高中物理热学部分

合集下载

高中物理-热力学第一定律

高中物理-热力学第一定律

热力学第一定律热力学第一定律热力学第一定律内容是:研究对象内能的改变量,等于外界对它传递的热量与外界对它所做的功之和。

注:热量的传导与做功均需要注意正负性。

热力学第一定律公式热力学第一定律公式:△U=W+Q其中,△U——内能的变化量,单位焦耳(J),如果为负数,则说明研究对象内能减小。

Q——研究对象吸收的热量,单位焦耳(J),如果为负数,则说明研究对象向外释放热量。

在自然态下,Q传导具有方向性,即只能从高温物体向低温物体传递热量。

W——外界对研究对象做的功,单位焦耳(J),如果为负数,则说明研究对象对外界做功。

热力学第一定律理解误区之吸热内能一定增加?老师:并非如此。

如果对外做功,内能可能不变,甚至减小。

物体的内能是变大还是变小,取决于两个外在因素,其一是吸收(或放出)热量,另外一个是做功。

如果吸收了10J的热量,向外界做了20J的功,物体的内能不会增加,反而会减小(减小10J)。

热力学第一定律深入理解之温度与分子平均动能关系老师:分子平均动能Ek与热力学温度T是正比例关系,即分子平均动能Ek越大,热力学温度T就越大。

分子平均动能Ek是微观表现方式,而热力学温度T是宏观表现方式。

热力学第一定律深入理解之做功与气体体积关系老师:W与气体的体积相关,V减小,则是外界对气体做正功(压缩气体)。

反之,V增大,则是外界对气体做负功(气体膨胀向外界做功)。

热力学第一定律深入理解之能量守恒定律在热学的变形式老师:从热力学第一定律公式来看:△U=W+Q这与能量守恒定律是一致的。

能量守恒定律的内容是:能量既不会凭空产生,也不会凭空消失,只能从一个物体传递给另一个物体,而且能量的形式也可以互相转换。

在热学领域,物体内能改变同样遵守能量守恒定律。

物体内能的增加,要么是伴随着外界做功,要么是由外界热量传导引起的。

在物体A内能增加的同时,物体B因为向A做功能量减小,或者物体C把自身内能以热量形式向物体A传导,自身能量减小。

高中物理热学知识点梳理

高中物理热学知识点梳理

高中物理热学知识点梳理一、分子动理论、能量守恒定律1.阿伏加德罗常数N A=6.02×1023/mol;分子直径数量级10-10米2.油膜法测分子直径d=VS{V:单分子油膜的体积(m3),S:油膜表面积(m2)}3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r<r0,f引f斥,F分子力表现为引力(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈05.扩散现象、布朗运动说明分子的无规则热运动;布朗运动指的是悬浮在液体中的固体颗粒的运动,是液体分子撞击它引起的;温度越高,颗粒越小,布朗运动越明显6.温度是物体分子热运动的平均动能的标志;分子势能是由它们的相对位置决定的。

7.分子速率是“中间多、两头少”,温度升高,速率大的分子占的比率增大8.晶体具有一定的熔点,非晶体没有确定的熔点;单晶体具有各向异性,多晶体、非晶体具有各向同性;(晶体内部的物质微粒是静止的,非晶体内部的物质微粒的排列是不规则的)9.表面张力的方向:从微观上看表面的分子受到指向液体内部的力,扩展到宏观上表现为指向液体表面切线方向。

10.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的)W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出,它违反了能量守恒定律}11.热力学第二定律克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出,它违反了热力学第二定律}12.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}(1)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;(2)分子力做正功,分子势能减小,在r 0处F 引=F 斥且分子势能最小;(3)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0(4)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; 物体的内能由温度和体积决定;(5)r 0为分子处于平衡状态时,分子间的距离;(6)其它相关内容:能的转化和定恒定律、能源的开发与利用、环保、物体的内能、分子的动能、分子势能。

高中物理知识体系

高中物理知识体系

高中物理知识体系高中物理是一门涵盖范围广泛、深度较大的科学学科,其知识体系主要包括力学、热学、电磁学、光学和现代物理五个部分。

这些部分相互联系、相辅相成,构成了高中物理的完整知识体系。

一、力学力学是研究物体在外力作用下的运动规律的学科。

高中阶段的力学主要包括运动学、静力学和动力学三个部分。

运动学研究物体的运动状态,包括匀速直线运动、变速直线运动、曲线运动等内容;静力学研究物体处于平衡状态时受力的平衡条件,包括平衡力、杠杆原理等内容;动力学研究物体在受力作用下的运动规律,包括牛顿三定律、动量守恒、功与能等内容。

二、热学热学是研究热现象和热运动的学科。

高中阶段的热学主要包括热力学和热传导两个部分。

热力学研究热力学系统的性质和热力学循环等内容;热传导研究热量在不同物质之间传递的规律,包括导热系数、热传导定律等内容。

三、电磁学电磁学是研究电荷和电磁场的学科。

高中阶段的电磁学主要包括静电学、恒流电场、恒磁场、电磁感应和交流电五个部分。

静电学研究电荷之间的相互作用,包括库仑定律、电场强度等内容;恒流电场磁场研究电流在磁场中的受力情况,包括洛伦兹力、安培环路定理等内容;电磁感应研究导体中的电动势和感应电流现象,包括法拉第电磁感应定律、自感现象等内容;交流电研究交流电路的变化规律,包括交流电路中的电压、电流及其相位关系等内容。

四、光学光学是研究光传播和光现象的学科。

高中阶段的光学主要包括几何光学和物理光学两个部分。

几何光学研究光在介质中的传播规律,包括光的反射、折射、像的成像等内容;物理光学研究光的波动性质,包括双缝干涉、单缝衍射、光的偏振等内容。

五、现代物理现代物理是研究微观世界和基本粒子的学科。

高中阶段的现代物理主要包括光电效应、半导体物理、原子物理和核物理四个部分。

光电效应研究光在金属表面引发电子发射的现象,包括爱因斯坦光电方程等内容;半导体物理研究半导体材料的性质和应用,包括PN结、半导体器件等内容;原子物理研究原子结构和原子核的性质,包括波尔理论、量子力学等内容;核物理研究核反应和核能的应用,包括核裂变、核聚变等内容。

高中物理公式及知识点汇总-热学

高中物理公式及知识点汇总-热学

高中物理公式及知识点汇总-热学高中物理中,热学是一个重要的领域,涉及到热传导、热膨胀、热力学等内容。

下面我将为大家整理出一些常见的物理公式和知识点。

热力学1. 热力学第一定律(能量守恒定律):ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。

2. 内能的计算公式:ΔU = nCΔT其中,ΔU表示内能的变化,n表示物质的摩尔数,C表示摩尔定容热容,ΔT表示温度的变化。

3. 理想气体状态方程:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的温度。

4. 热力学第二定律(克劳修斯表述):热量不会自发地从低温物体传递到高温物体。

5. 熵的变化与热量传递的关系:ΔS = Qrev/T其中,ΔS表示熵的变化,Qrev表示可逆过程中的吸收的热量,T表示温度。

热传导1. 热传导的热流量公式:Q/t = kAΔT/L其中,Q/t表示单位时间内传导的热量,k表示热传导系数,A 表示传热面积,ΔT表示温度差,L表示传热长度。

2. 热传导的热阻公式:R = L/ (kA)其中,R表示热阻,L表示传热长度,k表示热传导系数,A 表示传热面积。

3. 热传导的导热方程:∂Q/∂t = -k∇²T其中,∂Q/∂t表示单位时间内通过单位面积的热流量,k为热传导系数,∇²T表示温度在空间中的二阶偏导数。

热膨胀1. 线膨胀的计算公式:ΔL = αL₀ΔT其中,ΔL表示长度的变化,α表示线膨胀系数,L₀表示初始长度,ΔT表示温度的变化。

2. 面膨胀的计算公式:ΔA = 2αA₀ΔT其中,ΔA表示面积的变化,α表示面膨胀系数,A₀表示初始面积,ΔT表示温度的变化。

3. 体膨胀的计算公式:ΔV = βV₀ΔT其中,ΔV表示体积的变化,β表示体膨胀系数,V₀表示初始体积,ΔT表示温度的变化。

热辐射1. 斯特藩—玻尔兹曼定律:P = εσA(T² - T₀²)其中,P表示单位时间内通过单位面积的辐射功率,ε表示发射率,σ为斯特藩—玻尔兹曼常数,A表示面积,T为温度,T₀为参考温度。

高中物理3-3热学知识点归纳(全面、很好)

高中物理3-3热学知识点归纳(全面、很好)

选修3-3热学知识点归纳一、分子运动论1. 物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是(2)分子质量分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:设微观量为:分子体积V 0、分子直径d 、分子质量m ;宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积:(对气体,V 0应为气体分子平均占据的空间大小)分子直径: 球体模型: V d N =3A )2(34π 303A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1A 1A A N V V N V M N V N Mn ====ρμρμ2. 分子永不停息地做无规则热运动(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种微粒肉眼是看不到的,必须借助于显微镜。

高中物理培优辅导讲义:专题13-热学(含答案解析)

高中物理培优辅导讲义:专题13-热学(含答案解析)

【知识精讲】一.分子动理论1.分子动理论的基本观点是:物质是由大量分子组成,分子永不停息的做无规则运动,分子之间总是同时存在相互作用的引力和斥力。

布朗运动的永不停息,说明液体分子运动的永不停息;布朗运动的无规则性,说明液体分子运动是无规则的。

分子力是斥力和引力的合力。

2. 解答分子动理论中的估算问题是对分子进行合理抽象,建立模型。

由于固体和液体分子间距很小,因此可以把固体和液体分子看作紧密排列的球体,小球直径即为分子直径。

一般情况下利用球体模型估算固体和液体分子个数、质量、体积、直径等。

设n 为物质的量,m 为物质质量,v 为物质体积,M 为摩尔质量,V 为摩尔体积,ρ为物质的密度。

则(1)分子数N =A A N M m nN ==A A N V v N M v =ρ. (2)分子质量AA N V N M m ρ==0. (3)分子体积A A N M N V v ρ==0 (4)对于固体或液体,把分子看作小球,则分子直径33066AN V v d ππ==。

对于气体,分子之间距离很大,可把每个气体分子所占空间想象成一个立方体,该立方体的边长即为分子之间的平均距离。

(1)若标准状态下气体体积为0V ,则气体物质的量n =30104.22-⨯V ; (2)气体分子间距330A N V v d ==AN M ρ=。

3. “用油膜法估测分子的大小”实验是把液体中油酸分子看做紧密排列的小球,把油膜厚度看做分子直径。

4.物体内所有分子动能的平均值叫做分子平均动能。

温度是分子平均动能的标志。

任何物体,只要温度相同,其分子平均动能就相等。

温度越高,分子平均动能越大。

由分子之间的相互作用和相对位置所决定的能,叫做分子势能。

分子势能与体积有关。

要注意体积增大,分子势能不一定增大。

物体中所有分子热运动的动能与分子势能之和叫做物体内能。

任何物体都有内能。

二.物态和物态变化1.固体和液体都是自然界存在的物质形态。

固体分晶体和非晶体,晶体分单晶体和多晶体。

高中物理热学知识点归纳

高中物理热学知识点归纳

高中物理热学知识点归纳选修3-3热学知识点归纳一、分子运动论1.物质由大量分子组成1) 分子体积很小,直径数量级为…2) 分子质量很小,一般数量级为…3) 阿伏伽德罗常数是宏观世界与微观世界的桥梁,用于测量任何物质含有的微粒数。

2.分子永不停息地做无规则热运动1) 扩散现象和布朗运动是分子无规则运动的实验事实。

2) 扩散现象是不同物质能够彼此进入对方的现象,本质是由物质分子的无规则运动产生的。

3) 布朗运动是悬浮在液体或气体中的固体微粒的无规则运动,间接反映了液体或气体分子的无规则运动。

4) 布朗运动产生的原因是液体或气体分子永不停息地做无规则运动,对悬浮微粒的撞击作用不平衡。

5) 影响布朗运动激烈程度的因素包括固体微粒大小、温度和周围液体分子运动规律等。

3.分子间存在相互作用力1) 分子间的引力和斥力同时存在,实际表现为分子引力和斥力的合力。

2) 分子间的引力和斥力只与分子间距离有关,与分子的运动状态无关。

分子间的引力和斥力随着分子间距离r的增大而减小,随着分子间距离r的减小而增大。

但是斥力的变化比引力的变化快。

分子力F和距离r的关系如下图所示(其中r1=r,数量级为10^-10m)。

物体内部分子做热运动的动能称为分子动能,温度是物体分子热运动的平均动能的标志。

分子间相对位置决定的势能称为分子势能。

当分子力做正功时,分子势能减小;当分子力作负功时,分子势能增大。

当r=r0时,即分子处于平衡位置时,分子势能最小。

不论r从r0增大还是减小,分子势能都将增大。

如果以分子间距离为无穷远时分子势能为零,则分子势能随着分子间距离的变化而变化的图像如下图所示。

物体中所有分子做热运动的动能和分子势能的总和称为物体的内能。

物体的内能与物体的温度、体积和物质的量都有关系,定质量的理想气体的内能只与温度有关。

内能与机械能不同,内能对应分子的热运动,机械能对应物体的机械运动。

在一定条件下,物体的内能和机械能可以相互转化。

高中物理公式库之热学

高中物理公式库之热学

热学公式库热学1. 热力学温度:T=(273+t)K.2. 热量的计算公式:)(0t t cm Q 吸-=, )(0t t cm Q 放-=.燃料燃烧时放出热量: qm Q 放=,q 表示燃烧值.熔化时吸收的热量或者凝固时放出的热量: Lm Q =,L 表示熔化热. 汽化时吸收的热量或者液化放出的热量: m Q λ=,λ表示汽化热. 热平衡方程: 放吸Q Q =.3. 玻意耳定律:P 1V 1=P 2V 2.推论:12P V V P ∆-=∆. 4. 抽气问题:对于容积为V 0,其内部的气体质量为m 0的容器抽气,每次抽出气体的体积为 ΔV,抽了n 次,剩下的质量为m n ,则: 000)(m VV V m n n ⋅∆+= 要使剩下的质量和原质量的比为0m m n ,则需抽n 次: V V V m m n n∆+=000lg lg. 5. 查理定律:2211T P T P =,推论:T T P P ∆=∆;用摄氏度表示: )2731(0t P P t +=. 6. 盖·吕萨克定律: 2211T V T V =,推论: T T V V ∆=∆;)2731(0t V V t +=. 7. 理想气体状态方程:222111T V P T V P =. 8. 克拉伯珑方程:PV=nRT, RT M PV μ=.密度方程: 222111T P T P ρρ= 9. 热力学第一定律:W+Q=ΔE. 10. 热膨胀:线膨胀,)1(0t l l t α+=;体膨胀, )1(0t V V t α+=.对于均匀各向同性的固体β=3α,对于气体12731-=度β. 10.相对湿度: %100%1002121⨯=⨯=P P B ρρ. 11.毛细现象,液面升高的高度: g r h ρσ2=. 热学公式库.doc电学公式库.doc光学公式库.doc原子原子核公式库.doc所有公式库.doc常用的物理常数.doc常用数学公式库.doc。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

● 热学 1.分子动理论:
①物质由大量分子组成,(直径数量级,直径数量级10-10m 埃A 10-9m 纳米nm ,单分子油膜法d =V/S)
mol
A M N m =
mol A V
N v
= N A 是联系宏观世界和微观世界的桥梁 ②分子永不停息做无规则的热运动 (扩散、布朗运动是固体小颗粒的无规则运动,它能反映出液体分子的运动) ③分子间存在相互作用力,
(注意:引力和斥力同时存在,都随距离的增大而减小,但斥力变化得快。

分子力是指引力和斥力的合力。


热点:由r 的变化讨论分子力、分子动能、分子势能的变化
2.物体的内能:决定于物质的量、T 、v (对于理想气体,认为没有势能,其内能只与温度有关)
一切物体都有内能(由微观分子动能和势能决定而机械能由宏观运动快慢和位置决定)、有惯性、有固有频率、都能辐射红外线、都能对光发生衍射现象、对金属都具有极限频率、对任何运动物体都有波长与之对应(德布罗意波长)
内能的改变方式:做功(转化)外对其做功;热传递(转移)吸收热量 注意(符合法则)热量只能自发地从高温到低温物体,低到高也可以,但要引起其它变化(热的第二定律) 3.热力学三大定律: 第一、第二类永动机是怎样的机器?
热力学第一定律:ΔE =W+Q ⇔能的转化守恒定律⇔第一类永动机不可能制成. 符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。

气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“一”。

温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。

三种特殊情况: (1) 等温变化∆E=0,即 W+Q=0 (2) 绝热膨胀或压缩:Q=0即 W=∆E (3)等容变化:W=0 ,Q=∆E
热学第二定律⇔
(1)第二类永动机不可能制成 实质:涉及热现象(自然界中)的宏观过程都具有方向性,是不可逆的
(2)热传递方向表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导有方向性)
(3)机械能与内能转化表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化具有方向性)。

热力学第三定律:热力学零度不可达到。

T=t+273.15
气体压强:宏观F P S
= 微观:分子频繁撞击
一定质量的理想气体状态方程:公式:T PV
=恒量 或 222111T V P T V P =(含密度式:P T P T 111222
ρρ=)
4 、 理想气体三个实验定律:注意:计算时公式两边T 必须统一为热力学单位,其它两边单
位相同即可。

(1) 玻意耳定律:m 一定,T 不变 P 1V 1 = P 2V 2 或 PV = 恒量 (2)查里定律: m 一定,V 不变 P T P T 1
122
= 或
P T =恒量 或 P t = P 0 (1+t
273
)
(3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T
V t 11
2
=
==或
恒量或V 0 (1+t 273)
5、克拉伯龙方程式: PV=n RT=M RT μ
(R 为普适气体恒量,n 为摩尔数)
热学部分
1、油膜法测分子大小原理公式:d S V ⨯=
2、物质的密度公式:V
m
V M mol ==ρ
3、物质的量的计算公式:mol
V V M m n == 4、估算分子的质量:A
0N M m =
5、估算分子的体积(固、液体):A
mol
0N V V = 6、估算分子的数目:A N n N ⨯= 7、估算固、液分子的直径:3
V 6d π
=
8、估算气体分子间间距:30V a = 9、热力学温度公式:15.273t T += 10、热力学第一定律:W Q U +=∆ 11、热机的效率::从热源吸收的热量)
:热机做的功;(Q W %100Q
W
⨯=
η mol 23A A 2~8M V n N N N 6.0210≈⨯注:公式中::摩尔质量:摩尔体积
:物质的量:分子数目:阿伏伽德罗常数()
12、理想气体状态方程:
(常量)c T
PV
=


(:普适气体常量,:摩尔质量;:气体质量;(或:k mol J 31.8R R M m RT M m PV T V P T V P 222111⋅≈==* 13*、伯努利方程:(常量)流动的液体:c hg P 2
21=++ρρν (常量)
流动的气体:c P 221=+ρν 14*、玻意耳定律:(条件:温度不变)(常量)或2211V P V P c PV == 15*、查理定律:(条件:体积不变)
)或(2
1210t T T
P P 273t 1P P =+
= 16*、盖·吕萨克定律:(条件:压强不变)
)或(2
1210t T T
V V 273t 1V V =+
= 说明:1、带有“*”为非高考要求公式,仅作了解;
2、等质量的理想气体几个过程的变化分析方法: ①绝热过程:(外界对气体做的功)W U 0Q =∆⇒=
②等P 、V 或T 过程:先由理想气体状态方程(公式12)判断出P 、V 、T 的变化
③联系过程:W U Q W V V W U T T U -∆=↑↑→↑
∆↑→∆,:,:;。

相关文档
最新文档