition of structures ➢ Iron-Carbon equilibrium phase diagram – Sketch ➢ The Iron-Iron Carbide Diagram - Explanation ➢ The Austenite to ferrite / cementite
IRON IRON-CARBON DIAGRAM
优选内容

1
IRON IRON-CARBON DIAGRAM
eutectoid
Eutectic
Pearlite and Cementine
Austenite
Ferrite Pearlite
Pearlite and Carbide
Steel
Cast iron
优选内容
3
Cooling curve for pure iron
优选内容
4
Definition of structures
Various phases that appear on the Iron-Carbon equilibrium phase diagram are as under: •Austenite •Ferrite •Pearlite •Cementite •Martensite* •Ledeburite
for martensite is shown in (d). Note the interstitial position of the carbon
atoms and the increase in dimension c with increasing carbon content.
Thus, the unit cell of martensite is in the shape of a rectangular prism.
相关文档
最新文档