高考数学第十章 第三节

合集下载

高二数学书第十章知识点

高二数学书第十章知识点

高二数学书第十章知识点第一节:平面解析几何1. 直线的方程直线的一般方程为Ax+By+C=0,其中A、B、C为实数且A与B不同时为0。

直线的斜率为-m,其中m为A/B的倒数。

通过两点求直线的方程可使用点斜式、两点式或截距式。

2. 圆的方程圆的标准方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径。

通过已知条件求圆的方程可使用圆的一般方程、直径式或三点式。

第二节:立体几何1. 空间直线和平面的位置关系空间直线与平面的位置关系可分为相交、平行或重合。

判断直线与平面的关系可使用直线的一般方程和平面的一般方程,通过代入坐标判断是否成立。

2. 空间几何体的计算常见的空间几何体有球、柱体、锥体等。

计算这些空间几何体的体积、表面积或侧面积时,需根据具体情况选择相应的公式进行求解。

第三节:概率与统计1. 事件与概率事件是指试验可能出现的结果,概率是指事件发生的可能性大小。

通过对事件进行统计和分析,可以计算事件发生的概率。

2. 事件的运算事件的运算包括并、交、差以及对立等运算。

通过运用集合的运算规律,可以简化事件之间的关系,并求解一系列相关概率问题。

3. 随机变量与概率分布随机变量是指试验结果的数值描述,概率分布是指随机变量取值与其对应概率的分布情况。

通过分析随机变量的概率分布,可以推断与预测事件的发生。

第四节:数理统计1. 抽样调查抽样调查是指从总体中选取一部分样本进行调查和研究。

通过合理的抽样方法和样本量,可以从有限的样本中推断出总体的统计规律。

2. 统计指标和统计图形统计指标包括均值、中位数、众数、标准差等,用于描述数据分布的中心位置、离散程度和数据的特征。

统计图形包括直方图、折线图、饼图等,能直观地展示数据的分布和趋势。

总结:高二数学书第十章主要介绍了平面解析几何、立体几何、概率与统计以及数理统计等相关的知识点。

通过学习这些知识,我们可以更好地理解和应用在实际问题中。

高考数学总复习配套课件:第10章《概率》10-3几何概型

高考数学总复习配套课件:第10章《概率》10-3几何概型

为3的正方体内自由飞行,若蜜蜂在飞行
过程中始终保持与正方体6个表面的距离
均A.2大47 于1,称其为“安全B.19飞行”,则蜜蜂
“4安全飞行”的概率为( 1 )
C.9
D.27
解析:蜜蜂如果能“安全飞行”,则蜜蜂飞行过程中应在一个中心
与原正方体中心重合,且在棱长为 1 的正方体内,该正方体的体积 V1= 13=1,而原正方体的体积 V=33=27,故所求概率 P=VV1=217.
【思想方法】 转化与化归思想在几何概 型中的应用
【典例】 (2012年高考辽宁卷)在长为12
cm的线段AB上任取一点C,现作一矩形, 邻A.16边长分别等于线段ABC.13 ,CB的长,则该
矩2形面积大于20 cm2的概4 率为( )
C.3
D.5
【解析】 设 AC=x,则 BC=12-x,所以 x(12-x)=20,解得 x
电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小 波周末不在家看书的概率为________.
[解析] 设 A={小波周末去看电影},B={小波周末去打篮球},C ={小波周末在家看书},D={小波周末不在家看书},如图所示,则 P(D) =1-π122-π π142=1136.
[答案]
13 16
1.(2013 年太原模拟)若实数 a,b 满足 a2+b2≤1,则关于 x 的方程
x2-ax+34b2=0 有实数根的概率是(
)
1
1
A.6
B.4
1 C.3
D.1
解析:由原方程有实根得a2-3b2≥0⇔(a- b)(a+b)≥0,则整个基本事件空间可用点 (a,b)所在图形的面积来度量,为以原点 为圆心,以1为半径的圆,事件“方程有 实根”可用不等式组对应平面区域的面积

2025年高考数学一轮复习 第十章 -第二节 -第3课时 残差分析与决定系数【课件】

2025年高考数学一轮复习 第十章 -第二节 -第3课时 残差分析与决定系数【课件】
第二节 数据分析——回归模型及其应用
第3课时 残差分析与决定系数
题型一 残差分析
典例1 树木根部半径与树木的高度呈正相关,即树木根部越粗,树木的高度也就越高.某
块山地上种植了树木,某农科所为了研究树木的根部半径与树木的高度之间的关系,
从这些地块中用简单随机抽样的方法抽取6棵树木,调查得到树木根部半径
15
20
25
30

7.25
8ห้องสมุดไป่ตู้12
8.95
9.90
10.9
11.8
(1)作出散点图并求回归直线方程;
解 画出散点图,如图所示.
样本点分布在一条直线附近,与具有线性相
关关系.
1
6
由表中数据,得 = × (5 + 10 + 15 + 20
+ 25 + 30) = 17.5,
1
6
= × (7.25 + 8.12 + 8.95 + 9.90 + 10.9

∑ −ෝ

题型二 决定系数 = − =

∑ −
=
典例2 已知某种商品的价格(单位:元/件)与需求量(单位:件)之间的关系有如下
五组数据:

14
16
18
20
22

12
10
7
5
3
求关于的回归直线方程,并说明回归模型拟合效果的好坏.
1
5
1
5
解 = × 14 + 16 + 18 + 20 + 22 = 18, = × 12 + 10 + 7 + 5 + 3 = 7.4,

2015届高考数学总复习 第十章 第三节坐标系课时精练试题 文(含解析)

2015届高考数学总复习 第十章 第三节坐标系课时精练试题 文(含解析)

第三节 坐 标 系1.(2013·安徽卷改编)在极坐标系中,ρ∈R,0≤θ<2π,则圆ρ=2cos θ垂直于极轴的两条切线方程分别为____________.解析:在极坐标系中圆ρ=2cos θ的图形如图所示,与圆ρ=2cos θ垂直于极轴的两条切线方程分别为θ=π2(ρ∈R )和ρcos θ=2.答案:θ=π2(ρ∈R ),ρcos θ=22.(2013·茂名二模)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(cos θ+sin θ)=1与ρ(cos θ-sin θ)=-1的交点的极坐标为____________.解析:两直线的直角坐标方程分别为x +y -1=0,x -y +1=0,它们的交点的直角坐标为(0,1),化为极坐标为⎝⎛⎭⎪⎫1,π2.答案:⎝⎛⎭⎪⎫1,π23.设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为____________.解析:∵⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,∴⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x ,得y ′=3sin 2x ′.答案:y ′=3sin 2x ′4.(2013·汕头二模)已知直线的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=22, 则极点到该直线的距离是________.解析:将直线的极坐标方程化为直角坐标方程,得x +y -1=0,极点(0,0)也就是原点到该直线的距离为d =|0-0-1|2=22.答案:225.(2013·梅州二模)在极坐标系中,已知P 为方程ρ(cos θ+sin θ)=1所表示的曲线上一动点,Q ⎝⎛⎭⎪⎫2,π3.则|PQ |的最小值为____________.解析:ρ(cos θ+sin θ)=1表示直线,其直角坐标方程为x +y -1=0,点Q ⎝ ⎛⎭⎪⎫2,π3化为直角坐标是Q (1,3),|PQ |的最小值即为点Q 到直线的距离,即|1+3-1|2=62.答案:626.在极坐标系中,已知两点A ,B 的极坐标分别为⎝⎛⎭⎪⎫3,π3,⎝ ⎛⎭⎪⎫4,π6,则△AOB (其中O为极点)的面积为________.答案:3 7. (2013·佛山、江门二模)在极坐标系中,设曲线C 1:ρ=2sin θ与C 2:ρ=2cos θ的交点分别为A 、B ,则线段AB 的垂直平分线的极坐标方程为__________.解析:由⎩⎪⎨⎪⎧ρ=2sin θ,ρ=2cos θ,结合图形可得交点的极坐标为A (0,0),B ⎝ ⎛⎭⎪⎫2,π4,化为直角坐标为A (0,0), B (1,1),可得线段AB 的垂直平分线的直角坐标方程为x +y =1,化为极坐标系下的方程为ρsin θ+ρcos θ=1.答案:ρsin θ+ρcos θ=1⎝ ⎛⎭⎪⎫或写成ρsin ⎝ ⎛⎭⎪⎫θ+π4=228.在极坐标系中,直线θ=π3(ρ∈R )与圆ρ=4cos θ+43sin θ交于A ,B 两点,则|AB |=________.答案:89.( 2013·陕西西安五校第三次联考)在极坐标系中,曲线ρ=4cos ⎝⎛⎭⎪⎫θ-π3与直线ρsin ⎝ ⎛⎭⎪⎫θ+π6=1的两个交点之间的距离为________.解析:曲线ρ=4cos ⎝⎛⎭⎪⎫θ-π3的直角坐标方程为x 2+y 2-2x -23y =0,该曲线是圆,圆心是(1,3),半径是2;直线ρsin ⎝⎛⎭⎪⎫θ+π6=1的直角坐标方程为x +3y -2=0,圆心到该直线的距离为d =|1+3×3-2|2=1,所以,两交点之间的距离为222-12=2 3.答案:2 310.极坐标方程4ρsin 2θ2=5所表示曲线的直角坐标方程是__________.解析:因为sin2θ2=1-cos θ2,所以原方程变为2ρ(1-cos θ)=5,即2ρ-2ρcos θ=5,将互化公式ρ2=x 2+y 2,x =ρcos θ代入,化简得y 2=5x +254.答案:y 2=5x +25411.(2012·湖南卷) 在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________________.解析:曲线C 1的方程可化为2x +y -1=0,与x 轴的交点为⎝ ⎛⎭⎪⎫22,0,曲线C 2的方程可化为x 2+y 2=a 2,把交点⎝⎛⎭⎪⎫22,0代入得⎝ ⎛⎭⎪⎫222+02=a 2,又a >0,所以a =22.答案:2212.极坐标系内,点⎝⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为________.答案:⎝⎛⎭⎪⎫22,π413.(2013·河南开封第二次质检23改编)已知极点与坐标原点重合,极轴与x 轴非负半轴重合,两个坐标系单位长度相同,已知直线l :⎩⎪⎨⎪⎧x =-1+t cos α,y =1+t sin α(t 为参数),曲线C 的极坐标方程:ρ=4cos θ.若直线l 的斜率为-1,则直线l 与曲线C 交点的极坐标为_______________.解析:因为直线l 的斜率为-1,所以cos α=-22,sin α=22,所以直线l 的普通方程为y =-x ,①由ρ=4cos θ得ρ2=4ρcos θ,由互化公式得x 2+y 2=4x ,②联立①②解得交点坐标为A (0,0),B (2,-2),化成极坐标为A (0,0),B ⎝⎛⎭⎪⎫22,7π4. 答案:A (0,0),B ⎝⎛⎭⎪⎫22,7π414.在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎪⎫ θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解析:在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,所以圆C 的半径为PC = 22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.。

2015届高考数学总复习第十章 第三节排列与组合(二)课件 理

2015届高考数学总复习第十章 第三节排列与组合(二)课件 理
【例 3】 无3点共线. 平面上有 9 个点,其中有 4 个点共线,除此外
(1)用这9个点可以确定多少条直线? (2)用这9个点可以确定多少个三角形?
(3)用这9个点可以确定多少个四边形?
解析:(1)确定一条直线需要两个点,因为有4个点共线,
所以这9个点所确定直线的条数为
第十章
第三节 排列与组合(二)
用定义法求组合数
【例1】 (1)方程x+y+z=9共有n组正整数解,则n等于
_____________. (2)10 名战士站成一排,从中任选 3 个互不相邻的战士去
执行一项任务,则不同的选派方法的种数是_____________.
解析: (1) 将 9 个 1 摆成一个横排,在除两端外侧的 8 个空
解析:依据题意,至少有 1 个文科学生和 1 个理科学生借数 学,分为三大类: ①仅有 1 个文科学生借数学,则对另外 3 本数学书可能只有 1 个理科学生借,也可能有 2 个理科学生借,还可能有 3 个理科 1 2 3 学生借,所以共有 C1 (C + C + C 3 4 4 4)种方法; ②有 2 个文科学生借数学,则对另外 2 本数学书可能只有 1 1 2 个理科学生借,也可能有 2 个理科学生借,所以共有 C2 (C + C 3 4 4) 种方法; ③3 个文科学生都借数学,另一本数学借给 1 个理科学生, 有 C1 4种方法. 1 2 3 2 1 2 1 由分类计数原理, 共有 C1 (C + C + C ) + C (C + C ) + C 3 4 4 4 3 4 4 4=76 种.
3 确定三角形的个数为 C3 9-C4=80.
2 C2 9-C4+1=31.
(2)确定一个三角形需要三个不共线的点,所以这9个点
(3)确定一个四边形需要四个不共线的点,所以这9个点

第10章 第3节 事件的相互独立性及条件概率 课件-山东省滕州市第一中学2022届高考数学一轮复习

第10章 第3节 事件的相互独立性及条件概率 课件-山东省滕州市第一中学2022届高考数学一轮复习
是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地
中恰有一个地方降雨的概率为 C
A.0.2
B.0.3
C.0.38
D.0.56
解析 设甲地降雨为事件A,乙地降雨为事件B,
则两地恰有一地降雨为 A B + A B,
∴P(A B + A B)=P(A B )+P( A B) =P(A)P( B )+P( A )P(B)

1 1 1 15

=[1-P( A2 )·P( A3 )]P(A1)=1-4×4×2=32.









9
例2 (1)(2020·葫芦岛期末)对标有不同编号的6件正品和4件次品的产品进行检测,
不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是 D
3
A.5
2
B.5
一等品,求取走的也是一等品的概率.







13
练习
1.某电视台的夏日水上闯关节目一共有三关,第一关与第二关的过关率分别
2 3
为3,4.只有通过前一关才能进入下一关,每一关都有两次闯关机会,且是否通
过每关相互独立.一选手参加该节目,则该选手能进入第三关的概率为 C
1
2
5
1
A.2
B.3
C.6
D.12
则 P(B)=1-P( B )=1-[1-P(A1)][1-P(A2)]=1-(1-0.1)(1-0.2)=1-0.9×0.8=0.28.







解由题意知,设备在一天的运转中需要调整的部件个数可能为0,1,2,3.

(课件):高三数学第10章第三节

(课件):高三数学第10章第三节

思考感悟
几何概型与古典概型的区别是什么?
提示:几何概型中的基本事件是无限多个,而
古典概型中的基本事件是有限个.
课前热身 1.(2010年高考湖南卷)在区间[-1,2]上随机取 一个数x,则|x|≤1的概率为________.
2 答案: 3
2.如图,矩形长为6,宽为4,在矩形内随机
地撒300颗黄豆,数得落在椭圆外的黄豆数为96
【解】 (1)如图,点 P 所在的区域为正方形 ABCD 的内部(含边界), 满足(x-2)2+(y-2)2≤4 的点的区域为以(2,2)为圆心, 为半径的圆面(含 2 边界). 1 π×22 4 π ∴所求的概率 P1= = . 4× 4 16
(2)满足 x,y∈Z,且|x|≤2,|y|≤2 的点(x,y) 有 25 个, 满足 x, y∈Z, 且(x-2) +(y-2)≤4 的点(x,y)有 6 个, 6 ∴所求的概率 P2= . 25
2 解析:由几何概型的知识知 P= =0.004. 500
答案:0.004
4.如图所示,在直角坐标系内,射线OT落在 30°角的终边上,任作一条射线OA,则射线 OA落在∠yOT内的概率为________.
1 答案: 6
考点探究·挑战高考
考点突破
与长度有关的几何概型 如果一次试验中所有可能结果和某个事件A包含 的结果(基本事件)都对应一个长度,如线段长、 时间区间、距离路程等,那么只需求出各自对 应的长度,然后运用几何概型的概率计算公式 求事件A发生的概率.
会面问题中的概率
本类问题常涉及与面积有关的几何概型,难点
在于怎样构造出面积,或者建立怎样的变量间
的联系.
例3
两人约定在20∶00到21∶00之间相见,并

高考数学复习考点知识讲解课件3 不等式性质 一元二次函数 方程和不等式

高考数学复习考点知识讲解课件3 不等式性质 一元二次函数 方程和不等式

+c(a>0)的
图象
ax2+bx+c =0(a>0)的

有两个不相 等的实数根 x1,x2(x1<x2)
有两个相等 的实数根 x1 =x2=-2ba
没有实数根
— 返回 —
— 6—
(新教材) 高三总复习•数学
判别式 ax2+bx+ c>0(a>0)的
解集 ax2+bx+ c<0(a>0)的
解集
Δ>0 {x_|x_<_x_1_或__x_>_x_2}
— 2—
— 返回 —
基础知识夯实
01
(新教材) 高三总复习•数学
知识梳理 1.两个实数比较大小的方法
(1)作差法:aa--bb>=00⇔⇔aa_____>=_____bb,, a-b<0⇔a___<__b.
aba>∈1Ra∈,Rb>,0b,>0⇔a___>___b (2)作商法ab=1⇔a__=____ba,b≠0,
— 返回 —
— 8—
(新教材) 高三总复习•数学
— 返回 —
诊断自测 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若ab>1,则 a>b.( × ) (2)若 ab>0,则 a>b⇔1a<1b.( √ ) (3)若不等式 ax2+bx+c>0 的解集是(-∞,x1)∪(x2,+∞),则方程 ax2+bx+c=0 的 两个根是 x1 和 x2.( √ ) (4) 一 元 二 次 不 等 式 ax2 + bx + c≤0 在 R 上 恒 成 立 的 条 件 是 a<0 且 Δ = b2 - 4ac≤0.( √ )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节用样本估计总体1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图的优点茎叶图的优点是不但可以保留所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便.[注意]茎叶图中茎是指中间的一列数,叶是从茎的旁边生长出来的数.4.样本的数字特征(1)众数、中位数、平均数(2)标准差、方差①标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = 1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. ②方差:标准差的平方s 2s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x i (i =1,2,3,…,n )是样本数据,n是样本容量,x 是样本平均数.1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在频率分布直方图中,小矩形的高表示频率.( ) (2)频率分布直方图中各个长方形的面积之和为1.( )(3)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一次.( ) (4)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (5)一组数据的方差越大,说明这组数据的波动越大.( ) 答案:(1)× (2)√ (3)× (4)√(5)√2.如图是某班8位学生诗词比赛得分的茎叶图,那么这8位学生得分的众数和中位数分别为________.解析:依题意,结合茎叶图,将题中的数由小到大依次排列得到:86,86,90,91,93,93,93,96,因此这8位学生得分的众数是93,中位数是91+932=92.答案:93 923.(教材习题改编)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).答案:484.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.解析:5个数的平均数x=4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1考点一茎叶图(重点保分型考点——师生共研)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解:(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.[解题师说]某良种培育基地正在培育一小麦新品种A ,将其与原有的一个优良品种B 进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下.品种A :357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454.品种B :363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430.(1)作出数据的茎叶图;(2)通过观察茎叶图,对品种A 与B 的亩产量及其稳定性进行比较,写出统计结论. 解:(1)画出茎叶图如图所示:(2)通过观察茎叶图可以看出:①品种A 的亩产平均数(或均值)比品种B 高;②品种A的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差.考点二频率分布直方图(重点保分型考点——师生共研)(2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.[学审题](1)分数小于70的频率即为其概率的估计值;(2)由于分数小于40的学生人数已知,因此要求[40,50)内的人数,只要求出小于50的人数或频率即可;(3)“样本中分数不小于70的男女生人数相等”,这是解题的关键,可先计算出分数不小于70的总人数,问题便迎刃而解.解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计值为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,故样本中分数小于50的频率为0.1,故分数在区间[40,50)内的人数为100×0.1-5=5.所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60, 女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.[解题师说]某网络营销部门随机抽查了某市200名网友在2017年11月11日的网购金额,所得数据如下表:已知网购金额不超过3千元与超过3千元的人数比恰为3∶2.(1)试确定x ,y ,p ,q 的值,并补全频率分布直方图(如图);(2)该营销部门为了了解该市网友的购物体验,从这200名网友中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中确定5人进行问卷调查,若需从这5人中随机选取2人继续访谈,则此2人来自不同群体的概率是多少?解:(1)根据题意有⎩⎪⎨⎪⎧16+24+x +y +16+14=200,16+24+x y +16+14=32,解得⎩⎪⎨⎪⎧x =80,y =50,∴p =0.4,q =0.25.补全频率分布直方图如图所示.(2)根据题意,抽取网购金额在(1,2]内的人数为 2424+16×5=3(人),记为:a ,b ,c . 抽取网购金额在(4,5]内的人数为1624+16×5=2(人),记为:A ,B . 则从这5人中随机选取2人的选法为:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B )共10种.记2人来自不同群体的事件为M ,则M 中含有(a ,A ),(a ,B ),(b ,A ),(b ,B ),(c ,A ),(c ,B )共6种.∴P (M )=610=35,故此2人来自不同群体的概率为35.考点三样本的数字特征(题点多变型考点——追根溯源)样本的数字特征常与频率分布直方图、茎叶图等知识交汇命题.常见的命题角度有:(1)样本的数字特征与频率分布直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题交汇.[题点全练]角度(一)样本的数字特征与频率分布直方图交汇1.(2018·武昌调研)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.解:(1)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.(2)由频率分布直方图知,100位居民每人月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12.由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为800 000×0.12=96 000.(3)∵前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,∴2.5≤x<3.由0.3×(x-2.5)=0.85-0.73,解得x=2.9.因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.[题型技法]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.角度(二) 样本的数字特征与茎叶图交汇2.(2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7解析:选A 由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3.3.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则7个剩余分数的方差为________.解析:由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.答案:367[题型技法](1)在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.(2)茎叶图既可以表示两组数据,也可以表示一组数据,用它表示的数据是完整的数据,因此可以从茎叶图中看出数据的众数(数据中出现次数最多的数)、中位数(中间位置的一个数,或中间两个数的平均数)等.角度(三) 样本的数字特征与优化决策问题交汇4.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:( ) A .甲 B .乙 C .丙D .丁解析:选C 由表格中数据可知,乙、丙平均环数最高,但丙方差最小,说明成绩好,且技术稳定,选C.[题型技法]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[冲关演练]1.(2018·长沙模拟)空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士从当地某年的AQI 记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI 大于100的天数为________.(该年为365天)解析:该样本中AQI 大于100的频数为4,频率为25,以此估计此地全年AQI 大于100的频率为25,故此地该年AQI 大于100的天数约为365×25=146.答案:1462.某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.(2)估计这次语文成绩的平均分x=55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100名学生语文成绩的平均分为73分.(3)分别求出语文成绩在分数段[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为5,20,40,25.所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人).(一)普通高中适用作业A级——基础小题练熟练快1.在如图所示一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与中位数之和为61,则被污染的数字为() A.1B.2C.3 D.4解析:选B由图可知该组数据的极差为48-20=28,则该组数据的中位数为61-28=33,易得被污染的数字为2.2.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:选D由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确,故D错误.3.(2018·宝鸡质检)对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为()A.5 B.7C.10 D.50解析:选D根据题中的频率分布直方图可知,三等品的频率为(0.012 5+0.025 0+0.012 5)×5=0.25,因此该样本中三等品的件数为200×0.25=50.4.从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则()A.x甲<x乙,m甲>m乙B.x甲<x乙,m甲<m乙C.x甲>x乙,m甲>m乙D.x甲>x乙,m甲<m乙解析:选B 由茎叶图知m 甲=22+182=20,m 乙=27+312=29,∴m 甲<m 乙; x 甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516, x 乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716,∴x 甲<x 乙.5.(2018·内江模拟)某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如图:分组为[11,20),[20,30),[30,39]时,所作的频率分布直方图是( )解析:选B 由直方图的纵坐标是频率/组距,排除C 和D ;又第一组的频率是0.2,直方图中第一组的纵坐标是0.02,排除A ,故选B.6.(2018·邢台模拟)样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其方差为( )A.105B.305C. 2 D .2解析:选D 依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2.7.(2018·石家庄质检)设样本数据x 1,x 2,…,x 2 018的方差是4,若y i =2x i -1(i =1,2,…,2 018),则y 1,y 2,…,y 2 018的方差为________.解析:设样本数据的平均数为x ,则y i =2x i -1的平均数为2x -1,则y 1,y 2,…,y 2 018的方差为12 018[(2x 1-1-2x +1)2+(2x 2-1-2x +1)2+…+(2x 2 018-1-2x +1)2]=4×12 018[(x 1-x )2+(x 2-x )2+…+(x 2 018-x )2]=4×4=16. 答案:168.(2018·广州模拟)为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________.解析:设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.037 5+0.012 5)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =5+15+250.75=60.答案:609.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)频率分布直方图中x 的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.解析:(1)由频率分布直方图中各小矩形的总面积为1,得(0.001 2+0.002 4×2+0.003 6+x +0.006 0)×50=1,解得x =0.004 4.(2)用电量在[100,250)内的频率为(0.003 6+0.004 4+0.006 0)×50=0.7,故用电量落在区间[100,250)内的户数为100×0.7=70.答案:(1)0.004 4 (2)7010.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:解析:由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,所以方差s2=15(1+0+0+1+0)=25.答案:2 5B级——中档题目练通抓牢1.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④解析:选B∵x甲=26+28+29+31+315=29,x乙=28+29+30+31+325=30,∴x甲<x乙.又s2甲=9+1+0+4+45=185,s2乙=4+1+0+1+45=2,∴s甲>s乙.故可判断结论①④正确.2.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为()A.9 B.10C.11 D.12解析:选B不妨设样本数据为x1,x2,x3,x4,x5,且x1<x2<x3<x4<x5,则由样本平均数为7,样本方差为4,知(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20.若5个整数的平方和为20,则这5个整数的平方只能在0,1,4,9,16中选取(每个数最多出现2次),当这5个整数的平方中最大的数为16时,分析可知,总不满足和为20;当这5个整数的平方中最大的数为9时,0,1,1,9,9这组数满足要求,此时对应的样本数据为x1=4,x2=6,x3=7,x4=8,x5=10;当这5个整数的平方中最大的数不超过4时,总不满足要求,因此不存在满足条件的另一组数据.故选B.3.气象意义上从春季进入夏季的标志为“连续5天的日平均温度均不低于22 ℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,均值为24;③丙地:5个数据中有一个是32,均值为26,方差为10.8.则满足进入夏季标志的地区有()A.0个B.1个C.2个D.3个解析:选C①甲地:因为5个数据的中位数为24,众数为22,所以22至少出现两次,若有一天比22小,则24不可能为中位数,故甲地肯定进入夏季;②乙地:5个数据的中位数为27,均值为24,当5个数据为19,20,27,27,27时,其连续5天的日平均温度有低于22 ℃的,故不确定;③丙地:5个数据中有一个是32,均值为26,若有低于22,则取21,此时方差就超出了10.8,可知其连续5天的日平均温度均不低于22 ℃.故满足进入夏季标志的地区有甲、丙两地.故选C.4.一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为________.解析:由频率分布直方图可得第一组的频率是0.08,第二组的频率是0.32,第三组的频率是0.36,则中位数在第三组内,估计样本数据的中位数为10+0.10.36×4=100 9.答案:100 95.甲、乙两名同学在7次数学测试中的成绩如茎叶图所示,其中甲同学成绩的众数是85,乙同学成绩的中位数是83,则成绩较稳定的是________.解析:根据众数及中位数的概念易得x=5,y=3,故甲同学成绩的平均数为78+79+80+85+85+92+967=85,乙同学成绩的平均数为72+81+81+83+91+91+967=85,故甲同学成绩的方差为17×(49+36+25+49+121)=40,乙同学成绩的方差为17×(169+16+16+4+36+36+121)=3987>40,故成绩较稳定的是甲.答案:甲6.(2018·张掖重点中学联考)张掖市旅游局为了了解大佛寺景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,问题是“大佛寺是几A级旅游景点?”统计结果如下图表.(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人;(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.解:(1)由频率表中第4组数据可知,第4组总人数为90.36=25,再结合频率分布直方图可知n=250.025×10=100,所以a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,x=18100×0.02×10=0.9,y=3100×0.015×10=0.2.(2)因为第2,3,4组回答正确的共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:1854×6=2;第3组:2754×6=3;第4组:954×6=1.(3)设第2组的2人为A 1,A 2;第3组的3人为B 1,B 2,B 3;第4组的1人为C 1. 则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1),共15种,其中恰好没有第3组人的结果为:(A 1,A 2),(A 1,C 1),(A 2,C 1),共3种,所以所抽取的人中恰好没有第3组人的概率P =315=15. 7.为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a 的值;(2)估计这种植物果实重量的平均数x 和方差s 2(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于32.5克的即为优质果实.若所取样本容量n =40,从该样本分布在[27.5,32.5)和[47.5,52.5]的果实中,随机抽取2个,求抽到的都是优质果实的概率.解:(1)组距为d =5,由5×(0.020+0.040+0.075+a +0.015)=1,得a =0.050. (2)各组中值和相应的频率依次为:所以x =30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40, s 2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.(3)由已知,果实重量在[27.5,32.5)和[47.5,52.5]内的分别有4个和3个,分别记为A 1,A 2,A 3,A 4和B 1,B 2,B 3,从中任取2个的取法有:A 1A 2,A 1A 3,A 1A 4,A 1B 1,A 1B 2,A 1B 3,A 2A 3,A 2A 4,A 2B 1,A 2B 2,A 2B 3,A 3A 4,A 3B 1,A 3B 2, A 3B 3,A 4B 1,A 4B 2,A 4B 3,B 1B 2,B 1B 3,B 2B 3,共21种取法,其中都是优质果实的取法有B 1B 2,B 1B 3,B 2B 3,共3种取法, 所以抽到的都是优质果实的概率P =321=17. C 级——重难题目自主选做1.某冷饮店只出售一种饮品,该饮品每一杯的成本价为3元,售价为8元,每天售出的第20杯及之后的饮品半价出售.该店统计了近10天的饮品销量,如图所示,设x 为每天饮品的销量,y 为该店每天的利润.(1)求y 关于x 的表达式;(2)从日利润不少于96元的几天里任选2天,求选出的这2天日利润都是97元的概率. 解:(1)由题意,得y =⎩⎪⎨⎪⎧(8-3)x ,0≤x ≤19,x ∈Z ,(8-3)×19+(4-3)×(x -19),x >19,x ∈Z , 即y =⎩⎪⎨⎪⎧5x ,0≤x ≤19,x ∈Z ,x +76,x >19,x ∈Z.(2)由(1)可知,日销售量不少于20杯时,日利润不少于96元. 日销售量为20杯时,日利润为96元; 日销售量为21杯时,日利润为97元.从条形统计图可以看出,日销售量为20杯的有3天,日销售量为21杯的有2天. 日销售量为20杯的3天,记为a ,b ,c ,日销售量为21杯的2天,记为A ,B ,从这5天中任取2天,包括(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),共10种情况.其中选出的2天日销售量都为21杯的情况只有1种,故所求概率为110.2.在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以最佳的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如下表:(2)从前7场平均分低于6.5分的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;(3)请依据前7场比赛的数据,预测冠亚军选手,并说明理由.解:(1)由表中的数据,我们可以分别计算运动员A和B前7场比赛积分的平均数和方差,作为两运动员比赛的成绩及衡量两运动员稳定情况的依据.运动员A的平均分x1=17×21=3,方差s21=17×[(3-3)2+(2-3)2×4+(4-3)2+(6-3)2]=2;运动员B的平均分x2=17×28=4,方差s22=17×[(1-4)2×2+(3-4)2+(5-4)2+(10-4)2+(4-4)2×2]=8.从平均分和积分的方差来看,运动员A的平均分及积分的方差都比运动员B的小,也就是说,前7场比赛,运动员A的成绩优异,而且表现较为稳定.(2)由表可知,平均分低于6.5分的运动员共有5个,其中平均分低于5分的运动员有3个,分别为A,B,C,平均分不低于5分且低于6.5分的运动员有2个,分别为D,E.从这5个运动员中任取2个共有10种情况:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,其中至少有1个运动员平均分不低于5分的有7种情况. 设至少有1个运动员平均分不低于5分为事件A ,则P (A )=710. (3)尽管此时还有4场比赛没有进行,但这里我们可以假定每位选手在各自的11场比赛中发挥的水平大致相同,因而可以把前7场比赛的成绩看作总体的一个样本,并由此估计每位运动员最后比赛的成绩.从已经结束的7场比赛的积分来看,运动员A 的成绩最为优异,而且表现最为稳定,因此,预测运动员A 将获得最后的冠军.而运动员B 和C 平均分相同,但运动员C 得分总体呈下降趋势,所以预测运动员C 将获得亚军.(说明:方案不唯一,其他言之有理的方案也给满分)二)重点高中适用作业A 级——保分题目巧做快做1.(2018·湖南五市十校联考)某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n -m 的值是( )A .5B .6C .7D .8解析:选B 由甲组学生成绩的平均数是88,可得17[70+80×3+90×3+(8+4+6+8+2+m +5)]=88,解得m =3.由乙组学生成绩的中位数是89,可得n =9,所以n -m =6.2.(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140解析:选D 由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.3.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而。

相关文档
最新文档