8大排序算法

合集下载

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

八大排序算法

八大排序算法

八大排序算法排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

我们这里说说八大排序就是内部排序。

当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。

快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。

即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。

要点:设立哨兵,作为临时存储和判断数组边界之用。

直接插入排序示例:如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

算法的实现:[cpp]view plaincopyprint?1.void print(int a[], int n ,int i){2. cout<<i <<":";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8.9.10.void InsertSort(int a[], int n)11.{12.for(int i= 1; i<n; i++){13.if(a[i] < a[i-1]){ //若第i个元素大于i-1元素,直接插入。

小于的话,移动有序表后插入14.int j= i-1;15.int x = a[i]; //复制为哨兵,即存储待排序元素16. a[i] = a[i-1]; //先后移一个元素17.while(x < a[j]){ //查找在有序表的插入位置18. a[j+1] = a[j];19. j--; //元素后移20. }21. a[j+1] = x; //插入到正确位置22. }23. print(a,n,i); //打印每趟排序的结果24. }25.26.}27.28.int main(){29.int a[8] = {3,1,5,7,2,4,9,6};30. InsertSort(a,8);31. print(a,8,8);32.}效率:时间复杂度:O(n^2).其他的插入排序有二分插入排序,2-路插入排序。

排序的几种方式

排序的几种方式

排序的几种方式在日常生活中,我们经常需要对事物进行排序,以便更好地组织和理解信息。

排序是一种将元素按照一定的规则进行排列的方法,可以应用于各种领域,如数字排序、字母排序、时间排序等。

本文将介绍几种常用的排序方式,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是一种简单直观的排序方法,通过比较相邻元素的大小,将较大的元素逐渐“冒泡”到右侧,较小的元素逐渐“沉底”到左侧。

这个过程会不断重复,直到所有元素都按照升序排列。

冒泡排序的基本思想是从第一个元素开始,依次比较相邻的两个元素,如果前面的元素大于后面的元素,则交换它们的位置。

经过一轮比较后,最大的元素会“冒泡”到最右侧,然后再对剩下的元素进行相同的比较,直到所有元素都有序排列。

二、选择排序选择排序是一种简单直观的排序方法,它的基本思想是每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到所有元素都有序排列。

选择排序的过程可以分为两个部分:首先,在未排序的序列中找到最小(或最大)的元素,然后将其放到已排序序列的末尾;其次,将剩下的未排序序列中的最小(或最大)元素找到,并放到已排序序列的末尾。

这个过程会不断重复,直到所有元素都有序排列。

三、插入排序插入排序是一种简单直观的排序方法,它的基本思想是将待排序的元素逐个插入到已排序序列的适当位置,最终得到一个有序序列。

插入排序的过程可以分为两个部分:首先,将第一个元素看作已排序序列,将剩下的元素依次插入到已排序序列的适当位置;其次,重复上述过程,直到所有元素都有序排列。

插入排序的过程类似于整理扑克牌,将新抓到的牌插入到已有的牌中。

四、快速排序快速排序是一种常用的排序方法,它的基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的所有元素都小于另一部分的所有元素。

然后对这两部分继续进行排序,直到整个序列有序。

快速排序的过程可以分为三个步骤:首先,从序列中选择一个基准元素;其次,将比基准元素小的元素放在左侧,比基准元素大的元素放在右侧;最后,递归地对左右两个部分进行排序。

C语言八大排序算法

C语言八大排序算法

C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。

想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。

⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。

1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。

排序分为内部排序和外部排序。

若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。

反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。

2、排序分类⼋⼤排序算法均属于内部排序。

如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。

如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。

元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。

3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。

最简单的排序

最简单的排序

最简单的排序排序是一种常见的操作,可以将一组元素按照一定的规则重新排列,使其达到某种有序的状态。

排序在生活中随处可见,比如我们买菜时,需要将菜按照大小、种类进行整理;在图书馆,图书也是按照编号或者分类进行排序的。

下面我们来介绍几种最简单的排序算法。

1. 冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历要排序的元素,比较相邻的两个元素,如果它们的顺序错误就交换位置,直到没有需要交换的元素为止。

这样最大(或最小)的元素就会像气泡一样逐渐升(或降)到最后的位置。

2. 选择排序选择排序是一种简单直观的排序算法,它的工作原理如下:首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小(或最大)元素,放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法,它的工作原理如下:将数组分成已排序部分和未排序部分,初始时已排序部分只有一个元素,然后将未排序部分的元素逐个插入到已排序部分的合适位置,直到所有元素都被插入到已排序部分为止。

4. 快速排序快速排序是一种高效的排序算法,它的工作原理如下:选择一个基准元素,将大于基准元素的元素放到右边,小于基准元素的元素放到左边,然后再对左右两个子序列分别进行快速排序,直到整个序列有序。

以上是几种最简单的排序算法,它们都有各自的特点和适用场景。

在实际应用中,我们可以根据问题的具体需求选择合适的排序算法。

排序算法的效率也是我们需要考虑的一个重要因素,通常来说,快速排序是效率最高的排序算法之一。

排序是一种常见的操作,可以帮助我们将一组元素按照一定的规则重新排列,使其达到某种有序的状态。

冒泡排序、选择排序、插入排序和快速排序是几种最简单的排序算法,它们都有各自的特点和适用场景。

在实际应用中,我们可以根据问题的具体需求选择合适的排序算法,以提高效率和准确性。

通过学习和掌握这些排序算法,我们可以更好地理解和应用排序的原理和方法。

用Java实现常见的8种内部排序算法

用Java实现常见的8种内部排序算法

⽤Java实现常见的8种内部排序算法⼀、插⼊类排序插⼊类排序就是在⼀个有序的序列中,插⼊⼀个新的关键字。

从⽽达到新的有序序列。

插⼊排序⼀般有直接插⼊排序、折半插⼊排序和希尔排序。

1. 插⼊排序1.1 直接插⼊排序/*** 直接⽐较,将⼤元素向后移来移动数组*/public static void InsertSort(int[] A) {for(int i = 1; i < A.length; i++) {int temp = A[i]; //temp ⽤于存储元素,防⽌后⾯移动数组被前⼀个元素覆盖int j;for(j = i; j > 0 && temp < A[j-1]; j--) { //如果 temp ⽐前⼀个元素⼩,则移动数组A[j] = A[j-1];}A[j] = temp; //如果 temp ⽐前⼀个元素⼤,遍历下⼀个元素}}/*** 这⾥是通过类似于冒泡交换的⽅式来找到插⼊元素的最佳位置。

⽽传统的是直接⽐较,移动数组元素并最后找到合适的位置*/public static void InsertSort2(int[] A) { //A[] 是给定的待排数组for(int i = 0; i < A.length - 1; i++) { //遍历数组for(int j = i + 1; j > 0; j--) { //在有序的序列中插⼊新的关键字if(A[j] < A[j-1]) { //这⾥直接使⽤交换来移动元素int temp = A[j];A[j] = A[j-1];A[j-1] = temp;}}}}/*** 时间复杂度:两个 for 循环 O(n^2)* 空间复杂度:占⽤⼀个数组⼤⼩,属于常量,所以是 O(1)*/1.2 折半插⼊排序/** 从直接插⼊排序的主要流程是:1.遍历数组确定新关键字 2.在有序序列中寻找插⼊关键字的位置* 考虑到数组线性表的特性,采⽤⼆分法可以快速寻找到插⼊关键字的位置,提⾼整体排序时间*/public static void BInsertSort(int[] A) {for(int i = 1; i < A.length; i++) {int temp = A[i];//⼆分法查找int low = 0;int high = i - 1;int mid;while(low <= high) {mid = (high + low)/2;if (A[mid] > temp) {high = mid - 1;} else {low = mid + 1;}}//向后移动插⼊关键字位置后的元素for(int j = i - 1; j >= high + 1; j--) {A[j + 1] = A[j];}//将元素插⼊到寻找到的位置A[high + 1] = temp;}}2. 希尔排序希尔排序⼜称缩⼩增量排序,其本质还是插⼊排序,只不过是将待排序列按某种规则分成⼏个⼦序列,然后如同前⾯的插⼊排序⼀般对这些⼦序列进⾏排序。

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述比较相邻的元素。

如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。

1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。

8种排序算法

8种排序算法

J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

我们这里说说八大排序就是内部排序。

当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。

快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;1.插入排序—直接插入排序(Straight Insertion Sort)基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。

即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。

要点:设立哨兵,作为临时存储和判断数组边界之用。

直接插入排序示例:如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

算法的实现:1.void print(int a[], int n ,int i){2. cout<<i <<":";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8.9.10.void InsertSort(int a[], int n)11.{12.for(int i= 1; i<n; i++){13.if(a[i] < a[i-1]){ //若第i个元素大于i-1元素,直接插入。

小于的话,移动有序表后插入14.int j= i-1;15.int x = a[i]; //复制为哨兵,即存储待排序元素16. a[i] = a[i-1]; //先后移一个元素17.while(x < a[j]){ //查找在有序表的插入位置18. a[j+1] = a[j];19. j--; //元素后移20. }21. a[j+1] = x; //插入到正确位置22. }23. print(a,n,i); //打印每趟排序的结果24. }25.26.}27.28.int main(){29.int a[8] = {3,1,5,7,2,4,9,6};30. InsertSort(a,8);31. print(a,8,8);32.}效率:时间复杂度:O(n^2).其他的插入排序有二分插入排序,2-路插入排序。

2. 插入排序—希尔排序(Shell`s Sort)希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。

希尔排序又叫缩小增量排序基本思想:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

操作方法:1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;2. 按增量序列个数k,对序列进行k 趟排序;3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。

仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

希尔排序的示例:算法实现:我们简单处理增量序列:增量序列d = {n/2 ,n/4, n/8 .....1} n为要排序数的个数即:先将要排序的一组记录按某个增量d(n/2,n为要排序数的个数)分成若干组子序列,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。

继续不断缩小增量直至为1,最后使用直接插入排序完成排序。

1.void print(int a[], int n ,int i){2. cout<<i <<":";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8./**9. * 直接插入排序的一般形式10. *11. * @param int dk 缩小增量,如果是直接插入排序,dk=112. *13. */14.15.void ShellInsertSort(int a[], int n, int dk)16.{17.for(int i= dk; i<n; ++i){18.if(a[i] < a[i-dk]){ //若第i个元素大于i-1元素,直接插入。

小于的话,移动有序表后插入19.int j = i-dk;20.int x = a[i]; //复制为哨兵,即存储待排序元素21. a[i] = a[i-dk]; //首先后移一个元素22.while(x < a[j]){ //查找在有序表的插入位置23. a[j+dk] = a[j];24. j -= dk; //元素后移25. }26. a[j+dk] = x; //插入到正确位置27. }28. print(a, n,i );29. }30.31.}32.33./**34. * 先按增量d(n/2,n为要排序数的个数进行希尔排序35. *36. */37.void shellSort(int a[], int n){38.39.int dk = n/2;40.while( dk >= 1 ){41. ShellInsertSort(a, n, dk);42. dk = dk/2;43. }44.}45.int main(){46.int a[8] = {3,1,5,7,2,4,9,6};47.//ShellInsertSort(a,8,1); //直接插入排序48. shellSort(a,8); //希尔插入排序49. print(a,8,8);50.}希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于增量因子序列d的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。

目前还没有人给出选取最好的增量因子序列的方法。

增量因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:增量因子中除1 外没有公因子,且最后一个增量因子必须为1。

希尔排序方法是一个不稳定的排序方法。

3. 选择排序—简单选择排序(Simple Selection Sort)基本思想:在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。

简单选择排序的示例:操作方法:第一趟,从n 个记录中找出关键码最小的记录与第一个记录交换;第二趟,从第二个记录开始的n-1 个记录中再选出关键码最小的记录与第二个记录交换;以此类推.....第i 趟,则从第i 个记录开始的n-i+1 个记录中选出关键码最小的记录与第i 个记录交换,直到整个序列按关键码有序。

算法实现:1.void print(int a[], int n ,int i){2. cout<<"第"<<i+1 <<"趟 : ";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8./**9. * 数组的最小值10. *11. * @return int 数组的键值12. */13.int SelectMinKey(int a[], int n, int i)14.{15.int k = i;16.for(int j=i+1 ;j< n; ++j) {17.if(a[k] > a[j]) k = j;18. }19.return k;20.}21.22./**23. * 选择排序24. *25. */26.void selectSort(int a[], int n){27.int key, tmp;28.for(int i = 0; i< n; ++i) {29. key = SelectMinKey(a, n,i); //选择最小的元素30.if(key != i){31. tmp = a[i]; a[i] = a[key]; a[key] = tmp; //最小元素与第i位置元素互换32. }33. print(a, n , i);34. }35.}36.int main(){37.int a[8] = {3,1,5,7,2,4,9,6};38. cout<<"初始值:";39.for(int j= 0; j<8; j++){40. cout<<a[j] <<" ";41. }42. cout<<endl<<endl;43. selectSort(a, 8);44. print(a,8,8);45.}简单选择排序的改进——二元选择排序简单选择排序,每趟循环只能确定一个元素排序后的定位。

我们可以考虑改进为每趟循环确定两个元素(当前趟最大和最小记录)的位置,从而减少排序所需的循环次数。

改进后对n 个数据进行排序,最多只需进行[n/2]趟循环即可。

具体实现如下:1.void SelectSort(int r[],int n) {2.int i ,j , min ,max, tmp;3.for (i=1 ;i <= n/2;i++) {4.// 做不超过n/2趟选择排序5. min = i; max = i ; //分别记录最大和最小关键字记录位置6.for (j= i+1; j<= n-i; j++) {7.if (r[j] > r[max]) {8. max = j ; continue ;9. }10.if (r[j]< r[min]) {11. min = j ;12. }13. }14.//该交换操作还可分情况讨论以提高效率15. tmp = r[i-1]; r[i-1] = r[min]; r[min] = tmp;16. tmp = r[n-i]; r[n-i] = r[max]; r[max] = tmp;17.18. }19.}4. 选择排序—堆排序(Heap Sort)堆排序是一种树形选择排序,是对直接选择排序的有效改进。

相关文档
最新文档