等差数列前n项和公式说课稿
《等差数列前n项和公式》说课稿

《等差数列前n项和公式》说课稿各位评委,大家好:我说课的课题是高中数学(人教B版)必修5第二章等差数列中“等差数列前n项和公式”的第一节内容,我将从教材分析、学情分析、教法分析、学法过程、教学过程五个方面来展开本节的说课内容。
一、设计思想在讲授式的教学中,课堂实施过于注重知识的机械传授,忽略了学生学习的主体性,也抑制了学生综合能力的提高和综合素质的发展。
当代学生观重视学生的自主发展,认为教育就应看到学生的未完成性,给学生创造发展的环境和机会。
本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材或教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力。
因此,我在此堂课的教学中借助图形拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美。
二、教材分析1、教学内容:《等差数列前n项和》是现行教材高一上册第三章第三节“等差数列前n项和”的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2、地位与作用:数列是刻画离散现象的函数,是一种重要的数学模型。
高中数列研究的主要对象是等差、等比两个基本数列。
本节课的教学内容是等差数列的前n项和公式及其简单应用。
它与前面学过的等差数列的定义、通项公式、性质有着密切的联系;同时,又为后面学习等比数列前n项和、数列求和等内容作好准备。
因此,本节课既是本章的重点也是教材的重点。
与几何、函数等其他数学领域知识结合性强,是方程思想等诸多数学思想的学习载体,具有丰富的现实背景3.教学目标知识与技能目标:掌握等差数列的前n项和公式,并能运用公式解决简单的问题。
过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,掌握倒序相加法。
情感与态度价值观:使学生获得发现的成就感,优化思维品质,提高代数的推理能力。
4.教学重点、难点重点:等差数列的前n项和公式。
等差数列的前n项和说课稿

等差数列的前n项和说课稿等差数列的前n项和说课稿作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,编写说课稿助于积累教学经验,不断提高教学质量。
那么什么样的说课稿才是好的呢?以下是小编收集整理的等差数列的前n项和说课稿,欢迎阅读与收藏。
等差数列的前n项和说课稿1以下是高中数学《等差数列前n项和的公式》说课稿,仅供参考。
教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
教学重点:等差数列前n项和的公式。
教学难点:等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。
提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。
等差数列前n项和公式说课稿

等差数列前n项和公式说课稿一、说教材(一)作用与地位《等差数列前n项和公式》是高中数学课程中的重要内容,位于数列章节的核心位置。
等差数列作为数列中的基础类型,其前n项和公式的推导和应用,不仅对理解数列的性质具有关键作用,而且对于后续学习等比数列、数列的极限等高级数学概念奠定了基础。
(二)主要内容本文主要围绕等差数列前n项和公式的推导和应用展开,首先通过具体实例引入等差数列的概念,进而引导学生发现并证明等差数列前n项和的公式。
内容涉及以下几个方面:1. 等差数列的定义及性质复习;2. 利用图形及实际案例推导等差数列前n项和公式;3. 通过例题讲解,让学生掌握等差数列前n项和公式的应用;4. 课后练习,巩固所学知识。
二、说教学目标(一)知识与技能1. 理解等差数列的概念,掌握等差数列的基本性质;2. 学会推导等差数列前n项和公式,并能熟练运用;3. 能够解决实际问题中与等差数列前n项和相关的计算问题。
(二)过程与方法1. 通过观察、分析、归纳等学习方法,培养学生发现问题和解决问题的能力;2. 通过小组合作、讨论等学习方式,提高学生的沟通能力和团队协作能力。
(三)情感态度价值观1. 培养学生对数学的兴趣,激发学生学习数学的热情;2. 培养学生严谨、踏实的科学态度,提高学生的逻辑思维能力。
三、说教学重难点(一)重点1. 等差数列前n项和公式的推导过程;2. 等差数列前n项和公式的应用。
(二)难点1. 等差数列前n项和公式的推导过程,特别是倒序相加法的理解;2. 在实际问题中灵活运用等差数列前n项和公式解决问题。
四、说教法(一)教学方法1. 启发法:通过设置问题情境,引导学生主动思考,发现等差数列前n项和的规律。
在教学过程中,我会设计一系列由浅入深的问题,让学生在解决问题的过程中,逐步推导出等差数列前n项和公式。
2. 问答法:在教学过程中,我将以提问的方式引导学生复习等差数列的基本概念和性质,为新知识的推导做好铺垫。
等差数列的前n项和公式说课稿

《等差数列的前n项和公式》说课稿尊敬的各位评委老师大家好:今天我说课的课题是《等差数列的前n项和公式》,属于新授课,接下来我将从教材分析、教法、学法分析、教学过程、板书设计和效果分析五个方面来展开本节的说课内容。
一、教材分析1、地位与作用《等差数列的前n项和公式》是中等职业教育国家规划教材《数学》(基础版)下册第六章第2节内容,是进一步学习其他数列知识的基础,这一节内容能体现解决数列问题的通性通法,并且在推导等差数列前n项和公式中运用的“例序相加法”是今后数列求和的一种常用的重要方法。
因此等差数列前n项和公式在《数列》一章具有极为重要的地位,也是高考命题的热点。
2、教学目标分析根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:(1)知识与技能掌握等差数列前n项和公式以及推导该公式的数学思想方法,并能运用公式解决简单的问题;(2)过程与方法通过公式的探索、发现,在知识发生、发展以及形成的过程中培养学生观察、联想、分析、归纳、综合和逻辑推理的能力。
(3)情感、态度与价值观通过数学史小故事,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
3、教学重点和难点本着新课程标准,在吃透教材的基础上,我确定了下面的教学重点和难点(1)教学重点:等差数列前n项和公式的推导、掌握及灵活运用(2)教学难点:诱导学生用“倒序相加法”推导等差数列前n项和公式二、说教法(1)采取“诱导启发、自主探究”的互动式教学。
在教师的引导下,创设情景,通过问题的设置来启发学生思考,在思考中体会所蕴涵的数学方法,获得成功的内心感受。
(2)利用“多媒体教学”结合“微课”视频,节省课堂时间,增强课堂趣味性,提高课堂效率。
三、说学法以“自主探索,小组合作”为主,有助于学生深刻地理解和掌握知识,有助于思维能力的培养和训练,有助于知识的迁移。
接下来,为更好的突出重点、突破难点,我再具体谈一谈这堂课的教学过程:四、说教学过程环节(一):复习回顾——为公式的推导作铺垫设计意图:1、检索学生头脑中的原有知识,起到巩固原有知识的目的。
(完整word版)《等差数列前n项和》说课稿全面版

《等差数列前n项和》说课稿一、课题介绍二、选自人教A版《普通高中课程标准实验教科书·数学·必修5》的第二章第三节,共有两个课时, 本节课为第一课时: 等差数列前n项和公式的推导及其简单应用.三、教材分析(一)教材的地位与作用等差数列前n项和是本章的重要内容, 它与前面学过的等差数列的通项公式﹑性质有着密切联系, 同时又为今后的等比数列的前n项和﹑数列求和等内容做好知识准备, 在整个章节中起着承上启下的作用. 同时它也是高考命题的重点和热点, 是以后继续高等数学学习的基础知识, 所以本节课在高中数学教学中占有重要地位.(二)学情分析根据皮亚杰的认知水平阶段, 高一学生处于形式运算阶段, 他们思维比较活跃, 具有了敏锐的观察能力以及归纳和类比能力, 所以本节课我将从分析高斯计算的小故事的算法入手, 启发引导学生由特殊到一般, 探究等差数列的前n项和公式.(三)教学目标根据教材特点、教学大纲、新课标标准, 从提高学生分析问题解决问题的能力出发, 我确定教学目标如下:1﹑知识目标掌握等差数列前n项和公式以及公式的推导方法, 并能灵活的运用公式解决问题.2﹑能力目标通过公式的探索、发现, 在知识发生、发展以及形成过程中培养学生观察、联想、归纳、类比和逻辑推理的能力.3﹑情感目标结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,激发探究兴趣和欲望,树立学生求真的勇气和信心, 并通过对等差数列求和历史的了解,渗透数学史和数学文化.(四)教学重﹑难点1.由于等差数列前n项和公式在高中数学教学和高考中占有了重要地位, 所以我将本节课的重点设置为: 等差数列前n项和公式及其简单应用.2、由于等差数列前n项和公式是数列中学习的第一个求和公式, 也是高中数学中第一次处理无穷项式子中求和的问题, 采用了倒序相加法, 需要构建一个倒序的, 由于学生缺乏处理经验, 不容易发现, 具有一定的难度, 其次由于学生的认知水平, 对公式的逆用也具有一定难度.所以我将本节课的难点设置为:等差数列前n项和公式的推导及其灵活运用.二、教学方法分析(一)教法分析联系教材分析, 本节课采用“启发引导式”教学为主, “讲练结合法”为辅的教学方法, 让学生经历知识的产生、发生和发展的过程, 这样有利于突出重点, 突破难点.(二)学法分析达尔文说过: “最有价值的知识是关于方法的知识”. 老师不是教会学生知识, 而是教会学生如何学习知识. 所以我设置如下学法: “探究性学习法”和“主动学习法”.(三)教学手段为了强调、突出重点难点, 在教学过程中将使用彩色粉笔, 并应用小黑板、多媒体辅助教学, 使教学过程更直观、形象、生动.三、教学过程(一)复习回顾根据奥苏贝尔的“先行组织者”理念: 新知识是建立在旧知识的基础上. 所以在上课之前, 我会给同学复习等差数列的定义、通项公式、性质, 这样有利于构建共同基础, 提供发展平台, 为等差数列的前n项和公式的推导做好知识准备.(二)情境引入情景: 高斯上小学时,有一次他们的顽皮惹恼了他们的数学老师, 数学老师决定惩罚下他们出了一道题: 计算从1到100的自然数之和. 并且说, 要做完了这道题才能回家吃饭. 老师认为,这些孩子算这道题目需要很长时间,所以他一写完题目,就坐到一边看书去了,谁知他刚坐下,马上就有一个学生举手说: “老师,我做完了. ”老师大吃一惊,原来是班上年纪最小的高斯.通过提问: 通过提问:高斯是如何计算的?高斯的算法妙在那?高斯的算法这么妙, 能不能运用它解决我们一般的等差数列求和问题?以问题驱动的形式引入新课.设计意图:这样既能引起学生的兴趣, 让学生从高斯的故事中寻找求和思路, 为下一步学习营造轻松愉快的氛围.又能让学生通过对等差数列求和历史的了解,渗透数学史和数学文化.同时能让学生明白高斯能有今天的成就, 和他从小培养的善于观察, 敢于思考, 从一些简单的事物当中发现和寻找出某些规律性的东西的生活习惯是分不开的.(三)探究新知1.抽一名学生起来谈谈如何运用高斯的方法计算设计意图:通过一个特例, 让学生归纳出高斯的方法计算等差数列的前n项和需根据项数的奇偶性确定有多少项相同的首末两项的和, 有没有单独的项, 对于一般的等差数列比较麻烦.2.公式的推导3、让学生思考有没有新方法, 使得在结合时既能运用高斯的求和的首项加末项的思想, 又不需探讨的奇偶性. 然后引导学生给式子的右边, 加一个, 加一个, 可由等差数列的性质, 显然可知共有n项相等的 . 再引导学生将所加的数加起来, 发现是一个倒叙的 , 所以将两式加起来, 这样既能运用高斯的首相加末项思想, 又能不探讨n的奇偶性.4、 设计意图:在这一块, 我与教材处理不同, 我这样设计是为了让学生加强对等差数列的性质的印像和运用, 同时可以运用高斯的思想, 构建一个倒叙的 , 自然的引出倒叙相加法, 让学生经历公式推导过程, 发现数学中的对称美, 加深学生对公式的理解和印象, 培养学生思维活跃性和观察分析能力.设计意图: 通过和已有的梯形面积公式作比较, 让公式形象化, 符合奥苏贝尔的有意义学习理论, 既能方便公式的记忆又能强调和已有知识相联系.求: 这位运动员七天的运动训练总量为多少.设计意图: 借用弗莱登塔尔的基本观点: 所学知识需与实际相结合, 设计例1尝试对公式简单运用, 让学生及时对新知识进行巩固, 加深对公式印象. 这道题我主要通过师生对话的形式讲解, 并将详细解题过程板书在黑板上, 起一个示范作用. 同时让他们根据题意, 合理的选用有用的已知条件, 增强学生的数学应用意识, 渗透数学建模的思想.思考: 一般的, 等差数列都已知 和 , 若例1中已知的是运动员第一天的运动训练量为 千米, 此后每天增加 千米, 要求 , 应怎样计算?设计意图:通过一个思考题引导学生推导公式二, 体现公式二因需要出现.()()1111122n n a a n d n n S na d ++-⎡⎤-⎣⎦==+ (公式二)思考: 那么公式二是否也可以给它取个名字呢? 引导学生将公式二继续化简有:()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭设计意图:给出公式二和二次函数的关系, 为后面运用函数的思想求解前 项和的最值问题埋下伏笔.比较两公式可知, 公式一中是已知 , , 求 , 公式二中是已知 , , 求 , 所以在平时做题时, 需根据已知适当的选用公式.设计意图:分析两个公式, 让学生学会合理运用已知条件选用公式.练习既有对两个公式的正用, 也有逆用, 这道题我会让学生分成四组, 每组各做一道题, 再让他们派代表回答答案, 和解题思路.设计意图:通过变式训练, 合理达到知识的迁移.同时练习以表格的形式出现, 形象的展现出知三求二的思想. (六)总结提炼临近尾声, 抽一两个学生结合自己的体验, 说说本节课的内容和感受, 然后由老师归纳总结, 并将知识用表格的形式体现.n a +设计意图: 这样有利于培养学生的语言表达能力和归纳概括能力, 使学生自主构建知识体系, 养成良好的学习习惯. 同时小结以表格的形式体现, 将知识条理化, 有利于减轻学生的负担.(七)布置作业⑴根据艾滨浩斯的遗忘曲线规律, 学生对新知识的遗忘是先快后慢, 先多后少的, 所以我让学生复习本节课所学知识.⑵为让学生巩固所学知识, 熟练公式的运用, 我让同学将P46 A 组 2题, 4题做在作业本上, 第二题是对公式的运用, 第四题是一道运用题.⑶为了促进数学成绩优异的学生的房展, 培养学生独立思考, 自主学习能力, 我布置了一道思考题, 若已知等差数列前项和为, 如何求.⑷为了让学生养成良好的学习习惯, 让学生预习下节课的内容.设计意图:这样布置作业不但比较有层次, 还能“让不同的人在数学上得到不同的发展”,四﹑板书设计为使整个版面重难点突出, 层次分明, 自然美观, 将黑板分为四版: 第一版为公式的推导, 第二版为公式, 第三版为例题讲解和巩固练习, 第四版为复习知识和情景引入.五﹑教学评价这节课主要体现以学生为主体的思想, 教师只是学生学习的指导者, 知识是学生自主构建的原则设计的.。
《等差数列前n项和公式》说课稿

《等差数列前n项和公式》说课稿各位评委,大家好:我说课的课题是高中数学(人教B版)必修5第二章等差数列中“等差数列前n项和公式"的第一节内容,我将从教材分析、学情分析、教法分析、学法过程、教学过程五个方面来展开本节的说课内容。
一、设计思想在讲授式的教学中,课堂实施过于注重知识的机械传授,忽略了学生学习的主体性,也抑制了学生综合能力的提高和综合素质的发展。
当代学生观重视学生的自主发展,认为教育就应看到学生的未完成性,给学生创造发展的环境和机会.本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材或教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力。
因此,我在此堂课的教学中借助图形拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美。
二、教材分析1、教学内容:《等差数列前n项和》是现行教材高一上册第三章第三节“等差数列前n项和”的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2、地位与作用:数列是刻画离散现象的函数,是一种重要的数学模型。
高中数列研究的主要对象是等差、等比两个基本数列.本节课的教学内容是等差数列的前n项和公式及其简单应用。
它与前面学过的等差数列的定义、通项公式、性质有着密切的联系;同时,又为后面学习等比数列前n项和、数列求和等内容作好准备。
因此,本节课既是本章的重点也是教材的重点。
与几何、函数等其他数学领域知识结合性强,是方程思想等诸多数学思想的学习载体,具有丰富的现实背景3.教学目标知识与技能目标:掌握等差数列的前n项和公式,并能运用公式解决简单的问题。
过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,掌握倒序相加法.情感与态度价值观:使学生获得发现的成就感,优化思维品质,提高代数的推理能力。
4.教学重点、难点重点:等差数列的前n项和公式。
等差数列的前n项和说课稿

等差数列的前n项和说课稿等差数列的前n项和说课稿1各位评委教师:大家好!我说课的课题是等差数列的前n项和,本节内容选自江苏教育出版社中职数学其次册第11章第2节,下面我将从说教材、说教法学法、说教学过程、说板书设计以及说教学反思几个方面对本节课加以说明。
一、下面先说说教材1、教材的地位和作用中职数学是中等职业学校各类专业学生必修的主要文化根底课,学好这门课程对提高学生数学素养具有非常重要的意义。
数列这一章是中职数学的重要内容之一。
它不仅是函数学问的延长,而且还有着特别广泛的实际应用;同时数列还是培育学生数学思维力量的良好题材。
《等差数列的前n项和》是本章的其次节,它为后继学习供应了学问根底,对提高学生分析、猜测、概括、归纳的力量有着重要的作用。
《等差数列》作为《数列》这一章中两个最重要的数列之一,具有承上启下的作用,它的讨论和解决集中表达了讨论《数列》问题的思想和方法。
学习《等差数列的前n项和》对提高学生分析、猜测、概括、归纳的力量有着重要的作用。
2、教学目标依据教学大纲的要求和教学内容的构造特征,并结合学生学习的实际状况,我将本节课的教学目标确定为以下三个方面学问目标:把握等差数列的前n项和公式力量目标:1、培育学生观看、归纳、类比、联想等发觉规律的一般方法。
2、提高学生分析问题和解决问题的力量情感目标:1、培育学生主动探究的精神和良好的学习习惯2、让学生在问题中感受学习的乐趣;3、教学重点和难点。
依据本节课的内容以及学生已把握的学问状况我将教学重点确定为:等差数列的前n项和公式及应用教学难点确定为:应用等差数列解决有关问题二、说教法学法教法教学有法但教无定法,教学方法要与学生学习的实际状况相结合。
中职学生的生源质量逐年下降,大局部中职生根底薄弱、理解承受力量较差,大多数学生不爱学习,不会学习。
学生认为数学难,枯燥理解不了。
对数学学习提不起兴趣,因此在教学中我注意激发学生学习的兴趣。
本节课通过详细的实例引入,采纳了问题、类比、发觉、归纳的探究式教学方法。
等差数列的前n项和公式说课稿

等差数列的前n项和公式说课稿《等差数列的前 n 项和公式说课稿》尊敬的各位评委、老师:大家好!今天我说课的内容是“等差数列的前n 项和公式”。
接下来,我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等差数列的前 n 项和公式”是高中数学必修 5 第二章数列中的重要内容。
等差数列在现实生活中有着广泛的应用,而前 n 项和公式则是等差数列的核心内容之一,它不仅为后续学习等比数列的前 n 项和公式奠定了基础,也在数学建模和解决实际问题中发挥着重要作用。
本节课的教材内容编排注重从特殊到一般、从具体到抽象的认知规律,通过引导学生探究等差数列前 n 项和的计算方法,培养学生的逻辑推理和数学运算能力。
二、学情分析授课对象是高一年级的学生,他们已经掌握了等差数列的通项公式和基本性质,具备了一定的逻辑思维能力和数学运算能力。
但对于如何从特殊到一般地推导等差数列的前 n 项和公式,以及如何灵活运用公式解决实际问题,还需要进一步的引导和训练。
在学习过程中,学生可能会遇到以下困难:一是对公式的推导过程理解不够深入,容易机械记忆;二是在运用公式时,不能准确选择合适的公式和方法,导致计算错误。
三、教学目标基于以上教材和学情分析,我制定了以下教学目标:1、知识与技能目标(1)理解等差数列前 n 项和公式的推导过程,掌握公式的两种形式。
(2)能够熟练运用等差数列的前 n 项和公式解决相关问题。
2、过程与方法目标(1)通过对公式推导过程的探究,培养学生的观察、分析、归纳和推理能力。
(2)经历从特殊到一般、从具体到抽象的思维过程,提高学生的数学思维品质。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中体验数学学习的乐趣,增强学习数学的信心。
(2)通过等差数列在实际生活中的应用,培养学生用数学的眼光观察世界、用数学的思维思考世界、用数学的语言表达世界的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列前n项和公式说课稿
各位评委,大家好:
我说课的课题是高中数学(人教B版)必修5第二章等差数列中“等差数列前n 项和公式”的第一节内容,我将从教材分析、教法、学法分析、教学过程、板书设计和效果分析五个方面来展开本节的说课内容。
一、教材分析
1、地位与作用
“等差数列前n项和公式”是《数列》一章中重要的基础知识,无论在知识,还是在能力上,都是进一步学习其他数列知识的基础。
知识方面:等差数列前n
项和公式有广泛的实际应用,是今后继续学习高等数学的基础,能体现解决数列问题的通性通法,并且在推导等差数列前n项和公式中运用的“例序相加法”是今后数列求和的一种常用的重要方法。
能力方面:可考查学生的运算、推理、及等价转化能力,使学生进一步深入体会学习函数方程、数形结合等重要数学思想方法。
因此等差数列前n项和公式在《数列》一章具有极为重要的地位,也是高考命题的热点。
2、目标分析:
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
A、知识目标
掌握等差数列前n项和公式的推导方法;掌握公式及公式的运用。
B、能力目标
(1)通过公式的探索、发现,在知识发生、发展以及形式过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比导出等差数列的求和公式,培养学生的类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析和解决问题的能力。
C、情感目标:
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)公式运用的过程中,使学生逐步养成实事求是,扎实严谨的科学态度。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
3、教学重点和难点
结合以上教学目标,我制定了下面的教学重点和难点
1、教学重点:等差数列前n项和公式的推导、掌握及灵活运用。
2、教学难点:诱导学生用“倒序相加法”推导等差数列前n项和公式。
二、教法、学法分析
1、教法分析:
(1)、采取“诱导启发、自主探究”的互动式教学。
在教师的引导下,创设情景,通过问题的设置来启发学生思考,在思考中体会所蕴涵的数学方法,获得成功的内心感受。
(2)、利用“学案导学”与“多媒体教学”,节省课堂时间,增强课堂趣味性,提高课堂效率。
2、学法指导
以“自主探究式学习法”为主
布鲁纳强调要把知识获得的过程体现出来。
让学生亲身经历参与知识的形成与发现过程,有助于引起学生内部的学习动机,有助于学生深刻地理解和掌握知识,有助于思维能力的培养和训练,有助于知识的迁移。
接下来,为更好的突出重点、突破难点,我再具体谈一谈这堂课的教学过程:三、教学过程
环节(一):复习回顾——为公式的推导作铺垫
1、等差数列的通项公式:
2、等差数列的性质:
设计意图:1、检索学生头脑中的原有知识,起到巩固原有知识的目的。
2、将等差数列的通项公式11()n a a n d =+-及等差数列的如下性质
写出,为公式的推导做准备。
环节(二)创设情境,激发兴趣
问题1、从1到100的自然数之和是多少?
设计意图:把德国数学家高斯小时候的数学问题作为教学的出发点,引出等差数列的求和问题,激发了学生探究的兴趣和欲望,一下子就把课堂的学习气氛推向高潮。
环节(三)自主研究 探求新知
问题2、如图堆放着一堆钢管,最上层放了4根,下面每一层比上一层多放一根,共8层,求这堆钢管有多少根?
问题3、推导等差数列}{n a 的前n 项和公式
m n p q a a a a +=+,m n p q +=+2,
m n p +=2m n p a a a +=*(m n p q N ∈、、、)
n 12n-1n S a a a a =++⋅⋅⋅++=
设计意图:问题2的出现使学生思维“稳”下来思考它与问题1及问题3的联系与区别,让学生就近结合探讨,学生不难用高斯算法完成问题2 ,再结合等差数列的性质得到
*()n N ∈,然后提问学生是否有更快、更简捷的方法
得出问题2的结果,学生讨论,教师引导作出回答(即将图形补成平行四边形)。
这样就起到了诱导学生利用“倒序相加法”推导公式的作用。
这一过程考察了学生观察、联想、归纳、分析、和逻辑推理的能力,符合学生从特殊到一般的认知规律,培养了学生的类比思维能力。
再引导学生由等差数列通项公式得到公式的第二种形式1(1)2
n n n d
s na -=+
*()n N ∈并将公式写出。
环节(四):应用举例——巩固新知 例1、求和: (1)1+2+3+…+n (2)1+3+5+…+(2n-1)
(3)2+4+6+ (2)
(4)1-2+3-4+5-6+…+(2n-1)-2n
例2、根据下列各题中的条件,求相应等差数列}{n a 的的前n 项和n S : (1)1a =6,d =3,n =10; (2)1a =2,n a =16,n =8; (3)4a =10,10a =-2,n =12;
(4)1a =5, d =4, n a =73.
例3、数列{a n }是公差d=-2的等差数列,如果a 1+a 2+a 3=12,a 8+a 9+a 10=75,求1a ,,
d ,10S .
变式训练: 1) {a n }是等差数列,若a 1+a 2+a 3=12,a 8+a 9+a 10=75,且n S =145,求a 1,d ,n. 2) 若此题不求a 1,d 而只求10S 时,是否一定非来求得a 1,d 不可呢? 3) 在等差数列{a n }中,已知a 2+a 5+a 12+a 15=36,求16S . 4)
在等差数列{a n }中,已知a 6=20,求11S .
设计意图:为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我精心设计了以上习题,并将例题融入其中。
第1题的(1)-(3)小题与第2题是利用公式直接求解,达到熟悉公式的目的。
第1题的(4)是培养学生观察能力使学生掌握分组求和的方法。
第2题的(4)及第3题的变式(1)目的是让学生掌握公式的变形及逆用,引导学生用基本量的观点认识公式,总结“知三求二”的公式特征。
第3题的问题(2)引起学生的好奇心,调动学生积极思维,学生探讨得出结果,体会利用整体思想认识n S 公式。
(3)(4)考察学生的综合能力,又是对这种整体观点的巩固,并为下一节等差数列的前n 项和性质的学习作铺垫。
这一过程通过由简到繁,层层递进的例题设置,使学生的思维由松到紧,逐渐活跃起来,直到最后有了跳跃式的发展。
环节(五):反馈练习-自主完成
设计意图::这一环节目的是使学生熟记公式,灵活运用公式。
环节(六)学生自主探究,回顾本节内容:
1、用倒序相加法推导等差数列前n项和公式。
2、用所推导的两个公式解决有关例题,熟悉对
S公式的运用。
n
3、具体用
S公式时,要根据已知灵活选择公式(I)或(II),掌握知三求
n
二的解题通法。
4、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,善于变换,做到灵活运用公式。
设计意图:在教师的指导下,学生自主总结新知识,建构知识网络,可以培养学生分析综合能力,又可把课堂教学传授的知识尽快转化为学生的素质,使学生更深刻地理解数学思想方法在解题中的地位和应用,逐渐培养学生的良好的个性品质目标。
环节(七)课后作业——自主探究
设计意图:学生经过以上六个环节的学习,已经初步掌握了等差数列前n 项和公式,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
为下一节等差数列前n项和性质的学习引线搭桥。
四、板书设计:(结合多媒体教学)
在板书中突出本节重点,将强调的地方如公式用红色粉笔标注,同时给学
生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
、
式
五、效果分析:1、本节课充分体现了面向全体学生、以问题解决为中心、
注重知识的建构过程与方法、重视学生思想与情感的设计理念,相信学生
能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。
希望留在学生记忆中的不只是知识本身,而是方法与思想,是学习的习惯
和热情,这正是我们教育工作者追求的结果。
2、根据课堂上师生的双边活
动,作出适时调整、补充,并指导下节课的设计。
以上,我仅从说教材,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。
希望各位评委对本节说课提出宝贵意见。
谢谢!。