19秋七数上(RJ)--教案:1.4.1 第1课时 有理数的乘法法则2

合集下载

七年级数学上册(人教版)1.4.1有理数的乘法(第1课时有理数的乘法法则)教学设计

七年级数学上册(人教版)1.4.1有理数的乘法(第1课时有理数的乘法法则)教学设计
-采用情境导入法,通过生活实例引出有理数乘法法则,让学生在具体情境中感知和理解乘法运算。
-运用问题驱动法,设置一系列具有启发性的问题,引导学生主动探究乘法法则及其应用。
-实施分层教学法,针对不同学生的学习水平,设计难易程度不同的练习题,使每个学生都能在课堂上得到有效的训练。
-采用小组合作法,鼓励学生互相交流、讨论,共同解决问题,提高学生的合作能力和沟通技巧。
2.教学目的:
-检验学生对乘法法则的掌握程度,及时发现问题,进行针对性的辅导。
-提高学生的运算速度和准确性,培养学生的数学思维能力。
(五)总结归纳
1.教学活动设计:
-组织学生进行课堂小结,让学生回顾本节课所学的有理数乘法法则、乘法分配律等知识。
-教师进行点评,强调重点内容,解答学生的疑问。
2.教学目的:
七年级数学上册(人教版)1.4.1有理数的乘法(第1课时有理数的乘法法则)教学设计
一、教学目标
(一)知识与技能
1.理解有理数的乘法法则,掌握乘法运算的步骤和技巧,并能熟练运用乘法法则进行有理数的乘法运算。
2.能够正确判断两个有理数相乘的结果是正数还是负数,理解同号得正、异号得负的规律,并能运用这一规律简化计算过程。
-学生可以尝试编写一道关于有理数乘法的数学小故事,以激发学习兴趣,提高数学素养。
4.合作作业:
-以小组为单位,共同完成一道综合性的乘法运算题目,要求小组成员共同讨论、分析、解决问题,培养学生的合作精神。
-小组之间可以进行互评,相互借鉴,共同提高。
5.课后反思:
-学生在完成作业后,进行自我反思,总结自己在乘法运算中的优点和不足,为今后的学习制定合理的学习计划。
3.教学评价:
-采用形成性评价,关注学生在学习过程中的表现,如课堂参与、练习完成情况等,全面评估学生的学习效果。

最新部编版人教数学七上《1.4.1 第1课时 有理数的乘法法则 教学设计》精品教案

最新部编版人教数学七上《1.4.1 第1课时 有理数的乘法法则 教学设计》精品教案

前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的教学设计(教案)是高效课堂的前提和保障。

(最新精品教学设计)
1.4 有理数乘法与除法
1.4.1 有理数的乘法
第1课时有理数的乘法法则
学习目标:
1.了解有理数乘法的实际意义,理解有理数的乘法法则;
2. 能熟练地进行有理数的乘法运算.
学习难点:积的符号的确定
教学过程:
一、情境引入:
什么叫乘法运算?
求几个相同加数的和的运算。

如 2+2+2+2+2=2×5;
(-2)+(-2)+(-2)+(-2)+(-2)=(-2)×5
像(-2)×5这样带有负数的式子怎么运算?
二、探究学习:
1、在水文观测中,常遇到水位上升与下降的问题,请根据日常生活经验,回答下列问题:
(1)如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(2)如果水位每天上升4cm,那么3天前的水位比今天高还是低?高(或低)多少?
(3)如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(4)如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少?
我们规定水位上升为正,水位下降为负;几天后为正,几天前为负;你能用正数或负数表示上述问题吗?你算的结果与经验一致吗?
2、填写书37页表格
3、两个有理数相乘,积的符号怎样确定?积的绝对值怎样确定?小组讨论,总结、归纳得出有理数乘法法则。

1。

人教版七年级数学上册 教案:1.4.1 第1课时 有理数的乘法法则1【精品】

人教版七年级数学上册 教案:1.4.1 第1课时 有理数的乘法法则1【精品】

1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.理解有理数的乘法法则;2.能利用有理数的乘法法则进行简单的有理数乘法运算;(重点)3.会利用有理数的乘法解决实际问题.(难点)一、情境导入1.小学我们学过了数的乘法的意义,比如说2×3,6×23,……一个数乘以整数是求几个相同加数和的运算,一个数乘以分数就是求这个数的几分之几.2.计算下列各题:(1)5×6; (2)3×16; (3)32×13; (4)2×234; (5)2×0; (6)0×27. 引入负数之后呢,有理数的乘法应该怎么运算?这节课我们就学习有理数的乘法.二、合作探究探究点一:有理数的乘法法则计算:(1)5×(-9); (2)(-5)×(-9);(3)(-6)×(-9); (4)(-6)×0;(5)(-13)×14. 解析:(1)(5)小题是异号两数相乘,先确定积的符号为“-”,再把绝对值相乘;(2)(3)小题是同号两数相乘,先确定积的符号为“+”,再把绝对值相乘;(4)小题是任何数同0相乘,都得0.解:(1)5×(-9)=-(5×9)=-45;(2)(-5)×(-9)=5×9=45;(3)(-6)×(-9)=6×9=54;(4)(-6)×0=0;(5)(-13)×14=-(13×14)=-112. 方法总结:两数相乘,积的符号是由两个乘数的符号决定:同号得正,异号得负,任何数乘以0,结果为0.探究点二:倒数【类型一】 直接求某一个数的倒数求下列各数的倒数.(1)-34;(2)223;(3)-1.25;(4)5. 解析:根据倒数的定义依次解答.解:(1)-34的倒数是-43; (2)223=83,故223的倒数是38; (3)-1.25=-54,故-1.25的倒数是-45; (4)5的倒数是15. 方法总结:乘积是1的两个数互为倒数,一般在求小数的倒数时,先把小数化为分数再求解.当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.【类型二】 与相反数、倒数、绝对值有关的求值问题已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为6,求a +b m-cd +|m |的值. 解析:根据相反数的概念和倒数概念,可得a 、b ;c 、d 的等量关系,再由m 的绝对值为6,可求m 的值,把所得的等量关系整体代入可求出代数式的值.解:由题意得a +b =0,cd =1,|m |=6,m =±6;∴①当m =6时,原式=06-1+6=5;②当m =-6时,原式=0-6-1+6=5.故a +b m-cd +|m |的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的新定义问题若定义一种新的运算“*”,规定a*b=ab-3a.求3*(-4)的值.解析:解答此类新定义问题时要根据题设先确定运算顺序,再根据有理数乘法法则进行计算.解:3*(-4)=3×(-4)-3×3=-21.方法总结:解题时要正确理解题设中新运算的运算方法.三、板书设计1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数与0相乘都得0.有理数的乘法是有理数运算中一个非常重要的内容,它与有理数的加法运算一样,也是建立在小学算术运算的基础上.“有理数乘法”的教学,在性质上属于定义教学,历是一个难点课题,教学时应略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则.本节课尽量考虑在有利于基础知识、基础技能的掌握和学生的创新能力培养的前提下,最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合“新课程标准”倡导的理念.。

七年级数学上册 1.4.1有理数的乘法教案2 (新版)新人教版

七年级数学上册 1.4.1有理数的乘法教案2 (新版)新人教版

计算:(课本 P32 练习) (1)、—5×8×(—7)×(—0.25);
教练 习
学运 用


(2)、 ( 5 ) 8 1 ( 2) ; 12 15 2 3
学生独 立练习, 教师请 几名学 生板书

(3) (1) ( 5) 8 3 ( 2) 0 (1) ;

二次 备课
2、新知应用


1、例题 3,(P31 页)
请你思考,多个不是 0 的数相乘,先做哪一步,再做哪一步?
你能看出下列式子的结果吗?如果能,理由 7.8×(-8.1)×O× (-19.6) 【要点归纳】 几个数相乘,如果其中有一个因数为 0,积等于 0 三、巩固提高
教师提 示,学生 自主完 成,同桌 对照检 查 学生积 极思考, 回答问 题
4 15 2 3
四、挑战自我
一、选择
1.若干个不等于 0 的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定 D.由负因数和正因数个数的差为决

2.下列运算结果为负值的是( ) A.(-7)×(-6) B.(-6)+(-4) C.0×(-2)(-3) D.(-7)-(-15)
学科
课题
三 维 目 标
有理数的乘法
数学
授课时间 授课班级
主备人 教授者
1.4.1 有理数的乘法(2)
课时安排
1
课型
新授
知识 目标
使学生掌握多个有理数相乘的积的符号规律
能力 通过学生亲身探索、归纳和验证,体验多个有理数相乘时积的符号的确定方法,培养 目标 实践能力和交流能力。
情感 1、通过观察、思考、探究、发现,激发学生的好奇心和求知欲,让学生获得成功的喜 目标 悦。 2、通过探究和思考问题,使学生养成积极自觉的学习习惯。

人教版七年级数学上册 教案:1.4.1 第1课时 有理数的乘法法则1【精品】

人教版七年级数学上册 教案:1.4.1 第1课时 有理数的乘法法则1【精品】

1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.理解有理数的乘法法则;2.能利用有理数的乘法法则进行简单的有理数乘法运算;(重点)3.会利用有理数的乘法解决实际问题.(难点)一、情境导入1.小学我们学过了数的乘法的意义,比如说2×3,6×23,……一个数乘以整数是求几个相同加数和的运算,一个数乘以分数就是求这个数的几分之几.2.计算下列各题:(1)5×6; (2)3×16; (3)32×13; (4)2×234; (5)2×0; (6)0×27. 引入负数之后呢,有理数的乘法应该怎么运算?这节课我们就学习有理数的乘法.二、合作探究探究点一:有理数的乘法法则计算:(1)5×(-9); (2)(-5)×(-9);(3)(-6)×(-9); (4)(-6)×0;(5)(-13)×14. 解析:(1)(5)小题是异号两数相乘,先确定积的符号为“-”,再把绝对值相乘;(2)(3)小题是同号两数相乘,先确定积的符号为“+”,再把绝对值相乘;(4)小题是任何数同0相乘,都得0.解:(1)5×(-9)=-(5×9)=-45;(2)(-5)×(-9)=5×9=45;(3)(-6)×(-9)=6×9=54;(4)(-6)×0=0;(5)(-13)×14=-(13×14)=-112. 方法总结:两数相乘,积的符号是由两个乘数的符号决定:同号得正,异号得负,任何数乘以0,结果为0.探究点二:倒数【类型一】 直接求某一个数的倒数求下列各数的倒数.(1)-34;(2)223;(3)-1.25;(4)5. 解析:根据倒数的定义依次解答.解:(1)-34的倒数是-43; (2)223=83,故223的倒数是38; (3)-1.25=-54,故-1.25的倒数是-45; (4)5的倒数是15. 方法总结:乘积是1的两个数互为倒数,一般在求小数的倒数时,先把小数化为分数再求解.当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.【类型二】 与相反数、倒数、绝对值有关的求值问题已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为6,求a +b m-cd +|m |的值. 解析:根据相反数的概念和倒数概念,可得a 、b ;c 、d 的等量关系,再由m 的绝对值为6,可求m 的值,把所得的等量关系整体代入可求出代数式的值.解:由题意得a +b =0,cd =1,|m |=6,m =±6;∴①当m =6时,原式=06-1+6=5;②当m =-6时,原式=0-6-1+6=5.故a +b m-cd +|m |的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的新定义问题若定义一种新的运算“*”,规定a*b=ab-3a.求3*(-4)的值.解析:解答此类新定义问题时要根据题设先确定运算顺序,再根据有理数乘法法则进行计算.解:3*(-4)=3×(-4)-3×3=-21.方法总结:解题时要正确理解题设中新运算的运算方法.三、板书设计1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数与0相乘都得0.有理数的乘法是有理数运算中一个非常重要的内容,它与有理数的加法运算一样,也是建立在小学算术运算的基础上.“有理数乘法”的教学,在性质上属于定义教学,历是一个难点课题,教学时应略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则.本节课尽量考虑在有利于基础知识、基础技能的掌握和学生的创新能力培养的前提下,最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合“新课程标准”倡导的理念.。

人教版七年级数学上册1.4.1第1课时有理数的乘法法则优秀教学案例

人教版七年级数学上册1.4.1第1课时有理数的乘法法则优秀教学案例
在评价机制上,我采用多元化评价方式,既关注学生的知识掌握程度,也关注学生的学习过程和方法,使学生在评价中不断发现自己的优势和不足,激发学生的自我改进意识,促进学生的全面发展。
二、教学目标
(一)知识与技能
1.让学生掌握有理数的乘法法则,包括同号相乘、异号相乘和零乘以任何计算。
(三)学生小组讨论
1.设计具有梯度的数学题目:我设计了一些具有梯度的数学题目,让学生在解决实际问题的过程中,运用乘法法则。如:“计算下列各题:(1)2 × 3;(2)-5 × 6;(3)0 × 7。”
2.组织学生进行小组讨论:我将学生分成小组,鼓励学生在小组内进行讨论和交流,共同解决问题。通过小组合作,培养学生的团队合作精神和沟通能力。
3.培养学生勇于探究、敢于挑战的精神,培养学生面对困难的坚韧性。
4.通过对数学知识的探究,培养学生尊重事实、严谨治学的科学态度。
三、教学策略
(一)情景创设
1.利用生活实例引入:在课堂初始,我通过引入一些生活中的实际问题,如购物时计算总价、计算长方形面积等,让学生感受到数学与生活的紧密联系,激发学生学习有理数乘法法则的兴趣。
2.引导学生自主解决问题:在讲解乘法法则时,我没有直接给出答案,而是引导学生通过小组讨论、独立思考的方式,自主探索并解决问题,培养学生的自主学习能力和问题解决能力。
(三)小组合作
1.分组讨论:我将学生分成小组,鼓励学生在小组内进行讨论和交流,共同解决问题。通过小组合作,培养学生的团队合作精神和沟通能力。
2.强调作业的重要性:我强调作业在数学学习中的重要性,并要求学生认真完成作业,及时巩固所学知识。同时,我鼓励学生相互之间进行交流和讨论,共同提高。
五、案例亮点
1.生活实例引入:通过展示一些生活中的实际问题,如购物时计算总价、计算长方形面积等,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣和求知欲。这种教学方法不仅能够提高学生的学习积极性,还能够让学生明白学习数学的意义和价值。

人教版数学七年级上册1.4.1《有理数的乘法(1)》教学设计

人教版数学七年级上册1.4.1《有理数的乘法(1)》教学设计

人教版数学七年级上册1.4.1《有理数的乘法(1)》教学设计一. 教材分析《有理数的乘法(1)》是人教版数学七年级上册第一章第四节的第一课时,本节课的主要内容是有理数的乘法法则。

学生在学习了有理数的概念、加法、减法和除法的基础上,进一步学习有理数的乘法,有助于深化对有理数运算的理解。

教材通过具体的例子引入有理数的乘法,然后总结出乘法法则,并通过大量的练习让学生熟练掌握。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念、加法、减法和除法有一定的了解。

但学生在运算过程中,可能还存在对有理数乘法的混淆,以及对乘法法则的不理解。

因此,在教学过程中,教师需要耐心引导学生,让学生通过观察、思考、讨论,自己发现并总结出有理数的乘法法则。

三. 教学目标1.理解有理数的乘法概念,掌握有理数的乘法法则。

2.能够正确进行有理数的乘法运算。

3.培养学生的观察能力、思考能力和合作能力。

四. 教学重难点1.有理数的乘法法则。

2.如何引导学生发现并总结出乘法法则。

五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。

教师通过提出问题,引导学生观察、思考和讨论,让学生在合作学习中发现并总结出有理数的乘法法则。

六. 教学准备1.PPT课件。

2.练习题。

七. 教学过程1.导入(5分钟)教师通过提问方式复习旧知识,引导学生回忆有理数的加法、减法和除法。

然后提出问题:“同学们,你们想知道有理数的乘法吗?我们今天就来学习有理数的乘法。

”2.呈现(10分钟)教师通过PPT展示有理数的乘法例子,让学生观察和思考。

例子可以包括正数、负数和零的乘法。

教师引导学生观察例子,让学生自己发现有理数乘法的规律。

3.操练(10分钟)教师让学生在小组内进行讨论,共同完成练习题。

练习题可以包括不同类型的题目,如判断题、选择题和填空题。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)教师选取一些学生的作业,进行讲解和分析。

通过讲解,让学生进一步理解和巩固有理数的乘法法则。

1.4.1 有理数的乘法(第一课时)(教学设计)-【上好课】七年级数学上册同步备课系列(人教版)

1.4.1 有理数的乘法(第一课时)(教学设计)-【上好课】七年级数学上册同步备课系列(人教版)

1.4.1有理数的乘法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.4.1有理数的乘法(第一课时),内容包括:有理数的乘法法则、运用法则进行运算、多个有理数相乘的积的符号法则.2.内容解析有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上.因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算.有理数的乘法是有理数最基本的运算之一,它是进一步学习有理数运算的基础,也为今后学习实数运算、代数式的运算、解方程以及函数知识奠定基础.学好这部分内容,对增强学习代数的信心具有十分重要的意义.基于以上分析,确定本节课的教学重点为:掌握有理数的乘法法则并能进行熟练地运算;掌握多个有理数相乘的积的符号法则.二、目标和目标解析1.目标(1)掌握有理数的乘法法则并能进行熟练地运算.(运算能力)(2)掌握多个有理数相乘的积的符号法则. (分类讨论)2.目标解析教材是利用合情推理,通过比较数字算式蕴含的规律性,类比发现有理数乘法法则的.教学中,应该让学生推敲与比较这些算式,发现其中存在的规律,并会从符号、绝对值两个方面来描述这种规律,体会有理数乘法法则的合理性.有理数乘法法则涉及运算结果的符号与绝对值两个方面.因此,学生在初期进行有理数乘法运算时,要求他们从这两个方面分层次、有步骤地思考,即先考虑两个乘数的符号,然后决定积的符号,再考虑两个乘数的绝对值,进而决定积的绝对值大小.三、教学问题诊断分析本节课是学生在小学本已学过正有理数的乘法,在中学已引进了负有理数以及学过有理数的加减运算之后进行的.因此,教材首先对照小学乘法的意义和负有理数的意义,结合在一条直线上运动的实例,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则.然后通过具体例子说明如何具体运用法则进行计算.接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系.同时,指出了“几个数相乘,有一个因数是0,积为0”的规律.最后,通过具体实例,说明了在含有加、减、乘的算式中,没有括号时的运算顺序.本节课的重点是有理数乘法运算法则.在实际教学中,要通过讲、练使学生能熟练地、准确地按照法则进行乘法运算.基于以上学情分析,确定本节课的教学难点为:含有负因数的乘法.四、教学过程设计(一)情境引入甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后甲、乙水库水位的总的变化量各是多少?如果用正号表示水位上升,用负号表示水位下降,那么4天后甲水库的水位变化量为:3+3+3+3=3×4=12(厘米)乙水库的水位变化量为:(-3)+(-3)+(-3)+(-3)=(-3)×4=___(厘米)(二)自学导航思考:观察下面的乘法算式,你能发现什么规律吗?3×3=9 3×2=6 3×1=3 3×0=0随着后一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=___ 3×(-2)=___ 3×(-3)=___观察下面的算式,你又能发现什么规律吗?3×3=9 2×3=6 1×3=3 0×3=0随着前一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍然成立,那么应有:(-1)×3=___ (-2)×3=___ (-3)×3=___3×3=9 3×3=93×2=6 2×3=63×1=3 1×3=33×(-1)=-3 (-1)×3=-33×(-2)=-6 (-2)×3=-63×(-3)=-9 (-3)×3=-9从符号和绝对值两个角度观察以上算式,可以归纳如下:正数乘正数,积为正数;正数乘负数,积是负数;负数乘正数,积也是负数. 积的绝对值等于各乘数绝对值的积.思考:利用刚才归纳的结论计算下面的算式,你发现有什么规律吗?(-3)×3=____ (-3)×2=____ (-3)×1=____ (-3)×0=____随着后一乘数逐次递减1,积逐次增加3.按照上述规律,下面的空格可以各填什么数?从中可以归纳出什么结论?(-3)×(-1)=___ (-3)×(-2)=___ (-3)×(-3)=___可归纳出如下结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.例如,(-5)×(-3),……………同号两数相乘(-5)×(-3)=+( ),………………得正5×3=15,………………把绝对值相乘所以,(-5)×(-3)=15.又如,(-7)×4,……………_______________(-7)×4=-( ),……_______________7×4=28,……………______________所以,(-7)×4=____有理数相乘,可以先确定积的_______,再确定积的________.(三)考点解析例1.计算:(1)(-7)×3; (2)35×(-1); (3)-76×0; (4)(-115)×(-123).解:(1)原式=-(7×3)=-21;(2)原式=-(35×1)=-35; (3)原式=0;(4)原式=+(115×53)=19. 【点睛】有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.【迁移应用】计算:(1)(-6)×4; (2)(-910)×56; (3)|−3|×(- 23); (4)(-0.24)×(-5); (5)-413×(-313). 解:(1)原式=-(6×4)=-24; (2)原式=-(910×56)=-34; (3)原式=3×(-23)=-(3×23)= -2;(4)原式=+(0.24×5)=1.2; (5)原式=+(133×313)=1. 【总结提升】想一想倒数和相反数有什么异同?相同点:它们都是成对出现的.不同点:①互为相反数的两个数和为0;互为倒数的两个数积为1.②正数的相反数是负数,正数的倒数是正数;负数的相反数是正数,负数的倒数是负数;零的相反数是零,零没有倒数.例2.写出下列各数的倒数:1,-8,25,-234,1.8. 解:因为1×1=1,所以1的倒数是1;因为-8×(-18)=1,所以-8的倒数是-18; 因为25×52=1,所以25的倒数是52;因为-234=-114,-114×(-411)=1,所以-234的倒数是-411; 因为1.8=95,95×59=1,所以1.8的倒数是59. 【迁移应用】1.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.倒数等于本身的数是1和-12.下列互为倒数的是( )A.3和13B.-2和2C.3和-13D.-2和123.若a ,b 互为倒数,则3-4ab 的结果是_______.例3.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是5,则a+b+cd+m 的值是多少?解:因为a ,b 互为相反数,所以a+b=0.因为c ,d 互为倒数,所以cd=1.因为m 的绝对值是5,所以m=5或m=-5.当m=5时,原式=0+1+5=6;当m=-5时,原式=0+1+(-5)=-4.所以a+b+cd+m 的值是6或-4.【迁移应用】1.已知a ,b 互为倒数,c ,d 互为相反数,m 为最大的负整数,则ab+c+d+m 的值为______.2.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,求a+b-cd-x 的值.解:因为a ,b 互为相反数,所以a+b=0.因为c ,d 互为倒数,所以cd=1.因为x 的绝对值是2,所以x=2或x=-2.当x=2时,原式=0-1-2=-3;当x=-2时,原式=0-1-(-2)=1.所以a+b-cd-x 的值是-3或1.例4.甲便利店平均每天可盈利120元,那么一周的利润是多少元?乙便利店平均每天亏损30元,那么一周的利润是多少元?分析:本题中既有盈利又有亏损,需要规定一个为正,另一个为负,再利用有理数的乘法列式计算. 解:根据正负数的意义,我们可以规定盈利为正,亏损为负.甲便利店一周的利润是(+120)×7=840(元).乙便利店一周的利润是(-30)×7=-210(元).答:甲便利店一周的利润是840元,乙便利店一周的利润是-210元.【迁移应用】1.某种商品由于库存积压,现要降价促销,如果每件降价8元,一天售出52件,那么与按原价出售同样数量的商品相比,销售额的变化是____________________________.2.甲水库的水位每天上涨2.5cm,乙水库的水位每天下降1.5cm,6天后甲、乙两水库的水位总变化量各是多少?解:根据题意,可以规定上涨为正,下降为负,则6天后甲水库的水位总变化量为(+2.5)×6=15(cm),乙水库的水位总变化量为(-1.5)×6=-9(cm). 答:6天后甲水库的水位总变化量是上涨15cm,乙水库的水位总变化量是下降9cm(或上涨-9cm).例5.【教材P39习题1.4T12变式题】根据下列条件,判断a,b的符号.(1)a+b<0,且ab>0; (2)a-b<0,且ab<0.解:(1)因为ab>0,所以a,b同为正数或同为负数.又a+b<0,所以a,b同为负数.(2)因为ab<0,所以a,b一个是正数,一个是负数.又a-b<<0,所以a<b.所以a为负数,b为正数.【迁移应用】1.如果xy>0,x+y>0,那么有( )A.x>0,y>0B.x<0,y<0C.x>0,y<0D.x<0,y>02.已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b>0B.a<0,b>0C.a,b异号,且正数的绝对值较大D.a ,b 异号,且负数的绝对值较大(四)合作探究思考1:观察下列各式,它们的积是正的还是负的?2×3×4×(-5) ___2×3×(-4)×(-5) ___2×(-3)×(-4)×(-5) ___(-2)×(-3)×(-4)×(-5) ___(-1)×(-2)×(-3)×(-4)×(-5) ___(-1)×(-2)×(-3)×(-4)×(-5)×(-6) ___几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?【归纳】几个不是0的数相乘,当负因数的个数是_____时,积是正数;当负因数的个数是_____时,积是负数.思考2:你能看出下式的结果吗?如果能,请说明理由.7.8×(-8.1)×0×(-19.6) -3.5×0×213×(-13.5)-16×(-23.6)×1.58×0×6 5×(-3.1)×(-2.8)×0.65×0【归纳】几个数相乘,如果其中有因数为0,那么积等于0.(五)考点解析例6.计算:(1)(-2)×5×(-4)×(-3); (2)(-5)×(-43)×(-145)×(-1.75); (3)(-1)×(-2)×(-3)×(-4)×(-5)×0×(-6).分析:先观察因数中是否有0,有0则积为0;无0则根据负因数个数确定积的符号,再计算积的绝对值.解:(1)原式=-(2×5×4×3)=-120;(2)原式=5×43×95×74=21; (3)原式=0.【迁移应用】1.下列计算中,积为负数的是( )A.5×4×(-7)×(-8)B.-6×(-4)×(-1)×(-9)C.(-4)×0×(-2)×(-3)D.(-5)×4×(-3)×(-2)2.若abc>0,则a,b,c中负数的个数为( )A.3B.1C.1或3D.0或23.绝对值小于5的所有整数的和是_____,积是______. (六)小结梳理五、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.1 有理数的乘法
第1课时有理数的乘法法则
教学目标:
1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.
2.会进行有理数的乘法运算.
教学重点:能按有理数乘法法则进行有理数乘法运算.
教学难点:含有负因数的乘法.
教与学互动设计:
(一)创设情境,导入新课
1.阅读课本P28思考及提出的问题.
2.全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.
问:法则(1)有没有把所有的有理数都包括在内?
指出:正数与0相乘得0,这里规定负数与0相乘也得0.
所以得法则(2):任何数与0相乘,都得0.
3.通过举例,理解法则
问题:由法则(1),如何计算(-5)(-3)的结果?
(1)师生共同完成:
(-5)(-3)……同号两数相乘……看条件
(-5)×(-3)=+( )……同号得正……决定符号
5×3=15……把绝对值相乘……计算绝对值
∴(-5)×(-3)=+15
(2)分组类似(1)讨论,归纳:(-7)×4的运算过程及规律.
(3)师生共同完成:
有理数的乘法与小学里数的乘法在法则和方法步骤方面分别有什么联系?
①符号决定以后,有理数的乘法就转化成了小学里数的乘法;
②由①可见,小学里数的乘法是有理数乘法的基础.
(二)合作交流,解读探究
1.计算:(1)(+)×9;(2)(-)×(-2).
2.练习、板演并相互纠错
课本P30练习第1题.
3.比较×9和(-)×(-2)的结果,得出:有理数中乘积是1的两个数互为倒数.
指出:因为任何数同0相乘都不等于1,所以0没有倒数.由学生找出练习中哪些题里的两个因数。

相关文档
最新文档