2014年全国高考理科数学试题及答案-安徽卷

合集下载

2014年安徽高考理科数学试题含答案(Word版)

2014年安徽高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i(C )2 (D )2i(2)“x <0”是ln (x+1)<0的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34(B )55(C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21- (7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R(C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽高考理科数学试题及答案(Word版)

2014年安徽高考理科数学试题及答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年全国高考【理科】数学试题及答案-安徽卷【Word版】

2014年全国高考【理科】数学试题及答案-安徽卷【Word版】

2014年普通高等学校招生全国统一考试(安徽卷】数学(理科】本试卷分第Ⅰ卷和第II 卷(非选择题】两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分】一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1】设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A 】-2 (B 】-2i (C 】2 (D 】2i (2】“x <0”是ln (x+1】<0的 (A 】充分不必要条件(B 】必要不充分条件 (C 】充分必要条件(D 】既不充分也不必要条件(3】如图所示,程序框图(算法流程图】的输出结果是(A 】34 (B 】55 (C 】78 (D 】89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A 】14 (B 】214 (C 】2 (D 】22(5】x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A 】21 或-1 (B 】2或21 (C 】2或1 (D 】2或-1 (6】设函数f(x)(x ∈R 】满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A 】21 (B 】23 (C 】0 (D 】21-(7】一个多面体的三视图如图所示,则该多面体的表面积为(A 】321+ (B 】318+ (C 】21 (D 】18(8】从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A 】24对 (B 】30对 (C 】48对 (D 】60对(9】若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A 】5或8 (B 】-1或5 (C 】-1或 -4 (D 】-4或8(10】在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A 】1 < r < R <3 (B 】1 < r < 3 ≤ R (C 】r ≤ 1 < R <3 (D 】1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷】数 学(理科】 第Ⅱ卷(非选择题 共100分】考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年高考安徽理科数学试题及答案(word解析版)

2014年高考安徽理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2014年安徽,理1,5分】设i 是虚数单位,z 表示复数z 的共轭复数.若1i z =+,则i izz +=( )(A )2- (B )2i - (C )2 (D )2i 【答案】C【解析】1ii i (1i)(i 1)(i 1)2i iz z ++⋅=+⋅-=--++=,故选C .(2)【2014年安徽,理2,5分】“0x <”是“()ln 10x +<”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】ln(1)001110x x x +<⇔<+<⇔-<<,所以“0x <”是“()ln 10x +<”的必要而不充分条件,故选B .(3)【2014年安徽,理3,5分】如图所示,程序框图(算法流程图)的输出结果是( )(A )34(B )55 (C )78 (D )89【答案】B 【解析】x 1 1 2 3 5 8 13 21 y 1 2 3 5 8 13 21 34z2 3 5 8 13 21 34 55 (4)【2014年安徽,理4,5分】以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) (A )14 (B )214 (C )2 (D )22 【答案】D【解析】将直线l 方程化为一般式为:40x y --=,圆C 的标准方程为:22(2)4x y -+=,圆C 到直线l 的距离为:22d ==,∴弦长22222L R d =-=,故选D .(5)【2014年安徽,理5,5分】,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( )(A )12或1- (B )2或12(C )2或1 (D )2或1-【答案】D 【解析】画出约束条件表示的平面区域如右图,z y ax =-取得最大值表示直线z y ax =-向上平移移动最大,a 表示直线斜率,有两种情况:1a =-或2a =,故选D .(6)【2014年安徽,理6,5分】设函数()()f x x R ∈满足()()sin f x f x x π+=+.当0x π≤<时,()0f x =,则236f π⎛⎫= ⎪⎝⎭( )(A )12 (B )3 (C )0 (D )12- 【答案】A【解析】2317171111175511171111()()sin ()sin sin ()sin sin sin 066666666662222f f f f ππππππππππ=+=++=+++=+-+=,故选A .(7)【2014年安徽,理7,5分】一个多面体的三视图如图所示,则该多面体的表面积为( )(A )213+ (B )183+ (C )21 (D )18 【答案】A【解析】如右图,将边长为2的正方体截去两个角,∴213226112(2)2132S =⨯⨯-⨯⨯+⨯⨯=+表,故选A . (8)【2014年安徽,理8,5分】从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有( )(A )24对 (B )30对 (C )48对 (D )60对 【答案】C【解析】与正方体一条对角线成060的对角线有4条,∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有41248⨯=(对),故选C .(9)【2014年安徽,理9,5分】若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 【答案】D【解析】(1)当2a <时,12a-<-,此时31,11,1()2312x a x a x a x f x ax a x ---<-⎧⎪⎪--+-≤≤-=⎨⎪⎪++>-⎩;(2)当2a >时,12a->-,此时31,2()1,12311a x a x f x a x a x x a x ⎧---<-⎪⎪=⎨+--≤≤-⎪⎪++>-⎩,在两种情况下,min ()()|1|322a af x f =-=-+=,解得4a =-或8a =,(此题也可以由绝对值的几何意义得min ()|1|32af x =-+=,从而得4a =-或8a =),故选D .(10)【2014年安徽,理10,5分】在平面直角坐标系xOy 中,向量,a b 满足||||1a b ==,0a b ⋅=.点Q 满足()2OQ a b =+,曲线{}|cos sin ,0C P OP a b θθθπ==+≤≤,区域{}|0||,P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )(A )13r R <<< (B )13r R <<≤ (C )13r R ≤<< (D )13r R <<< 【答案】A【解析】设(1,0),(0,1)a b ==则(cos ,sin )OP θθ=,(2,2)OQ =,所以曲线C 是单位元,区域Ω为圆环(如右图),∵||2OQ =,∴13r R <<<,故选A . 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年安徽,理11,5分】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是 .【答案】38π 【解析】()sin[2()]sin(22)44f x x x ππϕϕϕ-=-+=+-,∴2,()42k k Z ππϕπ-=+∈,∴,()82k k Z ππϕ=--∈,当1k =-时min 38πϕ=.(12)【2014年安徽,理12,5分】已知数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 【答案】1q =【解析】∵{}n a 是等差数列且1351,3,5a a a +++构成公比为q 的等比数列,∴2111(1)(45)(23)a a d a d +++=++,即2111(1)[(1)4(1)[(1)2(1)]a a d a d ++++=+++, 令11,1a x d y +=+=,则有2(4)(2)x x y x y +=+,展开的0y =,即10d +=,∴1q =.(13)【2014年安徽,理13,5分】设0a ≠,n 是大于1的自然数,1nx a ⎛⎫+ ⎪⎝⎭的展开式为2012n n a a x a x a x ++++.若点()(),0,1,2i i A i a i =的位置如图所示,则a = . 【答案】3a =【解析】由图易知0121,3,4a a a ===,∴122113,()4n n C C a a ⋅=⋅=,∴23(1)42na n n a ⎧=⎪⎪⎨-⎪=⎪⎩,解得3a =. (14)【2014年安徽,理14,5分】设1F ,2F 分别是椭圆()222:101y E x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,若11||3||AF BF =,2AF x ⊥轴,则椭圆E 的方程为 .【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --,将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩,∴椭圆方程为22312x y +=.(15)【2014年安徽,理15,5分】已知两个不相等的非零向量,a b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅,min S 表示S 所有可能取值中的最小值.则下列命题正确的是_________(写出所有正确命题的编号).①S 有5个不同的值;②若a b ⊥,则min S 与a 无关;③若//a b ,则min S 与||b 无关;④若||4||b a >,则min 0S >;⑤若||4||b a =,2min 8||S a =,则a 和b 的夹角为4π. 【答案】②④【解析】S 有下列三种情况:222222222123,,S a a b b b S a a b a b b b S a b a b a b a b b =++++=+⋅+⋅++=⋅+⋅+⋅+⋅+∵222212232()||0S S S S a b a b a b a b -=-=+-⋅=-=-≥,∴min 3S S =, 若a b ⊥,则2min 3S S b ==,与||a 无关,②正确; 若//a b ,则2min 34S S a b b ==⋅+,与||b 有关,③错误;若||4||b a >,则2222min 34||||cos ||4||||||||||0S S a b b a b b b b θ==⋅+≥-⋅+>-+=,④正确;若2min ||2||,8||b a S a ==,则2222min 348||cos 4||8||S S a b b a a a θ==⋅+=+=,∴1cos 2θ=,∴3πθ=,⑤错误.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内. (16)【2014年安徽,理16,12分】设ABC ∆的内角A ,B ,C 所对边的长分别是a ,b ,c ,且3b =,1c =,2A B =.(1)求a 的值;(2)求sin 4A π⎛⎫+ ⎪⎝⎭的值.解:(1)∵2A B =,∴sin sin 22sin cos A B B B ==,由正弦定理得22222a c b a b ac+-=⋅,∵3,1b c ==,∴212,a a ==(2)由余弦定理得22291121cos 2b c a A bc +-+-===-,由于0A π<<,∴sin A故1sin()sin coscos sin()4443A A A πππ+=+=-=(17)【2014年安徽,理17,12分】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解:用A 表示“甲在4局以内(含4局)赢得比赛”, k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则21(),(),1,2,3,4,533k k P A P B k ===.(1)121231234121231234()()()()()()()()()()(()()P A P A A P B A A P A B A A P A P A P B P A P A P A P B A P A =++=++2212221225633333333381=⨯+⨯⨯+⨯⨯⨯=. (2)X 的可能取值为2,3,4,5,121212125(2)()()()()()()9P X P A A P B B P A P A P B P B ==+=+=,1231231231232(3)()()()()()()()()9P X P B A A P A B B P B P A P A P A P B P B ==+=+=,123412341234123410(4)()()()()()()()()()()81P X P A B A A P B A B B P A P B P A P A P B P A P B P B ==+=+=8(5)1(2)(3)(4)81P X P X P X P X ==-=-=-==, 故X∴5234599818181EX =⨯+⨯+⨯+⨯=.(18)【2014年安徽,理18,12分】设函数()()()23110f x a x x x a =++-->.(1)讨论()f x 在其定义域上的单调性;(2)当[]0,1x ∈时,求()f x 取得最大值和最小值时的x 的值. 解:(1)()f x 的定义域为(,)-∞+∞,2'()123f x a x x =+--,令'()0f x =得1212x x x x ==<,所以12'()3()()f x x x x x =---,当1x x <或2x x >时,'()0f x <;当12x x x <<时'()0f x >,故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增. (2)∵0a >,∴120,0x x <>,(ⅰ)当4a ≥时21x ≥,由(1)知()f x 在[0,1]上单调递增,∴()f x 在0x =和1x =处分别取得最小值和最大值.(ⅱ)当40a >>时,21x <,由(1)知()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减, ∴()f x 在2143ax x -++==处取得最大值,又(0)1,(1)f f a ==,∴当10a >>时()f x 在1x =处取得最小值,当1a =时()f x 在0x =和1x =处同时取得最小值,当41a >>时,()f x 在0x =取得最小值.(19)【2014年安徽,理19,13分】如图,已知两条抛物线()2111:20E y p x p =>和()2122:20E y p x p =>,过原点O 的两条直线1l 和2l ,1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点. (1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点.记111A B C ∆与222A B C ∆的面积分别为1S 与2S ,求12SS 的值.解:(1)设直线12,l l 的方程分别为1212,,(,0)y k x y k x k k ==≠,则由1212y k x y p x =⎧⎨=⎩得11121122(,)p pA k k ;由1222y k x y p x=⎧⎨=⎩得22221122(,)p p A k k ,同理可得11122222(,)p p B k k ,22222222(,)p p B k k ,所以111111122222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--, 222222222222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--,故111222p A B A B p =,所以1122A B A B //.(2)由(1)知1122A B A B //,同理可得1122B C B C //,1122AC A C //,所以111222A B C A B C ∆∆∽,因此2111222S ||()||A B S A B =, 又由(1)中的111222p A B A B p =知111222||||A B p p A B =,故211222S p S p =. (20)【2014年安徽,理20,13分】如图,四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD ,四边形ABCD 为梯形,//AD BC ,且2AD BC =.过1A ,C ,D 三点的平面记为α,1BB 与α的交点为M .(1)证明:M 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若14A A =,2CD =,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小. 解:(1)∵1//BQ AA ,//BC AD ,BCBQ B =,1ADAA A =,∴平面//QBC 平面1A AD ,从而平面1A CD 与这两个平面的交线相互平行,即1QC A D //,故QBC ∆与1A AD ∆的对应边相互平行,于是1A QBC AD ∆∆∽,∴11BQ BQ 1BB 2BC AA AD ===,即Q 为1BB 的中点. (2)如图,连接QA ,QD .设1AA h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC a =,则2AD a =.11112323Q A AD V a h d ahd -=⋅⋅⋅⋅=,1211()3224Q ABCD a a V d h ahd -+=⋅⋅⋅=,∴1712Q A AD Q ABCD V V V ahd --=+=下,又111132A B C D ABCD V ahd -=,∴1111371121212A B C D ABCD V V V ahd ahd ahd -=-=-=下上,故117V V =上下.MD 1C 1B 1A 1A(3)解法一:如图,在ADC ∆中,作AE DC ⊥,垂足为E ,连接1A E ,又1DE AA ⊥,且1AEAA A =,∴1DE AEA ⊥平面,∴1DE A E ⊥,∴1AEA ∠为平面α和平面ABCD 所成二面角的平面角.∵ //AD BC ,2AD BC =, ∴2ADC ABC S S ∆∆=,又∵梯形ABCD 的面积为6,2DC =,∴4ADC S ∆=,4AE =,于是11tan 1AA AEA AE ∠==,14AEA π∠=,故平面α和底面ABCD 所成二面角的大小为4π.解法二:如图,以D 为原点,DA ,1DD 分别为x 轴和z 轴正方向,建立空间直角坐标系.设CDA θ∠=,因为22sin 62ABCD a a V θ+=⋅=,所以2sin a θ=,从而(2cos ,2sin ,0)C θθ,14(,0,4)sin A θ,设平面1A DC 的法向量为(,,1)n x y =,由1440sin 2cos 2sin 0DA n x DC n x y θθθ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 得sin ,cos x y θθ=-=,所以(sin ,cos ,1)n θθ=-,又平面ABCD 的法向量(0,0,1)m =, 所以2cos ,||||m n m n m n ⋅<>==⋅α和底面ABCD 所成二面角的大小为4π. (21)【2014年安徽,理21,13分】设实数0c >,整数1p >,*n N ∈.(1)证明:当1x >-且0x ≠时,()11px px +>+; (2)数列{}n a 满足11pa c >,111p n n np c a a a p p-+-=+,证明:11p n n a a c +>>. 解:(1)用数学归纳法证明①当2p =时,22(1)1212x x x x +=++>+,原不等式成立.②假设(2,*)p k k k N =≥∈时,不等式(1)1k x kx +>+成立,当1p k =+时,1(1)(1)(1)(1)(1)k k x x x x kx ++=++>++21(1)1(1)k x kx k x =+++>++ 所以1p k =+时,原不等式成立.综合①、②可得当1x >-且0x ≠时,对一切整数1p >,不等式()11px px +>+均成立. (2)解法一:先用数学归纳法证明1p n a c >.①当1n =时由假设11pa c >知1pn a c >成立.②假设(1,*)n k k k N =≥∈时,不等式1pk a c >成立,由111pn n n p c a a a p p-+-=+,易知0,*n a n N >∈, 当1n k =+时,1111(1)p k k p k k a p c c a a p p p a -+-=+=+-,由10p k a c >>得111(1)0p kcp p a -<-<-< 由(1)中的结论得111()[1(1)]1(1)p p k p p p k k k ka c c cp a p a p a a +=+->+⋅-=,因此1p k a c +>,即11p k a c +>,所以当1n k =+时,不等式1pn a c >也成立.综合①、②可得,对一切正整数n ,不等式1pn a c >均成立.再由111(1)n p n n a ca p a +=+-得11n na a +<,即1n n a a +<,综上所述,11,*p n n a a c n N +>>∈.解法二:设111(),p p p c f x x x x c p p--=+≥,则p x c ≥,并且11'()(1)(1)0p p p c p cf x p x p p p x ---=+-=->,1p x c >由此可见,()f x 在1[,)p c +∞上单调递增,因而当1p x c >时11()()p pf x f c c ==. ① 当1n =时由110pa c >>,即1p a c >可知121111111[1(1)]p p p c ca a a a a p p p a --=+=+-<, 并且121()pa f a c =>,从而112pa a c >>,故当1n =时,不等式11pn n a a c +>>成立.② 假设(1,*)n k k k N =≥∈时,不等式11pk k a a c +>>成立,则当1n k =+时11()()()pk k f a f a f c +>>,即有112pk k a a c ++>>,所以当1n k =+时原不等式也成立. 综合①、②可得,对一切正整数n ,不等式11pn n a a c +>>均成立.。

2014年高考理科数学安徽卷-答案

2014年高考理科数学安徽卷-答案
2014 年普通高等学校招生全国统一考试(安徽卷)
数学(理科)答案解析
第I卷
一、选择题
1.【答案】C
【解析】 z i z 1 i i (1 i) (i 1) (i 1) 2 ,故选:C.
i
i
【提示】把
z

z
代入
z i

i
z
,然后直接利用复数代数形式的乘除运算化简求值.
13.【答案】 a 3
【解析】由图易知 a0 1, a1 3 , a2 4 .
Cn1
1 a
3 , Cn2

1
2

a

4
,∴


n 3 a n(n 1) 2a2
4
,解得
a

3
.
【提示】求出 1
x a
n
的展开式的通项为 Tk1
z y ax 取得最大值表示直线 z y x 向上平移移动最大,a 表示直线斜率,有两种情况:a 1或 a 2 ,
故选:D. 【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线 y ax z 斜率的变化,从而
求出 a 的取值.
6.【答案】A
【解析】
8 ,故选:D.
【提示】分类讨论,利用 f (x) | x 1| | 2x a | 的最小值为 3,建立方程,即可求出实数 a 的值. 【考点】带绝对值的函数,函数最值的应用 10.【答案】A 【解析】设 a (1,0) ,b (0,1) .则 OP (cos,sin ) ,OQ ( 2, 2) ,所以曲线 C 是单位圆,区域 为圆
2 / 11

2014年安徽高考理科数学试题含答案(Word版)

2014年安徽高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21(B )23(C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽高考理科数学试题含答案(Word版)

2014年安徽高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽高考理科数学试题及答案

2014年安徽高考理科数学试题及答案

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i ·z = (A )-2 (B )-2i(C )2 (D )2i(2)“x <0”是ln (x+1)<0的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34(B )55(C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21- (7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足OQ =2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R(C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若1z i =+,则zi z i+⋅= (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln(1)0x +<的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1(6)设函数f(x)(x ∈R )满足()()sin f x f x x π+=+,当0≤x ≤π时,()0f x =,则)623(πf = (A )21(B )23(C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21(D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足OQ =2( a + b ).曲线C={ P |OP =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| PQ | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

二.填空题:本大题共5小题,每小题5分,共25分。

把答案填在答题卡的相应位置。

(11)若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所的图像关于y 轴对称,则ϕ的最小正值是 .(12)数列{}n a 是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= .(13)设a≠0,n是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为.2210n n x a x a x a a Λ+++若点A i (i ,a i )(i=0,1,2)的位置如图所示,则a= .(14)若F 1,F 2分别是椭圆E :1222=+by x (0<b<1)的左、右焦点,过点F 1的直线交椭圆E 于A 、B 两点.若B F AF 113=,x AF ⊥2轴,则椭圆E 的方程为 .(15)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成.记S=x 1`y 1+x 2`y 2+x 3`y 3+x 4`y 4+x 5`y 5,S min 表示S 所有可能取值中的最小值.则下列命题正确的是 (写出所有正确命题的编号). ①S 有5个不同的值 ②若a ⊥b ,则S min 与a 无关 ③若a ∥b ,则S min 与b 无关 ④若a b 4>,则Smin>0⑤若a b 2=,Smin=28a ,则a 与b 的夹角为4π 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. (16)(本小题满分12分)设△ABC 的内角A,B,C 所对边的长分别是a,b,c,且b=3,c=1,A=2B. (Ⅰ)求a 的值; (Ⅱ)求⎪⎭⎫⎝⎛+4sin πA 的值. (17)(本小题满分 12 分)甲乙恋人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完 5 局仍未初相连胜,则判定获胜局数多者赢得比赛。

假设每局甲获胜的概率为 32,乙获胜的概率为31,各局比赛结果相互独立。

(Ⅰ)求甲在 4 局以内(含 4 局)赢得比赛的概率;(Ⅱ)记 X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望)。

(18)(本小题满分 12 分)设函数⎰)(x =1+(1+ a )X-x 2-x3,其中 a > 0 .(Ⅰ)讨论 ⎰)(x 在其定义域上的单调性;(Ⅱ)当x ∈[0,1] 时,求⎰)(x 取得最大值和最小值时的x 的值。

(19)(本小题满分 13 分)如图,已知两条抛物线2111:2(0)E y p x p =>和2222:2(0)E y p x p =>,过原点O 的两条直线1l 和2l ,1l 与12,E E 分别交于12,A A 两点,2l 与12,E E 分别交于12,B B 两点。

(Ⅰ)证明:1122//A B A B(Ⅱ)过O 作直线l (异于1l ,2l )与12,E E 分别交于12,C C 两点。

记111A B C ∆与222A B C ∆的面积分别为12,S S 求12S S 的值。

(20)(本小题满分 13 分)如果,四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD 。

四边形ABCD 为梯形,AD // BC ,且AD = 2BC . 过1,,A C D 三点的平面记α,1BB 与α的交点为Q .(Ⅰ)证明:Q 为1BB 的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若14,2AA CD ==,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小。

(21)(本小题满分 13 分)设实数0c >,整数*1,p n N >∈(Ⅰ)证明:当1x >-且0x ≠时,11px px +>+;(Ⅱ)数列{}n a 满足11pa c >,111p n n n p ca a a p p-+-=+,证明:p n n c a 11a >>+参考答案一、选择题:1.C2.B3.B4.D5.D6.A7.A8.C9.D10.A二、填空题:11.38π 12. 1 13. 314. 22312x y += 15. ②④三、解答题:16.(本小题满分12分) 解:(Ⅰ)因为2A B =,所以sin sin 22sin cos A B B B ==由正、余弦定理得22222a c b a b ac+-=⋅因为3,1b c ==,所以212,a a ==(Ⅱ)由余弦定理得22291121cos 263b c a A bc +-+-===-由于0A π<<,所以sin 3A ===故14sin()sin coscos sin()44432326A A A πππ-+=+=⨯+-⨯= 17.(本小题满分12分)解:用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则21(),(),1,2,3,4,533k k P A P B k ===(Ⅰ)121231234()()()()P A P A A P B A A P A B A A =++121231234()()()()()()()()()P A P A P B P A P A P A P B P A P A =++22221221256()()()33333381=+⨯+⨯⨯=(Ⅱ)χ的可能取值为2,3,4,5121212125(2)()()()()()()9P P A A P B B P A P A P B P B χ==+=+=123123(3)()()P P B A A P A B B χ==+1231232()()()()()()9P B P A P A P A P B P B =+=12341234(4)()()P P A B A A P B A B B χ==+1234123410()()()()()()()()81P A P B P A P A P B P A P B P B =+=8(5)1(2)(3)(4)81P P P P χχχχ==-=-=-==故χ的分布列为234599818181E χ=⨯+⨯+⨯+⨯=18.(本小题满分12分) 解:(Ⅰ)()f x 的定义域为2(,),()123f x a x x '-∞+∞=+--令()0f x '=,得1212x x x x ==<所以12()3()()f x x x x x '=---当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '> 故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增。

(Ⅱ)因为0a >,所以120,0x x <>① 当4a ≥时,21x ≥由(Ⅰ)知,()f x 在[0,1]上单调递增。

所以()f x 在0x =和1x =处分别取得最小值和最大值② 当04a <<时,21x <由(Ⅰ)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减 所以()f x在213x x -+==处取得最大值又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =处和1x =处同时取得最小值; 当14a <<时,()f x 在0x =处取得最小值。

相关文档
最新文档