2021-2022年高中数学《曲线的参数方程》说课稿 新人教A版必修1
参数方程的概念曲线的参数方程》教案(新人教选修

《参数方程的概念-曲线的参数方程》教案(新人教选修)教学目标:1. 理解参数方程的概念,掌握参数方程与普通方程的相互转化方法。
2. 能够运用参数方程描述实际问题中的曲线运动。
3. 理解参数方程在数学和物理中的应用,培养学生的数学思维能力。
教学重点:1. 参数方程的概念及表示方法。
2. 参数方程与普通方程的相互转化。
3. 参数方程在实际问题中的应用。
教学难点:1. 参数方程的转化方法。
2. 参数方程的实际应用。
教学准备:1. 教学课件或黑板。
2. 相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾普通方程的概念,复习方程表示曲线的方法。
2. 提问:普通方程表示的曲线有什么局限性?二、新课讲解(15分钟)1. 引入参数方程的概念,解释参数方程表示曲线的方法。
2. 通过示例,讲解参数方程的表示方法,让学生理解参数方程的意义。
3. 讲解参数方程与普通方程的相互转化方法,引导学生掌握转化技巧。
三、课堂练习(10分钟)1. 布置练习题,让学生独立完成,巩固参数方程的概念和转化方法。
2. 选几位学生上黑板演示解题过程,加深对参数方程的理解。
四、拓展与应用(10分钟)1. 通过实际问题,引导学生运用参数方程描述曲线运动。
2. 让学生分组讨论,探讨参数方程在实际问题中的应用。
3. 分享各组的讨论成果,总结参数方程在实际问题中的应用方法。
五、总结与反思(5分钟)1. 回顾本节课的学习内容,让学生总结参数方程的概念和应用。
2. 提问:本节课有什么收获?还有哪些问题需要进一步解决?教学评价:1. 课后收集学生的练习题,评估学生对参数方程的掌握程度。
2. 在下一节课开始时,让学生分享对本节课内容的理解和体会,了解学生的学习效果。
教学反思:根据学生的反馈和练习情况,调整教学方法和进度,针对学生的薄弱环节进行重点讲解和辅导。
在后续的教学中,注重培养学生的实际应用能力,提高学生的数学思维水平。
六、案例分析:圆的参数方程1. 引导学生回顾圆的普通方程:x^2 + y^2 = r^22. 引入圆的参数方程:x = r cos(θ),y = r sin(θ)3. 解释参数方程中θ的意义,让学生理解参数方程描述圆的方法。
2021-2022年高中数学《函数的应用》说课稿2 新人教A版必修1

2021-2022年高中数学《函数的应用》说课稿2 新人教A版必修1从容说课为了培养和提高学生的数学应用意识,使学生掌握提出、分析和解决带有实际意义的或在相关学科、生产、生活中的数学问题,准确而灵活地运用数学语言研究和表述问题,教材专门安排此课.教学中要善于引导学生从身边的事件入手,便于操作,特别是小组分工在老师的指导下从选题到框架、分工、整理资料、成文、修改.要不断鼓励学生,让不同的学生有不同的成功体验,这也符合新课标精神.三维目标一、知识与技能1.明确实习作业的基本要求和方法.2.明确实习报告的规范格式.3.培养学生运用已学的函数知识解决实际问题的能力.二、过程与方法引导、指导、互助合作探究.三、情感态度与价值观用所学知识研究生活中的现象,并在一定的理论支撑下形成文章.教学重点实习作业的基本要求和方法.教学难点提出实际问题.教具准备投影片1(例题),2(实习报告).教学过程一、引入新课师:前面,我们一起学习了函数的应用举例,明确了函数知识在实际生产、生活中被广泛地应用.在日常生活中,大家可以到附近的商店、工厂作实际调查,了解函数在实际中的应用,把遇到的实际问题转化为建立函数关系,并作出解答,写出实习报告.接下来,我们通过例题向大家说明实习作业的基本要求和方法.二、讲解新课【例】为了确定我市人口增长规律,预测我市xx年和2020年的人口数,我们利用课人口数 3.93 5.31 7.24 9.64 12.87 17.07 23.19 31.44 38.56 年份1920 1930 1940 1950 1960 1970 1980 1990 xx人口数50.16 62.95 76.00 92.97 105.71 122.78 131.67 142.70 151.37(1)我市的政治、经济、社会环境稳定;(2)我市的人口增长数由其人口的生育、死亡引起,与外界移民无关;(3)我市的人口数量变化是连续的;(4)每个人都有相同的生育能力与死亡机率.基于以上的假设,我们认为人口数量是时间的函数,设时间是t,在t时刻的人口数为p(t).根据上面的数据资料绘出散点图,如下图所示.观察散点图,从整体趋势看,可以认为散点近似分布在一条以直线y=1830为对称轴的抛物线上.选定两点(1830,3.93),(1930,62.95)可得出该抛物线方程为p(t)=3.93+ 0.0059(t-1830)2.另外,我们还认为散点近似分布在一条指数曲线上,取1970、1980这两年的数据确定函数得p(t)=122.78×1.007t-1970.通过1990年的人口数据检验,两种方法的误差分别为8.59%和1.07%,所以我们认为第二个模型的精确度更好.根据指数函数模型,我们预测我市到xx年的人口数为162.30万,到2020年的人口数为174.02万.评述:此问题反映了控制人口的现实意义.师:下面,我们来看实习报告的规范格式:实习报告:题目我市人口增长的函数模型实际问题为了确定我市人口增长规律,预测我市xx年和2020年的人口总数,我们利用课余时间走访了市政府有关部门,获取了如下数据资料:年份1830 1840 1850 1860 1870 1880 1890 1900 1910人口数 3.93 5.31 7.24 9.64 12.87 17.07 23.19 31.44 38.56年份1920 1930 1940 1950 1960 1970 1980 1990 xx人口数50.16 62.95 76.00 92.97 105.71 122.78 131.67 142.70 151.37建立函数关系式p(t)=3.93+0.0059(t-1830)2和p(t)=122.78×1.007t-1970分析与解答通过1990年的人口数据检验,两种方法的误差分别为8.59%和1.07%,所以我们认为第二个模型的精确度更好.根据指数函数模型,我们预测我市到xx年的人口数为162.30万,到2020年的人口数为174.02万说明与解释此问题反映了控制人口的现实意义负责人员及参加人员指导教师审核意见规范格式.接下来,我们可以讨论一下,在我们的日常生活中,有哪些函数知识被实际所应用.我们的实习活动以什么样的方式和方法来进行.希望大家畅所欲言.说明:本节课的难点在于实际问题的提出,所以最好让学生深入生活实际,教师及时加以指导,才可能发现函数知识在实际中的应用.发现好的例子,要及时总结,并在学生中展开交流.三、课堂小结师:通过本节学习,大家明确了实习作业的基本要求和方法,以及实习报告的规范格式,在课余时间,要尽量深入生活作实际调查,发现新的函数例子,以供大家学习、交流.四、布置作业英国物理学家和数学家牛顿曾提出了物体在常温环境下温度变化的冷却模型.如果物体的初始温度是θ1,环境温度是θ0,则经过时间t后物体的温度θ将满足θ=θ0+(θ1-θ0)e-kt,其中k为正的常数.请设计一个方案,对牛顿的冷却模型进行验证.然后再探究以下问题:1.一杯开水的温度降到室温大约需要多长时间?2.应在炒菜之前多长时间将冰箱里的肉拿出来解冻?3.在寒冬季节,是冷水管容易结冰,还是热水管容易结冰?为了回答上述问题,你可以先进行模拟实验,然后上网查询有关资料,或请教有关专家人士,最后与同学一起合作,完成一份实习作业报告.板书设计实习作业实习作业的基本要求和方法例题解答实习报告课堂小结与布置作业24324 5F04 弄<27003 697B 楻29597 739D 玝t39420 99FC 駼25748 6494 撔34955 888B 袋* E33785 83F9 菹M。
2021-2022年高中数学 《函数的应用》说课稿1 新人教A版必修1

2021-2022年高中数学《函数的应用》说课稿1 新人教A版必修1从容说课函数的零点与用二分法求方程的近似解是新课标新增内容,在学习了函数的概念及其性质和研究了具体函数的基础上,引入函数的零点及解,一方面使函数与方程得到了完美的统一,另一方面使函数的应用问题的求解思路更广阔以及函数与方程思想更具活力.学习数学知识的目的,就是运用数学知识处理、解决实际问题,运用数学知识解决实际问题是每年高考必考内容之一,因此,函数模型及其应用是本章的重点,也是高考考查的热点,它给出的思想方法,在其他数学章节中都能应用.将所学的知识用于实际是个很复杂的过程,不但要求理解、掌握知识和思维方法,而且要求具备较强的分析、综合能力,还需要运用自己的生活经验和体会,这样才能理解实际问题中的数量关系并确定它们间的数学联系(函数关系),将实际问题抽象、概括为典型的数学问题.应用数学知识解决了数学问题后,还要分析理论的解适应实际问题的状况等等,这实际是对一个人的素质水平高低的考查,因此本单元知识是高中数学的一大难点.三维目标一、知识与技能1.了解方程的根与函数零点的关系,理解函数零点的性质.2.掌握二分法,会用二分法求方程的近似解.3.了解直线上升、指数爆炸、对数增长,会进行指数函数、对数函数、幂函数增长速度的比较.4.能熟练进行数学建模,解决有关函数实际应用问题.二、过程与方法1.培养学生分析、探究、思考的能力,进一步培养学生综合运用基本知识解决问题的能力.2.能恰当地使用信息技术工具,解决有关数学问题.三、情感态度与价值观激发学生学习数学的兴趣,培养他们合作、交流、创新意识以及分类讨论、抽象理解能力.教学重点应用函数模型解决有关实际问题.教学难点二分法求方程的近似解,指数函数、对数函数、幂函数增长速度的比较.教具准备多媒体、课时讲义.课时安排1课时教学过程一、知识回顾(一)第三章知识点1.函数的零点,方程的根与函数的零点,零点的性质.2.二分法,用二分法求函数零点的步骤.3.几类不同增长的函数模型(直线上升、指数爆炸、对数增长),指数函数、对数函数、幂函数增长速度的比较.4.函数模型,解决实际问题的基本过程.(二)方法总结1.函数y=f(x)的零点就是方程f(x)=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题.2.一元二次方程根的讨论在高中数学中应用广泛,求解此类问题常有三种途径:(1)利用求根公式;(2)利用二次函数的图象;(3)利用根与系数的关系.无论利用哪种方法,根的判别式都不容忽视,只是由于二次函数图象的不间断性,有些问题中的判别式已隐含在问题的处理之中.3.用二分法求函数零点的一般步骤:已知函数y=f(x)定义在区间D上,求它在D上的一个变号零点x0的近似值x,使它与零点的误差不超过正数ε,即使得|x-x0|≤ε.(1)在D内取一个闭区间[a,b]D,使f(a)与f(b)异号,即f(a)·f(b)<0.令a0=a,b0=b.(2)取区间[a0,b0]的中点,则此中点对应的横坐标为x0=a0+(b0-a0)=(a0+b0).计算f(x0)和f(a0).判断:①如果f(x0)=0,则x0就是f(x)的零点,计算终止;②如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]内,令a1=a0,b1=x0;③如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]内,令a1=x0,b1=b.(3)取区间[a1,b1]的中点,则此中点对应的横坐标为x1=a1+(b1-a1)=(a1+b1).计算f(x1)和f(a1).判断:①如果f(x1)=0,则x1就是f(x)的零点,计算终止;②如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.③如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……实施上述步骤,函数的零点总位于区间[a n,b n]上,当|a n-b n|<2ε时,区间[a n,b n]的中点x n=(a n+b n).就是函数y=f(x)的近似零点,计算终止.这时函数y=f(x)的近似零点与真正零点的误差不超过ε.4.对于直线y=kx+b(k≥0),指数函数y=m·a x(m>0,a>1),对数函数y=log b x(b >1),(1)通过实例结合图象初步发现:当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快.(2)通过计算器或计算机得出多组数据结合函数图象(图象可借助于现代信息技术手段画出)进一步体会:直线上升,其增长量固定不变;指数增长,其增长量成倍增加,增长速度是直线上升所无法企及的.随着自变量的不断增大,直线上升与指数增长的差距越来越大,当自变量很大时,这种差距大得惊人,所以“指数增长”可以用“指数爆炸”来形容.对数增长,其增长速度平缓,当自变量不断增大时,其增长速度小于直线上升.5.在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1),y=x n(n>0)都是增函数,但是它们的增长速度不同,而且不在同一个‘档次’上,随着x的增大,y=a x(a >1)的增长速度越来越快,会远远超过y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,a x>x n>log a x.6.实际问题的建模方法.(1)认真审题,准确理解题意.(2)从问题出发,抓准数量关系,恰当引入变量或建立直角坐标系.运用已有的数学知识和方法,将数量关系用数学符号表示出来,建立函数关系式.(3)研究函数关系式的定义域,并结合问题的实际意义作出解答.必须说明的是:(1)通过建立函数模型解决实际问题,目的是通过例题培养同学们应用数学的意识和分析问题的能力.(2)把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题所得出的关于实际问题的数学描述,即为数学模型.7.建立函数模型,解决实际问题的基本过程:二、例题讲解【例1】作出函数y=x3与y=3x-1的图象,并写出方程x3=3x-1的近似解.(精确到0.1)解:函数y=x3与y=3x-1的图象如下图所示.在两个函数图象的交点处,函数值相等.因此,这三个交点的横坐标就是方程x3=3x-1的解.由图象可以知道,方程x3=3x-1的解分别在区间(-2,-1)、(0,1)和(1,2)内,那么,对于区间(-2,-1)、(0,1)和(1,2)分别利用二分法就可以求得它精确到0.1的近似解为x1≈-1.8,x2≈0.4,x3≈1.5.【例2】分别就a=2,a=和a=画出函数y=a x,y=log a x的图象,并求方程a x=log a x的解的个数.思路分析:可通过多种途径展示画函数图象的方法.解:利用Excel、图形计算器或其他画图软件,可以画出函数的图象,如下图所示.根据图象,我们可以知道,当a=2,a=和a=时,方程a x=log a x解的个数分别为0,2,1.【例3】根据上海市人大十一届三次会议上的政府工作报告,xx年上海完成GDP(国内生产总值)4035亿元,xx年上海市GDP预期增长9%,市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP与人口均按这样的速度增长,则要使本市人均GDP 达到或超过xx年的2倍,至少需________年.(按:xx年本市常住人口总数约为1300万)思路分析:抓住人均GDP 这条线索,建立不等式.解:设需n 年,由题意得≥,化简得≥2,解得n >8.答:至少需9年.【例4】 某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q (单位:元/102kg )与上市时间t (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.思路分析:由四个函数的变化趋势,直观得出应选择哪个函数模拟,若不能断定选择哪个函数,则分别利用待定系数法探求,最后可通过图象的增长特性进行筛选.解:由提供的数据知道,描述西红柿种植成本Q 与上市时间t 的变化关系的函数不可能是常数函数,从而用函数Q =at +b ,Q =a ·b t ,Q =a ·log b t 中的任意一个进行描述时都应有a ≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q =at 2+bt +c 进行描述.以表格所提供的三组数据分别代入Q =at 2+bt +c ,得到⎪⎩⎪⎨⎧ 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.2225,23,2001c b a 所以描述西红柿种植成本Q 与上市时间t 的变化关系的函数为Q =t 2-t +.(2)当t =-)2001(223⨯-=150天时,西红柿种植成本最低为Q =·1502-·150+=100(元/102kg ).三、课堂练习教科书P 132复习参考题A 组1~6题.1.C2.C3.设列车从A 地到B 地运行时间为T ,经过时间t 后列车离C 地的距离为y ,则 y =⎪⎪⎩⎪⎪⎨⎧<--.52,200500,520,500200T t T t TT t t T函数图象为 150=2500a +50b +c , 108=12100a +110b +c , 150=62500a +250b +c . ≤ ≤ ≤4.(1)圆柱形;(2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形;(4)呈下大上小的两节圆柱形.(图略)5.(1)设无理根为x0,将D等分n次后的长度为d n.包含x0的区间为(a,b),于是d1=1,d2=,d3=,d4=,…d n=.所以|x0-a|≤d n=,即近似值可精确到.(2)由于随n的增大而不断地趋向于0,故对于事先给定的精确度ε,总有自然数n,使得≤ε.所以只需将区间D等分n次就可以达到事先给定的精确度ε.所以一般情况下,不需尽可能多地将区间D等分.6.令f(x)=2x3-4x2-3x+1,函数图象如下所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-0.25.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.5,2.5625),x0∈(2.5,2.53125),x0∈(2.515625,2.53125),x0∈(2.515625,2.5234375).由于|2.534375-2.515625|=0.0078125<0.01,此时区间(2.515625,2.5234375)的两个端点精确到0.01的近似值都是2.52,所以方程2x3-4x2-3x+1=0精确到0.01的最大根约为2.52.四、课堂小结1.函数与方程的紧密联系,体现在函数y=f(x)的零点与相应方程f(x)=0的实数根的联系上.2.二分法是求方程近似解的常用方法,应掌握用二分法求方程近似解的一般步骤.3.不同函数模型能够刻画现实世界不同的变化规律.指数函数、对数函数以及幂函数就是常用的现实世界中不同增长规律的函数模型.4.函数模型的应用,一方面是利用已知函数模型解决问题;另一方面是建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.5.在函数应用的学习中要注意充分发挥信息技术的作用.五、作业布置教科书P132复习参考题A组7,8,9,10.B组1,2,3.板书设计第三章单元复习概念与方法例题与解答1.2.3.4.练习与小结735726 8B8E 讎20268 4F2C 伬 833940 8494 蒔25095 6207 戇40191 9CFF 鳿R`#t36704 8F60 轠30368 76A0 皠。
高中数学《曲线和方程》第一课时优秀说课稿精选范文

高中数学《曲线和方程》第一课时优秀说课稿范文一、教材分析1、教材背景作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验。
本课为第二课时主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求。
2、本课地位和作用承前启后,数形结合。
曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节。
“曲线”与“方程”是点的轨迹的两种表现形式。
“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题。
体现了坐标法的本质——代数化处理几何问题,是数形结合的典范。
后继性、可探究性。
求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性。
同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法。
数学建模与示范性作用。
曲线的方程是解析几何的核心。
求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范。
数学的文化价值。
解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例。
解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料。
可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告。
3、学情分析我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望。
高中数学《曲线的参数方程》说课稿

曲线的参数方程说课稿教学目标1、理解曲线参数方程的概念,能选取适当的参数建立参数方程;2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义;3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形成数学抽象思维能力,初步体验参数的基本思想。
教学重点曲线参数方程的概念。
教学难点曲线参数方程的探求。
教学过程(一)曲线的参数方程概念的引入引例:2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。
并以此高度跻身世界三大摩天轮之列,居亚洲第一。
已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。
如图所示,某游客现在P。
点(其中P。
点和转轴O的连线与水平面平行)。
问:经过t秒,该游客的位置在何处?7/iff//引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研 究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性; 4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。
)(二) 曲线的参数方程1、圆的参数方程的推导(1) 一般的,设。
O 的圆心为原点,半径为r , OF 0所在直线为x 轴,如图,以OR 为始边绕着点O 按逆时针方向绕原 点以匀角速度••作圆周运动,则质点P 的坐标与时刻t 的关系该如何建立呢?(其 中r 与•’为常数,t 为变数)结合图形,由任意角三角函数的定义可知:(2) 点P 的角速度为,,运动所用的时间为t ,则角位移--■ 't ,那么方程 组①可以改写为何种形式?(在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作 准备,同时也培养了学生数学抽象思维能力)(3) 方程①、②是否是圆心在原点,半径为 r 的圆方程?为什么?由上述推导过程可知:对于。
2022年高中数学新人教版A版精品教案《一 曲线的参数方程》

直线的参数方程教学目标:1 联系向量知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.3 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.教学重点:联系向量等知识,写出直线的参数方程;理解参数方程的简单应用。
教学难点:通过向量法,建立参数〔数轴上的点坐标〕与点在直角坐标系中的坐标之间的联系.教学方式:启发、探究、交流与讨论教学手段:多媒体课件.教学过程:一、复习回忆,做好铺垫教师提出问题:问题:直线过点,倾斜角为1、直线的普通方程是什么?学生思考后集体答复。
由直线的点斜式得:2、直线的单位方向向量是什么?学生思考后请个别学生答复。
对学生答复结果评价,给出答案:【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备.二、直线参数方程推理1、引导学生推理直线的参数方程:首先在直线上任意取一点其次寻找M满足的几何条件。
由复习中得出的直线单位方向向量可知:。
由平行向量定理,存在实数t使得此时,将坐标代入,可以得出,与t的关系式于是,,即,.即得出直线的参数方程。
因此,经过定点,倾斜角为的直线的参数方程为〔为参数〕.【设计意图】类比圆的参数方程与椭圆参数方程推理方法,类比轨迹方程的求解方法,求出直线的参数方程。
2、理解直线的参数方程教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量?哪些是常量?②参数的取值范围是什么?③参数的几何意义是什么?总结如下:①,是常量,是变量;②;③于,且,得到,因此表示直线上的动点M到定点的距离.当的方向与数轴〔直线〕正方向相同时,;当的方向与数轴〔直线〕正方向相反时,;当时,点M与点重合.三、运用知识,培养能力,B两点,求线段AB的长度和点到A,B两点的距离之积.分析:用直线的参数方程求解先求直线的参数方程〔学生思考后口答〕联立直线的参数方程和抛物线方程,消去 , ,得到关于t的一元二次方程由参数t的几何意义,知道用求根公式求出大小,代入求解,还有用根与系数的关系求解解题过程演示:解、因为直线过定点M,且的倾斜角为,所以它的参数方程是〔为参数〕,即〔为参数〕.把它代入抛物线的方程,得,解得,.由参数的几何意义得:,.小结:用参数方程可解决一些与长度有关的如弦长等问题。
参数方程的概念曲线的参数方程》教案(新人教选修

“参数方程的概念-曲线的参数方程》教案(新人教选修”一、教学目标1. 让学生了解参数方程的概念,理解参数方程与普通方程的区别和联系。
2. 让学生掌握曲线的参数方程的表示方法,能够根据实际问题选择合适的参数方程。
3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 参数方程的概念2. 曲线的参数方程的表示方法3. 参数方程与普通方程的互化4. 常见曲线的参数方程5. 参数方程在实际问题中的应用三、教学重点与难点1. 教学重点:参数方程的概念,曲线的参数方程的表示方法,参数方程与普通方程的互化。
2. 教学难点:参数方程的运用,参数方程与普通方程的互化。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳参数方程的性质和应用。
2. 利用多媒体课件辅助教学,直观展示曲线的参数方程表示方法。
3. 开展小组讨论,让学生互动交流,提高学生合作解决问题的能力。
4. 结合实际问题,培养学生运用参数方程解决实际问题的能力。
五、教学过程1. 引入:通过展示生活中的实例,如过山车、螺旋线等,引导学生关注参数方程在现实世界中的应用。
2. 讲解:介绍参数方程的概念,讲解参数方程与普通方程的区别和联系。
3. 演示:利用多媒体课件,展示曲线的参数方程表示方法,如圆的参数方程、正弦曲线和余弦曲线的参数方程等。
4. 练习:让学生尝试将普通方程转化为参数方程,以及将参数方程转化为普通方程。
5. 应用:结合实际问题,让学生运用参数方程解决具体问题,如物体运动轨迹的表示等。
7. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对参数方程概念的理解程度,以及学生对曲线参数方程表示方法的掌握情况。
2. 练习反馈:收集学生的练习作业,分析学生在将普通方程转化为参数方程和将参数方程转化为普通方程的过程中存在的问题。
3. 课后访谈:课后与学生交流,了解学生对参数方程运用的情况,以及对本节课的教学意见和建议。
《参数方程的概念曲线的参数方程》教案(新人教选修)

《参数方程的概念-曲线的参数方程》教案(新人教选修)第一章:参数方程的概念1.1 参数方程的定义解释参数方程的概念,强调参数方程与普通方程的区别。
通过实际例子展示参数方程的形式。
1.2 参数方程的应用探讨参数方程在实际问题中的应用,如物理、工程等领域。
分析参数方程的优势和局限性。
第二章:曲线的参数方程2.1 曲线参数方程的定义解释曲线参数方程的概念,强调参数方程与曲线方程的关系。
通过实际例子展示曲线参数方程的形式。
2.2 曲线参数方程的应用探讨曲线参数方程在几何、物理、工程等领域中的应用。
分析曲线参数方程的优势和局限性。
第三章:参数方程的图像3.1 参数方程图像的绘制介绍如何绘制参数方程的图像,强调参数方程与图像之间的关系。
通过实际例子展示参数方程图像的绘制方法。
3.2 参数方程图像的特点分析参数方程图像的特点,如曲线的形状、斜率等。
探讨参数方程图像在解决问题中的应用。
第四章:参数方程的变换4.1 参数方程的变换公式介绍参数方程的变换公式,强调变换公式的应用和意义。
通过实际例子展示参数方程的变换过程。
4.2 参数方程的变换应用探讨参数方程的变换在几何、物理、工程等领域中的应用。
分析参数方程的变换的优势和局限性。
第五章:参数方程的综合应用5.1 参数方程在实际问题中的应用分析参数方程在实际问题中的应用,如物体运动、曲线变形等。
探讨参数方程在解决问题中的优势和局限性。
5.2 参数方程在数学研究中的应用介绍参数方程在数学研究中的应用,如代数方程的求解、几何问题的研究等。
强调参数方程在数学研究中的重要性。
第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念回顾极坐标方程的定义和基本性质。
强调极坐标方程与直角坐标方程之间的关系。
6.2 参数方程与极坐标方程的转换方法介绍如何将参数方程转换为极坐标方程。
通过实际例子展示参数方程与极坐标方程之间的转换过程。
第七章:参数方程在几何中的应用7.1 参数方程与几何图形的性质探讨参数方程在描述几何图形方面的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022年高中数学《曲线的参数方程》说课稿新人教A版必修1教学目标1、理解曲线参数方程的概念,能选取适当的参数建立参数方程;2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义;3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形成数学抽象思维能力,初步体验参数的基本思想。
教学重点曲线参数方程的概念。
教学难点曲线参数方程的探求。
教学过程(一)曲线的参数方程概念的引入引例:2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。
并以此高度跻身世界三大摩天轮之列,居亚洲第一。
已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。
如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。
问:经过秒,该游客的位置在何处?引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决(1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。
)(二)曲线的参数方程1、圆的参数方程的推导(1)一般的,设⊙的圆心为原点,半径为,所在直线为轴,如图,以为始边绕着点按逆时针方向绕原点以匀角速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢?(其中与为常数,为变数)结合图形,由任意角三角函数的定义可知:),0[sin cos +∞∈⎩⎨⎧==t tr y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移,那么方程组①可以改写为何种形式?结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈⎩⎨⎧==θθθr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)(3)方程①、②是否是圆心在原点,半径为的圆方程?为什么?由上述推导过程可知:对于⊙上的每一个点都存在变数(或)的值,使,(或,)都成立。
对于变数(或)的每一个允许值,由方程组所确定的点都在圆上;(1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数(或)建立起来的方程是圆的方程;)(4)若要表示一个完整的圆,则与的最小的取值范围是什么呢?➢ )2,0[sin cos ωπωω∈⎩⎨⎧==t t r y t r x , )2,0[sin cos πθθθ∈⎩⎨⎧==r y r x (5)圆的参数方程及参数的定义我们把方程①(或②)叫做⊙的参数方程,变数(或)叫做参数。
(6)圆的参数方程的理解与认识(ⅰ)参数方程)2,0[sin 3cos 3πθθθ∈⎩⎨⎧==y x 与]2,0[sin 3cos 3πθθθ∈⎩⎨⎧==y x 是否表示同一曲线?为什么?(ⅱ)根据下列要求,分别写出圆心在原点、半径为的圆的部分圆弧的参数方程:①在轴左侧的半圆(不包括轴上的点);②在第四象限的圆弧。
(通过具体问题的解决,加深对圆的参数方程的理解与认识,体会到参数的取值范围也是圆的参数方程的重要组成部分;并为曲线的参数方程的定义及其理解与认识作铺垫。
)(7)曲线的参数方程的定义(ⅰ)一般地,在平面直角坐标系中,如果曲线上任意一点的坐标、都是某个变数的函数 ③,并且对于的每一个允许值,由方程组③所确定的点都在这条曲线上,那么方程组③就叫做这条曲线的参数方程。
变数叫做参变量或参变数,简称参数。
(ⅱ)相对于参数方程来说,直接给出曲线上点的坐标、间关系的方程叫做曲线的普通方程。
(8)曲线的参数方程的理解与认识(ⅰ)参数方程的形式;(横、纵坐标、都是变量的函数,给出一个能唯一的求出对应的、的值,因而得出唯一的对应点;但横、纵坐标、之间的关系并不一定是函数关系。
)(ⅱ)参数的取值范围;(在表述曲线的参数方程时,必须指明参数的取值范围;取值范围的不同,所表示的曲线也可能会有所不同。
)(ⅲ)参数方程与普通方程的统一性;(普通方程是相对参数方程而言的,普通方程反映了坐标变量与之间的直接联系,而参数方程是通过变数反映坐标变量与之间的间接联系;普通方程和参数方程是同一曲线的两种不同表达形式;参数方程可以与普通方程进行互化。
)(ⅳ)参数的作用;(参数作为间接地建立横、纵坐标、之间的关系的中间变量,起到了桥梁的作用。
)(ⅴ)参数的意义。
(如果参数选择适当,参数在参数方程中可以有明确的几何意义,也可以有明确的物理意义,可以给问题的解决带来方便。
即使是同一条曲线,也可以用不同的变数作为参数。
)(三)巩固曲线的参数方程的概念例题1:(1)质点开始位于坐标平面内的点处,沿某一方向作匀速直线运动。
水平分速度厘米/秒,铅锤分速度厘米/秒,(ⅰ)求此质点的坐标与时刻(秒)的关系;(ⅱ)问5秒时质点所处的位置。
(2)写出经过定点,且倾斜角为的直线的参数方程。
问题:作出例题1中两小题的直线图像,判断它们的位置关系;从中你能得到什么启示呢?(第一小题通过运动质点的位置与时间有关建立表现质点位置的参数方程;第二小题通过选取适当的参数建立直线的参数方程;从而使学生了解参数的选取有多种方法,同一曲线可以由不同的参数方程来表示。
)例题2:已知点在圆:上运动,求的最大值。
(通过普通方程化为参数方程求得函数的最值,使学生初步体验参数方程的作用与意义。
)(四)课堂小结1、知识内容:知道圆的参数方程以及曲线参数方程的概念;能选取适当的参数建立参数方程;通过对圆和直线的参数方程的研究,理解其中参数的意义。
2、思想与方法:参数思想。
(引导学生回顾本节课的学习过程,小结与交流学习体会,包括数学知识的获得,数学思想方法的领悟。
)(五)作业课本,练习17.1(1),第2、3题。
(六)思考(1)若圆的一般方程为,你能写出它的一个参数方程吗?(2)针对引例中的实际情况,游客总是从摩天轮的最低点登上转盘。
若某游客登上转盘的时刻记为,则经过时间该游客的位置在何处?在引例所建立的坐标系下,你能否通过建立相对应的参数方程,并得到游客的具体位置呢?教学设计说明一、教材分析本节课所用的教材是由上海教育出版社出版的上海市高中三年级(理科)数学课本,内容为第十七章第一节,第一课时。
“参数方程和极坐标方程”这一章节内容是在“圆锥曲线”这一章的基础上进一步展开研究曲线的方程。
学习曲线的参数方程是为了进一步探讨直线、圆锥曲线的性质,也是进一步学习数学、运动学的基础,它在生产实践中有很多实际的应用。
本章主要学习参数方程的基本概念、基本原理、基本方法,因此在教学中要求应适当,难度要控制,基本应以课本例题与习题为主。
通过本章节的教学应使学生感悟到现实世界的问题是多种多样的,仅用一种坐标系,一种方程来研究各种不同的问题是不适合的,有时难以获得满意的效果。
参数方程有其自身的优越性,学习参数方程有其必要性。
通过学习参数方程的有关概念,以及方程之间、坐标之间的互化,使学生感悟到坐标系及各种方程的表示方法是可以视实际需要,主观能动的加以选择的。
“曲线的参数方程”为本章节的第一部分。
主要让学生了解参数方程的有关概念,通过探索圆锥曲线的参数方程初步掌握求曲线的参数方程的方法,并且在此基础上进行参数方程与普通方程的互化及其简单应用。
二、教学目标设计根据以上分析,本节课设置的教学目标为:1、理解曲线参数方程的概念,能选取适当的参数建立参数方程。
2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义。
3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,培养数学抽象思维能力,初步体验参数的基本思想。
三、教学过程设计我校是上海市示范型高中,我校的学生数学基础良好,思维活跃,具备一定的分析问题和自主探究能力。
因此在教学设计中强调学生的自主探究,强调数学思想方法的渗透与运用,希望加深学生对知识本质的理解。
本课设置如下教学环节以体现重点,突破难点,实现教学目标。
1、作为曲线的参数方程的概念课,一味的灌输是不可取的。
而是要让学生体会到为什么要建立曲线的参数方程,感受其产生的必要性、合理性以及可行性。
因此,由“摩天轮”这一生活中的实例引入,一方面使学生了解参数方程是基于生产、生活发展的实际需要而产生的,在引发学生研究的兴趣时,通过对问题的解决,使学生体会到仅仅运用一种方程来研究不同的问题不一定方便,往往难以获得满意的结果,从而了解研究曲线的参数方程的必要性;另一方面通过具体问题的解决,找到解决问题的途径,也为圆的参数方程的研究作必要的准备。
2、由特殊到一般,从具体到抽象。
以“引导设问”为主线,学生通过对问题的思考和解答,体验学习过程,自主探索和获取知识,从而得到圆的参数方程。
同时在探索的过程中也提高学生的数学抽象思维能力。
3、作为一堂概念课,学生对于概念的理解必须精确,深入,为后续课程打下扎实的基础,教师必须在这一环节进行深入的分析。
因此,在圆以及曲线的参数方程的概念引入之后,针对参数方程的形式、参数的取值范围、参数方程与普通方程的统一性、参数的作用以及参数的意义进行深入的理解与探讨。
通过这一环节,学生活跃的思维逐步从感性上升到理性;同时,对于概念的理解得到巩固与深化。
通过加强师生交流、关注学生思维,把握课堂教学重点,让学生体验知识产生的原因,发展的过程及其应用的价值。
4、在本节课中,设计了适当的练习与例题。
一方面可以巩固学生对曲线的参数方程概念的理解认识;另一方面通过简单的应用,使学生体会曲线的参数方程的作用及意义。
教学中通过教师的适当引导、启发,同时大胆地放手由学生自主探究、及时激励学生以体验问题解决的成功喜悦。
5、本节课的小结并不是由教师代为整理归纳,而是引导学生自主回顾本节课的学习过程,交流学习体会,包括数学知识的获得,数学思想方法的领悟,对学会学习、学会思考的感想等。
一方面可以在学生交流的过程中及时发现问题并加以纠正;另一方面也锻炼了学生对知识的梳理和概括能力。
6、作为课堂教学的延续,两道思考题可让学生在课后进行自主探究,同时也为后续的参数方程与普通方程的互化以及参数方程的应用作准备。
40093 9C9D 鲝A32587 7F4B 罋G (37414 9226 鈦24997 61A5 憥23296 5B00 嬀g21340 535C 卜20447 4FDF 俟22849 5941 奁。