海淀区2010-2011学年九年级第一学期期末考试数学试题及答案

合集下载

北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】

北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】

北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)的结果是()A .2B .﹣2C .±2D .±42、(4分)如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为()A .B 1-C 1D .13、(4分)数据42.610-⨯用小数表示为()A .0.0026B .0.00026C .0.00026-D .0.0000264、(4分)已知关于x 的一元二次方程......()222340m x x m -++-=的一个根是0,则m 的值为()A .2m =±B .2m =C .2m =-D .1m =5、(4分)下列代数式属于分式的是()A .2xB .3yC .1xx -D .2x+y6、(4分)下列各式中,不是二次根式的是()A B C .D .7、(4分)方程20x x -=的根是()A .1x =B .120x x ==C .121x x ==D .10x =,21x =8、(4分)服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A .平均数B .中位数C .方差D .众数二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若式子有意义,则x 的取值范围为___________.10、(4分)如图,在菱形ABCD 中,∠ABC =∠EAF =60,∠BAE =20,则∠CEF =________.11、(4分)如图,在Rt △ABC 中,D 是斜边AB 的中点,AB=2,则CD 的长为_____.12、(4分)如图,双曲线3(0)y x x =>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是_____.13、(4分)若分式2x x x 的值为零,则x=___________。

北京市海淀区九级(上)数学期末试卷

北京市海淀区九级(上)数学期末试卷

海淀区 2018-2018 学年九年级第一学期期末数学试卷(分数: 120 分时间: 120 分钟)一、选择题(此题共32 分,每题 4 分)下边各题均有四个选项,此中只有一个..是切合题意的.1.的值是()A.3B.- 3C.D.62.如图,将一张矩形纸片沿对角线剪开获得两个直角三角形纸片,将这两个直角三角形纸片经过图形变换组成以下四个图形,这四个图形中是中心对称图形的是 ( ).....矩形纸片A B C D3.如图,在△中,点、分别为边、上的点,且∥,若,,,则的长为()A.3B.6 C.9 D.124.二次函数的图象如下图,将其绕坐标原点O 旋转,则旋转后的抛物线的解读式为( )A .B .C. D .5.在平面直角坐标系中,以点为圆心, 4为半径的圆与y 轴所在直线的地点关系是 ()A .相离B.相切C.订交D.没法确立6.若对于的方程没有实数根,则的取值范围是A .B. C .D.7.如图,是⊙的切线,为切点,的延伸线交⊙于点,连结,若,,则等于 ( C. D.8.如图, Rt △ ABC 中, AC=BC =2 ,正方形CDEF 的极点 D 、F分别在 AC、 BC 边上,C、 D 两点不重合,设CD 的长度为 x,△ ABC 与正方形 CDEF 重叠部分的面积为y,则下列图象中能表示 y 与 x 之间的函数关系的是()yyy y22241111A B C D二、填空题(此题共16 分,每题 4 分)9.比较大小:(填“>”、“ =”或“ <”).10.如图,是⊙ O 上的点,若,则___________度.11.已知点 P( - 1,m)在二次函数的图象上,则m 的值为;平移此二次函数的图象,使点P 与坐标原点重合,则平移后的函数图象所对应的解读式为. 12.在△中,分别是边上的点,是边的等分点,,.如图1,若,,则∠+∠+∠++∠度;如图2,若,,则∠+∠+∠++∠(用含,的式子表示) .BP1P2P3F P n-1C E A图 2三、解答题(此题共30 分,每题 5 分)13.计算:.14.解方程:.15.如图,在△和△中,,为线段上一点,且.求证:.16.已知抛物线经过(0,- 1),(3,2)两点.求它的解读式及极点坐标.17.如图,在四边形ABCD 中,∥且,E是BC上一点,且.求证:.18.若对于的方程有实数根.(1)求的取值范围;(2)当获得最大整数值时,求此时方程的根.四、解答题(此题共20 分,每题 5 分)19.如图,用长为20M 的篱笆恰巧围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为M ,面积为平方 M .(注:的近似值取3)( 1)求出与的函数关系式,并写出自变量的取值范围;( 2)当半径为什么值时,扇形花坛的面积最大,并求面积的最大值.20.如图, AB 为O 的直径,射线AP 交O 于 C 点,∠ PCO 的均分线交O 于 D 点,过点 D作交AP于E点.( 1)求证: DE 为O 的切线;( 2)若,,求直径的长.21.已知二次函数.( 1)若点与在此二次函数的图象上,则(填“ >”、“ =”或“<”);( 2)如图,此二次函数的图象经过点,正方形ABCD 的极点C、 D 在 x 轴上,A、 B 恰幸亏二次函数的图象上,求图中暗影部分的面积之和.22.晓东在解一元二次方程时,发现有这样一种解法:如:解方程.解:原方程可变形,得.,,.直接开平方并整理,得.我们称晓东这类解法为“均匀数法”.( 1)下边是晓东用“均匀数法”解方程时写的解题过程.解:原方程可变形,得.,.直接开平方并整理,得¤.上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____, _____.(2)请用“均匀数法”解方程:.五、解答题(此题共22 分,第 23、 24 小题各 7 分,第 25 小题 8 分)23.已知抛物线().(1)求抛物线与轴的交点坐标;(2)若抛物线与轴的两个交点之间的距离为2,求的值;(3)若一次函数的图象与抛物线一直只有一个公共点,求一次函数的解读式.24.已知四边形ABCD 和四边形 CEFG 都是正方形,且AB>CE.( 1)如图 1,连结 BG、 DE.求证: BG=DE ;( 2)如图2,假如正方形ABCD 的边长为,将正方形CEFG 绕着点 C 旋转到某一地点时恰巧使得 C G//BD,BG=BD .①求的度数;②请直接写出正方形CEFG 的边长的值 .图 1图 225.如图 1,已知二次函数的图象与x轴交于A、B两点(B在A的左边),极点为C,点 D (1, m)在此二次函数图象的对称轴上,过点 D 作 y 轴的垂线,交对称轴右边的抛物线于 E 点.( 1)求此二次函数的解读式和点 C 的坐标;( 2)当点 D 的坐标为( 1, 1)时,连结BD、.求证:均分;( 3)点 G 在抛物线的对称轴上且位于第一象限,若以A、 C、 G 为极点的三角形与以G、D 、E 为极点的三角形相像,求点 E 的横坐标.图1备用图1备用图2海淀区九年级第一学期期末练习数学试卷答案及评分参照:1.,,, .2.,.3.,.32412345678A CB DC B B A1649<1013011 0,(2)12(2 )30,51354.5145.145 1552=3△△451650-1322341 - 25 175123△△.45 1851.12 212.34 ,52051951lM....2.3 2..5 205P 1:ECOD.21D,F 3.CDPCO A BO..1....DE O.2(2)O F..,.3,ODEF...4 Rt AOF...52151<.220 - 4m = - 43ABCDyOD=OC.Bn 2nn >0B..4 B24.=2 4=8522.5(1)42- 1- 7 .22..3.452223 24725823.71...x 1 00 .22..3...4 3..6.724.71...1..22BE.1BG=DE ...,.3,A D..4G,.BFC.E5.7 25.81 D 1 m1 C1-422D 1 1 DE y E 1 DE xyED EB O A xED E =C图 1A3,0B-1,0BD =BD=DE343ACG G D EGDEACGGA3,0C1-4,G1 1AG=AC=图 211/12AC=2 AG.GD=2 DE DE =2 GD .t >1.D G DE=t1-GD =() =.i.2GD =2 DE= 2(t- 1)..()5图 3 ii.3DE =2GDt - 1=2()..()6.DG DE=t - 1GD=1-()= -.i.4GD =2 DE= 2 t - 1 .图 4.()7=2 GDt- 1=2..()8E.图 512/12。

海淀区2021届初三第一学期期末考试数学试题及答案

海淀区2021届初三第一学期期末考试数学试题及答案

海淀区初三第一学期期末学业水平调研数 学 2021.1一、 选择题(本题共24分,每小题3分) 1.已知反比例函数ky x=的图象经过点()2,3A ,则k 的值为 A .3B .4C .5D .62.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo 进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是A .B .C .D .3.不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为 A .13B .12C .23D .1 4.如图,△ABC 中,点D ,E 分别在边AB ,AC 的反向延长线上,且DE ∥BC .若AE =2,AC =4,AD =3,则AB 为 A .9 B .6C .3D .325.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是 A .10x -= B .20x x += C .210x -=D .210x +=B6.如图,⊙O的内接正六边形ABCDEF的边长为1,则BC的长为A.14πB.13πC.23πD.π7.已知二次函数2y ax bx c=++的部分图象如图所示,则使得函数值y大于2的自变量x的取值可以是A.-4B.-2C.0 D.28.下列选项中,能够被半径为1的圆及其内部所覆盖的图形是A的线段B.斜边为3的直角三角形C.面积为4的菱形D,圆心角为90°的扇形二、填空题(本题共24分,每小题3分)9.写出一个二次函数,使得它有最小值,这个二次函数的解析式可以是.10.若点(1,a),(2,b)都在反比例函数4yx=的图象上,则a与b的大小关系是:a b (填“>”、“=”或“<”).11.如图,△ABC为等腰三角形,O是底边BC的中点,若腰AB与⊙O相切,则AC与⊙O的位置关系为(填“相交”、“相切”或“相离”).12.关于x的一元二次方程230x x m-+=有一个根是1x=,则m=.CB13.某城市启动“城市森林”绿化工程,林业部门要考察某种树苗在一定条件下的移植成活率.在同样条件下,对这种树苗进行大量移植,并统计成活情况,数据如下表所示:估计树苗移植成活的概率是 (结果保留小数点后一位).14.如图,在测量旗杆高度的数学活动中,某同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面AB =1.5 m ,同时量得BC =2 m ,CD =12 m ,则旗杆高度DE = m.15.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =3,点D 在AC 上,且AD =2,将点D 绕着点A 顺时针方向旋转,使得点D 的对应点E 恰好落在AB 边上,则旋转角的度数为 ,CE 的长为 .16.已知双曲线3y x=-与直线y kx b =+交于点()11,A x y ,()22,B x y .(1)若120x x +=,则12y y += ;(2)若120x x +>时,120y y +>,则k 0,b 0(填“>”、“=”或“<”).A EDCB三、解答题(本题共52分,第17-20题,每小题5分,第21-23题,每小题6分,第24-25题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:2430x x -+=.18.如图,在Rt △ABC 和Rt △ACD 中,∠B =∠ACD =90°,AC 平分∠BAD .(1)证明:△ABC ∽△ACD ;(2)若AB =4,AC =5,求BC 和CD 的长.CBAD19.如图1是博物馆展出的古代车轮实物,《周礼·考工记》记载:“……故兵车之轮六尺有六寸,田车之轮六尺有三寸……”据此,我们可以通过计算车轮的半径来验证车轮类型,请将以下推理过程补充完整.图1图2如图2所示,在车轮上取A、B两点,设AB所在圆的圆心为O,半径为r cm.作弦AB的垂线OC,D为垂足,则D是AB的中点.其推理的依据是:.经测量,AB=90cm,CD=15cm,则AD= cm;用含r的代数式表示OD,OD= cm.在Rt△OAD中,由勾股定理可列出关于r的方程:2r ,解得r=75.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.20.文具店购进了20盒“2B”铅笔,但在销售过程中,发现其中混入了若干“HB”铅笔.店员进行统计后,发现每盒铅笔中最多混入了2支“HB”铅笔,具体数据见下表:混入“HB”铅笔数012盒数6m n(1)用等式写出m,n所满足的数量关系;(2)从20盒铅笔中任意选取了1盒,①“盒中没有混入‘HB’铅笔”是事件(填“必然”、“不可能”或“随机”);②若“盒中混入1支‘HB’铅笔”的概率为14,求m和n的值.CB ADO21.如图,在平面直角坐标系xOy 中,线段AB 两个端点的坐标分别为A (1,2),B (4,2),以点O 为位似中心,相似比为2,在第一象限内将线段AB 放大得到线段CD .已知点B 在反比例函数(0)ky x x=>的图象上. (1)求反比例函数的解析式,并画出图象; (2)判断点C 是否在此函数图象上;(3)点M 为直线..CD 上一动点,过M 作x 轴的垂线,与反比例函数的图象交于点N .若MN AB ≥,直接写出点M 横坐标m 的取值范围.22.如图,Rt △ABC 中,∠ACB =90°,点D 在BC 边上,以CD 为直径的⊙O 与直线AB 相切于点E ,且E 是AB 中点,连接OA .(1)求证:OA =OB ;(2)连接AD ,若AD=,求⊙O 的半径.CBAOEDxy23.在平面直角坐标系xOy 中,点1(,)P m y 在二次函数2y x bx c =++的图象上,点()2,Q m y 在一次函数4y x =-+的图象上.(1)若二次函数图象经过点(0,4),(4,4).①求二次函数的解析式与图象的顶点坐标; ②判断0m <时,1y 与2y 的大小关系;(2)若只有..当1m ≥时,满足120y y ⋅≤,求此时二次函数的解析式.xy24.已知45MAN ∠=︒,点B 为射线AN 上一定点,点C 为射线AM 上一动点(不与点A 重合),点D 在线段BC 的延长线上,且CD CB =.过点D 作DE ⊥AM 于点E .图1 图2(1)当点C 运动到如图1的位置时,点E 恰好与点C 重合,此时AC 与DE 的数量关系是 ;(2)当点C 运动到如图2的位置时,依题意补全图形,并证明:2AC =AE +DE ; (3)在点C 运动的过程中,点E 能否在射线AM 的反向延长线上?若能,直接用等式表示线段AC 、AE 、DE 之间的数量关系;若不能,请说明理由.NMDC (E )BA25.如图1,对于△PMN 的顶点P 及其对边MN 上的一点Q ,给出如下定义:以P 为圆心,PQ 为半径的圆与直线MN 的公共点都在线段MN 上,则称点Q 为△PMN 关于点P 的内联点.图1 图2在平面直角坐标系xOy 中:(1)如图2,已知点(7,0)A ,点B 在直线1y x =+上.① 若点(3,4)B ,点(3,0)C ,则在点O ,C ,A 中,点_______是△AOB 关于点B 的内联点;②若△AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围;(2)已知点(2,0)D ,点(4,2)E ,将点D 绕原点O 旋转得到点F ,若△EOF 关于点E的内联点存在,直接写出点F 横坐标m 的取值范围.QNMP海淀区初三第一学期期末学业水平调研数 学 2021.1参考答案一、选择题 (本题共24分,每小题3分)二、填空题(本题共24分,每小题3分) 9.不唯一,例如:2y x = 10.> 11.相切 12.2 13.0.9 14.915.45 (注:第一个空2分,第二个空1分) 16.(1)0;(2)<;>.(每空1分)三、解答题(本题共52分,第17~20题每题5分,第21~23题每题6分,第27~28题,每小题7分) 17.解:方法一:24410x x -+-=()221x -=……………………………………………………3分21x -=±121,3x x ==.……………………………………………………5分方法二:()2244434b ac ∆=-=--⨯=.422x ±=, ……………………………………3分121,3x x ==.……………………………………………………5分方法三: (1)(3)0x x --=………………………………3分10x -=或30x -=121,3x x ==.……………………………………………………5分18.(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC . ………………………………………………1分 ∵∠B =∠ACD =90°,∴△ABC ∽△ACD . ………………………………………………3分(2)解:在Rt △ABC 中,∠B =90°,∵AB =4,AC =5,∴3BC .………………………………………………4分 ∵△ABC ∽△ACD , ∴AB BCAC CD =. ∴435CD=, ∴154CD =. ………………………………………………5分19. 垂直于弦的直径平分弦; ………………………………………………1分 45; ………………………………………………2分()15r -; ………………………………………………3分()224515r +-. ………………………………………………5分20.(1)14m n +=. ………………………………………………2分 (2)①随机 ………………………………………………3分②解:∵盒中混入1支‘HB ’铅笔的概率为14, ∴12054m =⨯=. ………………………………………………4分 ∵14m n +=,∴9n =. ………………………………………………5分21.(1)∵ 点B (4,2)在反比例函数ky x=的图象上, ∴ 428k =⨯=,即该函数的解析式为8y x=(0)x >. …………2分 如图…………3分(2)点C 在反比例函数的图象上. …………4分 (3)807m <≤或 8m ≥ …………6分 22.(1)证明:在⊙O 中,连接OE .∵ 直线AB 与⊙O 相切于点E ,∴ OE ⊥AB . …………1分 ∵ E 是AB 中点,∴ OA =OB . …………2分 (2)解:∵ OA =OB , ∴ ∠OAE =∠B . ∵∠ACB =90°,∴AE ,AC 是⊙O 的切线, ∴∠OAE =∠OAC .(切线长定理) ∴ ∠OAE =∠OAC =∠B . ∵ ∠OAE +∠OAC +∠B =90°, ∴ ∠OAC =30°.…………4分设⊙O 的半径为r ,则CD =2r 在Rt △AOC 中,AO =2OC =2r .∴ AC =. …………5分 在Rt △ACD 中,222AC CD AD +=,AD , ∴)()2227r +=,解得1r =.∴ ⊙O 的半径为1. …………6分23.(1)① ∵ 二次函数2y x bx c =++的图象过点(0,4),(4,4),∴4c =,1644b c ++=. --------1分 ∴ 4b =-.∴ 二次函数的解析式为244y x x =-+. …………2分 ∵ ()22y x =-,∴ 该二次函数的顶点坐标为(2,0). …………3分 ② 12y y >,…………4分(2)∵只有当1m ≥时,120y y ⋅≤,∴当1m <时,120y y ⋅>.而点2(,)Q m y 在一次函数4y x =-+图象上, ① 当1m <时,20y >,而120y y ⋅>,因此10y >; ② 当14m ≤<时,20y >,而120y y ⋅≤,因此10y ≤; ③ 当4m >时,20y <,而120y y ⋅≤,因此10y ≥;∵点1(,)P m y 在二次函数2y x bx c =++的图象上,∴当1m =或4时,10y =. …………5分∴平移后的二次函数解析式为2(1)(4)54y x x x x =--=-+…………6分(2)补全图形, …………3分证明:法1:在射线AM 上取点F ,使AC =CF , ∵ AC =CF ,BC =CD ,∠BCA =∠DCF , ∴ △ABC ≌△FDC . ∴ ∠DFE =∠A =45°. ∵ DE ⊥AM , ∴ DE =EF . ∵ AF =AE +EF =2AC , ∴ 2AC =AE +DE . …………5分法2:作BF ⊥AM 于点F , ∵ BF ⊥AM ,DE ⊥AM , ∴ ∠BFC =∠DEC =90°. ∵ CD =CB ,∠BCF =∠DCE , ∴ △BCF ≌△DCE . ∴ CF =CE ,BF =DE . ∵ ∠MAN =45°, ∴ AF =BF =DE .∴ AE +DE =AF +FE +DE =2(AF+FC)=2AC . …………5分 结论得证.(3)点E 能在线段AC 此时2AC +AE =DE . …………7分AA② 过点B 作BH ⊥x 轴于点H ,如图,根据定义,若点H 在线段OA 上,则H 为△AOB 关于点B 的一个内联点;若点H 不在线段OA 上,则对于线段OA 上任意一点Q ,其关于BH 的对称点Q '即为以B 为圆心,BQ 为半径的圆与直线AB 的另一个交点,而点Q '不在线段OA 上,此时△AOB 关于点B 的内联点不存在.因此要满足题意,H 点必须在OA 上. ∴点B 的横坐标的取值范围是07B x ≤≤.由于点B 在直线1y x =+上,所以点B 的纵坐标n 的取值范围是18n ≤≤. …………5分(2)0m ≤≤85m ≤. …………7分。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

五、设函数由方程确定,求.(8分)六、若有界可积函数满足关系式,求。

(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。

(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程的通解(6分)十一、求证:.(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。

B 3。

D 4。

B 5.D分,共18分)为任意常数),4. 2 , 5。

6。

分 (6)分解:………………3分…………….6分 (8)导 (3)数)…………6分分解:(1)。

……。

.3分 (6)分分=……………6分时有极大值2,有极小值。

在上是凸的,在上是凹的,拐点为(0,0)………10分十、解;…………………..3分设方程(1)的解为代入(1)得………5分…………………….6分十一、证明:令………………1 分又…。

3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。

,所以…………。

5分.(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是( )(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的()(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内()(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。

(A)(B)(C)(D)5.广义积分当( )时收敛。

(A) (B) (C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限.(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型。

(7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。

北京海淀区北京市十一学校2022-2023学年九年级上学期期末数学试题及解析

北京海淀区北京市十一学校2022-2023学年九年级上学期期末数学试题及解析

北京海淀区北京市十一学校2022-2023学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若)(250y x xy =≠,则下列比例式正确的是( ) A .52x y=B .25x y= C .25x y = D .25y x = 2.在Rt ABC △中,90C ∠=︒,4AB =,3BC =,则sin A 的值是( )A B .34C .35D .453.在平面直角坐标系xOy 中,抛物线2y x =向上平移2个单位长度得到的抛物线为( ) A .)(22y x =+B .)(22y x =-C .22y x =-D .22y x =+4.在平面直角坐标系xOy 中,抛物线)(20y ax bx c a =++≠的示意图如图所示,下列说法中正确的是( )A .a<0B .0b <C .0c >D .0∆>5.在平面直角坐标系xOy 中,若函数)(0ky x x=<的函数值y 随着自变量x 的增大而增大,则函数)(0ky x x=<的图象所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限6.如图,四边形ABCD 内接于O ,若四边形ABCO 是菱形,则D ∠的度数为( )A .45°B .60°C .90°D .120°7.正方形的面积y 与它的周长x 满足的函数关系是( ) A .正比例函数B .一次函数C .二次函数D .反比例函数8.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =二、填空题 9.如图,ABCD ,AD ,BC 交于点O ,12AO OD =.若3BO =,则OC 的长为______.10.在半径为3的圆中,60°的圆心角所对的劣弧长等于_____. 11.如图,在平面直角坐标系xOy 中,P 为函数)(0my x x=>图象上一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为M ,N .若矩形PMON 的面积为3,则m 的值为______.12.如图,ABC 的高AD ,BE 相交于点O ,写出一个与AOE △相似的三角形,这个三角形可以是______.13.如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OBA ∠=︒,3PA =,则AB 的长为________.14.有一块三角形的草坪,其中一边的长为10m .在这块草坪的图纸上,这条边的长为5cm .已知图纸上的三角形的周长为15cm ,则这块草坪的周长为______m . 15.北京冬奥会雪上项目竞赛场地“首钢滑雪大跳台”巧妙地融入了敦煌壁画“飞天”元素.如图,赛道剖面图的一部分可抽象为线段AB .已知坡AB 的长为30m ,坡角ABH∠约为37°,则坡AB 的铅直高度AH 约为______m .(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈.)16.如图,在平面直角坐标系xOy 中,P 为x 轴正半轴上一点.已知点)(0,2A ,)(0,8B ,M 为ABP 的外接圆.(1)点M 的纵坐标为______;(2)当APB ∠最大时,点P 的坐标为______.三、解答题17)(0604cos 451π︒-︒--18.如图,AE 平分BAC ∠,D 为AE 上一点,B C ∠=∠.(1)求证:ABEACD ;(2)若D 为AE 中点,4BE =,求CD 的长.19.在平面直角坐标系xOy 中,已知抛物线243y x x =-+. (1)求它的顶点坐标; (2)求它与x 轴的交点坐标.20.下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程. 已知:如图,ABC .求作:直线BD ,使得BD AC ∥. 作法:如图,①分别作线段AC ,BC 的垂直平分线1l ,2l ,两直线交于点O ; ①以点O 为圆心,OA 长为半径作圆;①以点A 为圆心,BC 长为半径作弧,交AB 于点D ; ①作直线BD .所以直线BD 就是所求作的直线. 根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:连接AD ,①点A ,B ,C ,D 在O 上,AD BC =, ①AD =______.①DBA CAB ∠=∠(______)(填推理的依据). ①BD AC ∥.21.如图,在ABC 中,45B ∠=︒,2tan 3C =,AC =BC 的长.22.在平面直角坐标系xOy 中,二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表:(1)求这个二次函数的表达式; (2)画出这个二次函数的图象;(3)若3y <-,结合函数图象,直接写出x 的取值范围.23.如图,AB 为O 的直径,点C 在O 上,连接AC ,BC ,过点O 作OD BC ⊥于点D ,过点C 作O 的切线交OD 的延长线于点E .(1)求证:E B ∠=∠;(2)连接AD .若CE =8BC =,求AD 的长.24.如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2m ,当排球飞行到距离球网3m 时达到最大高度2.5m .小石建立了平面直角坐标系xOy (1个单位长度表示1m ),求得该抛物线的表达式为215722y x =-+.根据以上信息,回答下列问题:(1)画出小石建立的平面直角坐标系; (2)判断排球能否过球网,并说明理由.25.在平面直角坐标系xOy 中,反比例函数)(0ky k x=≠的图象过点)(2,3A . (1)求k 的值;(2)过点)()(,00P m m ≠作x 轴的垂线,分别交反比例函数)(0ky k x =≠,4y x=-的图象于点M ,N .①当2m =-时,求MN 的长;①若5MN ≥,直接写出m 的取值范围.26.在平面直角坐标系xOy 中,()11,A m y -,()23,B y 是抛物线2224y x mx m =-+-上两点.(1)将2224y x mx m =-+-写成()2y a x h k =-+的形式; (2)若1m =,比较1y ,2y 的大小,并说明理由; (3)若12y y <,直接写出m 的取值范围.27.如图,AD 是ABC 的高,点B 关于直线AC 的对称点为E ,连接CE ,F 为线段CE 上—点(不与点E 重合),AF AB =.(1)比较AFE ∠与ABC ∠的大小;(2)用等式表示线段BD ,EF 的数量关系,并证明.(3)连接BF ,取BF 的中点M ,连接DM .判断DM 与AC 的位置关系,并证明.28.在平面直角坐标系xOy 中,O 的半径为2.点P ,Q 为O 外两点,给出如下定义:若O 上存在点M ,N ,使得P ,Q ,M ,N 为顶点的四边形为矩形,则称点P ,Q 是O 的“成对关联点”.(1)如图,点A ,B ,C ,D 横、纵坐标都是整数.在点B ,C ,D 中,与点A 组成O 的“成对关联点”的点是______;(2)点)(,E t t 在第一象限,点F 与点E 关于x 轴对称.若点E ,F 是O 的“成对关联点”,直接写出t 的取值范围;(3)点G 在y 轴上.若直线4y =上存在点H ,使得点G ,H 是O 的“成对关联点”,直接写出点G 的纵坐标G y 的取值范围.参考答案:1.C【分析】根据“内项之积等于外项之积”对四个选项进行计算,然后与条件进行对比即可判断. 【详解】解:A 、52xy =,得25x y =,故选项A 不符合题意; B 、 25x y=,得10xy =,故选项B 不符合题意; C 、25x y =,得52x y =,故选项C 符合题意; D 、25y x =,得52y x =,故选项D 不符合题意; 故选:C .【点睛】此题主要考查了比例的性质,正确将已知变形是解题关键. 2.B【分析】根据锐角的正弦为对边比斜边求出sin A 的值即可. 【详解】解:在Rt ABC △中,90C ∠=︒,4AB =,3BC =, ①3sin 4BC A AB ==. 故选:B .【点睛】本题考查锐角三角函数的定义及运用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 3.D【分析】抛物线的平移规律:左加右减,上加下减,利用平移规律直接可得答案. 【详解】解:抛物线2y x =向上平移2个单位长度得到的抛物线为22,y x故选D【点睛】本题考查的是抛物线的平移,掌握“抛物线的上下平移规律”是解本题的关键. 4.A【分析】根据抛物线开口方向可得a<0,可对A 进行判断;根据对称轴位置可得b >0,可对B 进行判断;根据抛物线与y 轴交点位置可得c <0,可对C 进行判断;根据抛物线与x 轴无交点可得①<0,可对D 进行判断;综上即可得答案. 【详解】①抛物线开口向下, ①a<0,故A 选项正确, ①对称轴在y 轴右侧,①2ba->0, ①b >0,故B 选项错误, ①抛物线与y 轴交于y 轴负半轴, ①c <0,故C 选项错误, ①抛物线与x 轴无交点, ①①<0,故D 选项错误, 故选:A .【点睛】本题考查二次函数图象与系数的关系,当a =0时,抛物线开口向上,当a <0时,开口向下;当对称轴在y 轴左侧时,a 、b 同号,当对称轴在y 轴右侧时,a 、b 异号;c 的符号由图象与y 轴的交点位置决定;当①>0时,图象与x 轴有2个交点,当①=0时,图象与x 轴有1个交点;①<0时,图象与x 轴没有交点;熟练掌握相关知识是解题关键. 5.B【分析】根据反比例函数的性质求解. 【详解】解:反比例函数)(0ky x x=<的函数值y 随着自变量x 的增大而增大, 所以双曲线的两支分别位于第二、第四象限,而x <0,则分支在第二象限. 故选:B .【点睛】本题考查了反比例函数的性质:反比例函数ky x=(k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大. 6.B【分析】设①ADC =α,①ABC =β,由菱形的性质与圆周角定理可得18012,求出β即可解决问题.【详解】解:设①ADC =α,①ABC =β; ①四边形ABCO 是菱形, ①①ABC =①AOC β=; ∴ ①ADC =12β;四边形ABCD 为圆的内接四边形,∴α+β=180°,①18012,解得:β=120°,α=60°,则①ADC =60°, 故选:B .【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键. 7.C【分析】由周长,先求出正方形的边长,然后结合面积公式,即可得到答案. 【详解】解:①正方形的周长为x ,①正方形的边长为4x,①正方形的面积221()416x y x ==; 故选:C .【点睛】本题考查了函数表达式,解题的关键是掌握正方形的面积和周长公式. 8.A【分析】根据二次函数解析式可得抛物线对称轴及开口方向,根据各点横坐标可判断312y y y >>,进而求解.【详解】解:①22y ax ax c =-+中0a >, ①抛物线开口向上,对称轴为直线212ax a-=-=, ①411(1)21->-->-, ①312y y y >>,当120y y <时,12y y ,异号, ①1200y y ><,,①310y y >>,选项A 正确. 当3120y y y >>>时,230y y >, ①选项B 错误,当130y y <时,3100y y ><,, ①210y y <<,选项C 错误.当1230y y y =时,123y y y ,,中有1个值为0即可, ①选项D 错误. 故选:A .【点睛】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数的性质,掌握二次函数图象与系数的关系. 9.6【分析】根据ABCD 可以证明ODC OAB △∽△,进而得出比例式,再根据12AO OD =和3BO =即可求出OC 的长度. 【详解】解:①ABCD ,AD ,BC 交于点O ,①D A ∠=∠,C B ∠=∠. ①ODC OAB △∽△. ①OD OCOA OB=. ①12AO OD =, ①2ODOA=. ①2OCOB=. ①3BO =, ①6OC =. 故答案为:6.【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键. 10.π【分析】弧长公式为l =n 180rπ,把半径和圆心角代入公式计算就可以求出弧长. 【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长=603180π⨯=π, 故答案为:π.【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式.11.3【分析】根据反比例函数的解析式是m y x=,设点(,)P a b ,根据已知得出3ab =,即3xy =,求出即可.【详解】解:设反比例函数的解析式是my x=, 设点(,)P a b 是反比例函数图象上一点, 矩形PMON 的面积为3,3ab ∴=,即3m xy ==, 故答案为:3.【点睛】本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力. 12.ACD ∆(答案不唯一)【分析】根据已知条件得到90AEO BDO ∠=∠=︒,AOE BOD ∠=∠,推出AOE BOD ∆∆∽;同理AOE ACD ∆∆∽,根据相似三角形的性质得到AFE C ∠=∠,又90AEO BEC ∠=∠=︒,于是得到AOE BCE ∆∆∽.【详解】解:本题答案不唯一;与AOE ∆相似的三角形有:BOD ∆,ACD ∆,BCE ∆, 选择求证:ACD AOE ∆∆∽.证明:ABC ∆的高AD ,BE 交于点O ,90ADC AEO ∴∠=∠=︒. CAD OAE ∠=∠, ACD AOE ∴∆∆∽,故答案是:ACD ∆.【点睛】本题考查了相似三角形的判定,三角形的高的定义,解题的关键是掌握有两角对应的两个三角形相似. 13.3【分析】根据切线长定理和切线的性质,得出PA PB =,90PBO ∠=︒,再根据等腰三角形的判定定理,得出PAB 为等腰三角形,再根据角之间的数量关系,得出60PBA ∠=︒,再根据等边三角形的判定定理,得出PAB 为等边三角形,再根据等边三角形的性质,得出AB PA =,进而即可得出答案.【详解】解:①PA ,PB 分别为O 的切线, ①PA PB =,90PBO ∠=︒, ①PAB 为等腰三角形, ①30OBA ∠=︒,①60PBA PBO OBA ∠=∠-∠=︒, ①PAB 为等边三角形, ①AB PA =, ①3PA =, ①3AB =. 故答案为:3【点睛】本题考查了切线长定理、切线的性质、等腰三角形的判定定理、等边三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理. 14.30【分析】设这块草坪的周长为x m ,由实际的三角形草坪与图纸上的三角形草坪是相似三角形,再利用相似三角形的性质列方程即可. 【详解】解:设这块草坪的周长为x m ,由题意可得:实际的三角形草坪与图纸上的三角形草坪是相似三角形,10,155x解得:30x =,所以这块草坪的周长为30m. 故答案为:30【点睛】本题考查的是相似三角形的性质,掌握“相似三角形的周长之比等于相似比”是解本题的关键. 15.18【分析】由30,37,90,AB ABHAHB 结合sin 37,AHAB再解方程即可. 【详解】解:由题意得:30,37,90,AB ABH AHBsin 37,AHAB300.6018AHm ,故答案为:18【点睛】本题考查的是解直角三角形的实际应用,掌握“由锐角的正弦求解直角三角形的边长”是解本题的关键. 16. 5 (4,0)【分析】(1)根据点M 在线段AB 的垂直平分线上求解即可;(2)点P 在①M 切点处时,APB ∠最大,而四边形OPMD 是矩形,由勾股定理求解即可. 【详解】解:(1)①①M 为△ABP 的外接圆, ①点M 在线段AB 的垂直平分线上, ①A (0,2),B (0,8), ①点M 的纵坐标为:8252+=, 故答案为:5;(2)过点)(0,2A ,)(0,8B ,作①M 与x 轴相切,则点M 在切点处时,APB ∠最大, 理由:若点P '是x 轴正半轴上异于切点P 的任意一点, 设AP '交①M 于点E ,连接AE ,则①AEB =①APB , ①①AEB 是ΔA P 'E 的外角, ①①AEB>①A P 'B ,①①APB >①A P 'B ,即点P 在切点处时,①APB 最大, ①①M 经过点A (0,2)、B (0,8),①点M 在线段AB 的垂直平分线上,即点M 在直线y =5上,①①M 与x 轴相切于点P ,MP ①x 轴,从而MP =5,即①M 的半径为5,设AB 的中点为D ,连接MD 、AM ,如上图,则MD ①AB ,AD =BD =12AB =3,BM =MP =5,而①POD =90°,①四边形OPMD 是矩形,从而OP =MD , 由勾股定理,得MD 4=, ①OP =MD =4,①点P 的坐标为(4,0),故答案为:(4,0).【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键. 17.2【分析】将特殊角的三角函数值代入,然后利用二次根式的运算法则计算即可得.()0604cos 451π︒-︒--41-+31=-+2=.【点睛】题目主要考查特殊角的三角函数值的计算,二次根式的混合运算,0次幂的运算,熟记特殊角的三角函数值是解题关键. 18.(1)证明见详解;(2)CD 的长为2.【分析】(1)由角平分线的定义可得BAE EAC ∠=∠,根据相似三角形的判定定理即可证明; (2)由中点的定义可得12AD AE =,再由(1)中结论相似三角形的性质即可得. 【详解】解:(1)证明∵AE 平分BAC ∠, ∴BAE EAC ∠=∠, 在ABE ∆与ACD ∆中, ∵BAE EAC ∠=∠,B C ∠=∠,∴~ABE ACD ∆∆;(2)∵D 为AE 中点, ∴12AD AE =, ∵~ABE ACD ∆∆, ∴12AD CD AE BE ==, ∴122CD BE ==, ∴CD 的长为2.【点睛】题目主要考查相似三角形的判定和性质,角平分线和线段中点的性质,熟练掌握相似三角形的判定和性质是解题关键. 19.(1)()2,1-;(2)1,0,3,0. 【分析】(1)把抛物线化为顶点式即可;(2)令0,y = 则2430,x x -+=再利用因式分解法解一元二次方程即可. 【详解】解:(1)224321,yx x x所以抛物线的顶点坐标为:2,1. (2)令0,y = 则2430,x x -+=()()130,x x ∴--=10x ∴-=或30,x -=解得:121,3,x x ==所以抛物线与x 轴的交点坐标为:1,0,3,0.【点睛】本题考查的是求解抛物线的顶点坐标,抛物线与x 轴的交点坐标,掌握“把抛物线化为顶点式以及把0y =代入抛物线求解与x 轴的交点坐标”是解本题的关键. 20.(1)作图见解析;(2),BC 在同圆中,等弧所对的圆周角相等 【分析】(1)根据题干的作图步骤依次作图即可;(2)由作图可得AD BC =,证明AD BC =,利用圆周角定理可得DBA CAB ∠=∠,从而可得答案.【详解】解:(1)如图,直线BD 就是所求作的直线(2)证明:连接AD ,①点A ,B ,C ,D 在O 上,AD BC =, ①AD BC =.①DBA CAB ∠=∠(在同圆中,等弧所对的圆周角相等). ①BD AC ∥.故答案为:,BC 在同圆中,等弧所对的圆周角相等【点睛】本题考查的是作线段的垂直平分线,三角形的外接圆,平行线的作图,圆周角定理的应用,掌握“圆周角定理”是理解作图的关键. 21.10【分析】过点A 作AD ①BC ,结合三角函数值,分别求出BD 、CD 的长度,即可得到答案. 【详解】解:根据题意,过点A 作AD ①BC ,如图:①①ABD ,①ACD 都是直角三角形, ①2tan 3AD C CD ==, 设2AD x =,3CD x =,①AC == 解得:2x =(负值已舍去), ①4=AD ,6CD =, ①45B ∠=︒, ①4BD AD ==, ①4610BC =+=;【点睛】本题考查了三角函数,勾股定理,等腰直角三角形的性质,解题的关键是正确的求出BD 、CD 的长度.22.(1)22y x x =-+;(2)图象见解析;(3)1x <-或x >3【分析】(1)设二次函数的表达式为2y ax bx c =++,根据三组横坐标x 和纵坐标y 的值列出方程组求出a ,b ,c 的值即可得到二次函数的表达式;(2)计算并补充出一些横坐标x 和纵坐标y 的对应值,然后在平面直角坐标系中描点,并用平滑曲线连接即可;(3)根据二次函数的图象应用数形结合思想即可得到x 的取值范围. 【详解】解:(1)设二次函数的表达式为2y ax bx c =++. 将三组横坐标x ,纵坐标y 的值代入可得222000,111,022a b c a b c a b c ⎧=⨯++⎪=⨯++⎨⎪=⨯++⎩.解得1,2,0a b c =-⎧⎪=⎨⎪=⎩.所以二次函数的表达式为22y x x =-+. (2)横坐标x 与纵坐标y 的对应值如下表:建立平面直角坐标系,描点并用平滑曲线连接即可得到该二次函数的图象.(3)3y <-,即223x x -+<-.根据(2)中二次函数图象可以看出当1x <-或x >3时,3y <-. 所以x 的取值范围是1x <-或x >3.【点睛】本题考查二次函数的解析式,二次函数的图象和性质,熟练掌握这些知识点是解题关键.23.(1)证明见解析;(2)AD 【分析】(1)连接OC 通过垂径定理和等腰三角形性质证明①E =①B(2)连接AD 通过计算发现BC =EC ,再通过证明①CED ①①ABC 得到AC =DC =4. 【详解】(1)证明:连接OC 如图:OD ①CB①OB =OC ,①B =OCD又CE 为圆O 的切线①OC ①CE①①ECD +①DCO =①ECD +①E =90°①①E =①DCO =①B①①E =①B(2)连接AD 如图①①EDC 为R t①①DE由(1)得①E =①B又AB 为直径①①BCA =90°在①CED 和①ABC 中 ①B E EDC BCA ED BC ∠=∠⎧⎪∠=∠⎨⎪=⎩①①CED ①①ABC (AAS )①AC =DC =12BC =4①AD ==【点睛】本题考查垂径定理和全等三角形的判定与性质,掌握这些是本题解题关键.24.(1)见解析;(2)排球能过球网,理由见解析【分析】(1)根据该抛物线的表达式为215722y x =-+,可得抛物线的顶点坐标为50,2⎛⎫⎪⎝⎭,从而得到小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,即可求解;(2)根据题意得:当3x = 时,2153 2.375 2.24722y =-⨯+=> ,即可求解. 【详解】解:(1)如图,①该抛物线的表达式为215722y x =-+, ①抛物线的顶点坐标为50,2⎛⎫ ⎪⎝⎭ ,①当排球飞行到距离球网3m 时达到最大高度2.5m .根据题意得:点A 的坐标为50,2⎛⎫ ⎪⎝⎭,①小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,如下图:(2)排球能过球网,理由如下:根据题意得:点B 的横坐标为3,①当3x = 时,2153 2.375 2.24722y =-⨯+=> , ①排球能过球网.【点睛】本题主要考查了建立二次函数的图象和性质,建立适当的平面直角坐标系,熟练掌握二次函数的图象和性质是解题的关键.25.(1)6;(2)①5;①20m -<<或02m <<【分析】(1)把(2,3)A 代入k y x =中即可得出k 的值; (2)①令2x =-代入6y x =和4y x =-中,求出点M 、N 的坐标,即可得出MN 的长; ①令x m =代入6y x =和4y x=-中,求出点M 、N 的坐标,即可得出MN 含m 的表达式,由5MN >即可求出m 的取值范围.【详解】(1))把(2,3)A 代入k y x=中得:32k =, ①6k =;(2)①令2x =-代入6y x =中得:632y ,①(2,3)M --, 令2x =-代入4y x =-中得:422y =-=-, ①(2,2)N -,①235MN =+=;①令x m =代入6y x =中得:6y m =, ①6(2,)M m-, 令x m =代入4y x=-中得:4y m =-, ①4(2,)N m --,①6410+MN m m m==, 当0m >时,105MN m=>, 解得:2m <,①02m <<, 当0m <时,105MN m=->, 解得:2m >-,①20m -<<, 综上述所,m 的取值范围为20m -<<或02m <<.【点睛】本题考查反比例函数的综合应用,掌握待定系数法求解析式以及两点长度的表示是解题的关键.26.(1)()24y x m =-- (2)12y y <(3)2m <或4m >【分析】(1)利用完全平方公式即可求解;(2)当1m =时,确定函数解析式,根据点A ,点B 到对称轴的距离即可判断1y ,2y 的大小; (3)先求出抛物线的对称轴,根据12y y <可知点A 到对称轴的距离小于点B 到对称轴的距离,解不等式即可.【详解】(1)解:2224y x mx m =-+-()24x m =--;(2)解:12y y <,理由如下:若1m =,则抛物线的解析式为()214y x =--,()10,A y ,()23,B y , ∴对称轴为1x =,0131-<-,∴点()23,B y 到对称轴的距离大于点()10,A y 到对称轴的距离,0a >,∴12y y <;(3)解:()24y x m =--的图象开口向上,对称轴为x m =, ∴点()11,A m y -到对称轴的距离为11m m --=,点()23,B y 到对称轴的距离为3m -,12y y <, ∴31m ->,∴31m ->或31m -<-,∴2m <或4m >.【点睛】本题考查二次函数的顶点式,利用函数图象判断函数值的大小,解一元一次不等式等,熟练掌握二次函数的图象和性质是解题的关键.27.(1)AFE ABC ∠=∠,理由见详解;(2)2EF BD =,理由见详解;(3)DH①AC .【分析】(1)过点A 作AG ①CE ,然后利用HL 证明Rt ①ABD ①Rt ①AFG ,即可得到结论成立; (2)连接AE ,则AE =AF ,则AG 垂直平分EF ,则BD FG EG ==,即可得到答案;(3)连接BF ,取BF 的中点M ,连接AM ,DM 并延长交AC 于H ,由等腰三角形的性质知①BAM+①ABM=90°,再利用四边形内角和定理说明①ACB+①BAM=90°,则①ACD=①ABM ,由①AMB=①ADB=90°,由四点A 、B 、D 、M 共圆解决问题.【详解】解:(1)AFE ABC ∠=∠;理由如下:过点A 作AG ①CE ,如图:根据题意,点B 关于直线AC 的对称点为E ,①AC 平分①BCE ,①AD ①BC ,AG ①CE ,①AD =AG ,①AF =AB ,①Rt①ABD①Rt①AFG(HL),∠=∠;①AFE ABC(2)2=;EF BD理由如下:连接AE,如图:①Rt①ABD①Rt①AFG,=,①BD FG①点B关于直线AC的对称点为E,①AB=AE,①AE=AF,①AG垂直平分EF,=,①FG EG==,①BD FG EG①2=;EF BD(3)DM①AC,理由如下:连接BF,取BF的中点M,连接AM,DM并延长交AC于H,①AB=AF,点M为BF的中点,①AM①BF,①①BAM+①ABM=90°,①点B 关于直线AC 的对称点为E ,①①ACB=①ACF ,①①ABC=①AFE ,①①ABC+①AFC=180°,①①BAF+①BCF=180°,①①ACB+①BAM=90°,①①ACD=①ABM ,①①AMB=①ADB=90°,①四点A 、B 、D 、M 共圆,①①ABM=①ADM ,①①ADM+①HDC=90°,①①ACD+①HDC=90°,①DH①AC .【点睛】本题考查了轴对称的性质,全等三角形的判定和性质,垂直平分线的性质,角平分线的性质定理,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.28.(1)B 和C ;(22t ≤;(3)42G y <≤+【分析】(1)根据图形可确定与点A 组成O 的“成对关联点”的点;(2)如图,点E 在直线y x =上,点F 在直线y x =-上,当点E 在线段01E E 上,点F 在线段01F F 上时,有O 的“成对关联点”,求出即可得出t 的取值范围;(3)分类讨论:点G 在4y =上,点G 在4y =的下方和点G 在4y =的上方,构造O 的“成对关联点”,即可求出G y 的取值范围.【详解】(1)如图所示:在点B ,C ,D 中,与点A 组成O 的“成对关联点”的点是B 和C ,故答案为:B 和C ;(2)①(,)E t t①(,)E t t 在直线y x =上,①点F 与点E 关于x 轴对称,①(,)F t t -在直线y x =-,如下图所示:直线y x =和y x =-与O 分别交于点0E ,0F ,与直线2x =分别交于1E ,1F ,由题可得:0E ,当点E 在线段01E E 上时,有O 的“成对关联点”2t ≤;(3)如图,当点G 在4y =上时,GH x ∥轴,在O 上不存在这样的矩形;如图,当点G 在4y =下方时,也不存在这样的矩形;如图,当点G 在4y =上方时,存在这样的矩形GMNH ,当恰好只能构成一个矩形时,设(0,)G m ,直线4y =与y 轴相交于点K ,则GHK OGM ∠=∠,2OM =,OG m =,4GH MN ==,4GK m =-,①sin sin GHK OGM ∠=∠,即GK OM GH OG =, ①424m m-=,解得:2m =+2m =-,综上:当42G y <≤+G ,H 是O 的“成对关联点”.【点睛】本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.。

海淀区2010-2011学年度第一学期初三语文期中试题及答案

海淀区2010-2011学年度第一学期初三语文期中试题及答案

海淀区2010-2011学年度第一学期初三语文期中试题及答案海淀区九年级第一学期期中练习语文2010.11学校:班级:姓名:成绩:考生须知1.本试卷共8页,六道大题,23道小题,满分120分。

考试时间150分钟。

2.在答题纸上准确填写学校名称、班级名称、姓名。

3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。

4. 考试结束,请将本试卷和答题纸一并交回。

一、选择。

下面各题均有四个选项,其中只有一个符合题意,选出答案后在答题纸上用铅笔把对应题目的选项字母涂黑涂满。

(共12分。

每小题2分)1.下列词语中加点字的读音完全正确的一项是A.惬意(qi&egrave;) 祈祷(qǐ) 避讳(hu&igrave;) 装模作样(m&uacute;)B.自诩(xǔ) 倔强(ju&eacute;) 负载(z&agrave;i) 刚正不阿(ē)C.邮戳(chuō) 惩罚(ch&eacute;ng) 游弋(y&igrave;) 脍炙人口(zh&igrave;)D.联袂(m&egrave;i) 字帖(ti&egrave;) 脊梁(jǐ) 不屑置辩(xu&egrave;)2.下列词语书写完全正确的一项是A. 恻隐掂记分歧眼花缭乱B. 镂空蔓延闲暇断壁残垣C. 毕竟斟酌真谛破斧沉舟D. 秘诀谦逊修茸各行其是3.下列句子中加点词语运用有误的一项是A.经过十几天的追踪调查,原本扑朔迷离的案件现在终于水落石出。

B.经过三年的危房改造及环境配套建设,全市老旧小区居住环境豁然开朗。

C.随着“嫦娥二号”的顺利升空,围坐在大屏幕前观看的大学生们情不自禁地欢呼雀跃。

D.灾难可以毁掉家园,但摧不垮我们的意志,因为我们知道这世上没有过不去的火焰山。

4. 对下列病句修改不正确的一项是A.京剧是国之瑰宝,它以独特的艺术魅力倾倒和折服了无数热爱它的人们。

修改:删去“倾倒和”。

北京东城区2010-2011学年九年级第一学期数学期末试卷及答案

北京东城区2010-2011学年九年级第一学期数学期末试卷及答案

东城区2010-2011学年第一学期期末统一检测初三数学试卷2011.011. 一元二次方程122=-bx x 的常数项为( ) A. 1- B. 1 C. 0 D. 1±2. 下列图形中,是中心对称的图形是()3. 若DEF ABC ∆∆~,1:2:=DE AD 且ABC ∆的周长为16,则DE F ∆的周长为( ) A. 4 B. 16 C. 8 D. 324. 如图,在⊙O 中,CD 是直径,AB 是弦,CD AB ⊥于M ,8=AB ,5=OC ,则MD 的长为( )A. 4B. 2C.2 D. 15. 若关于x 的方程0222=--ax x 有两个不相等的实数根,则a 的值是( )A. 2B. 4C. 6D. 86. 抛物线2)1(32-+-=x y 经过平移得到抛物线23x y -=,平移的方法是( ) A. 向左平移1个单位,再向下平移2个单位 B. 向右平移1个单位,再向下平移2个单位C. 向左平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向上平移2个单位7. 某圆与半径为2的圆相切,若两圆的圆心距为5,则此圆的半径为( )A. 3B. 7C. 3或7D. 5或78. 小明从二次函数c bx ax y ++=2的图象(如图)中观察得到了下面五条信息:①0<c ; ②0>abc ;③0>+-c b a ;④032=-b a ;⑤04>-b c ;你认为正确的信息是( ) A. ①②③⑤ B. ①②③④ C. ①③④⑤ D. ②③④⑤ 9. 抛物线152--=x x y 与y 轴的交点坐标是__________ 10. 若将分别写有“生活”、“城市”的2张卡片,随机放入“让生活更美好”中的两个内(每个只放1张卡片),则其中文字恰好组成“城市让生活更美好”的概率______11. 如图,AB ,AC 是⊙O 的两条弦,︒=∠30A ,经过点C 的切线与OB 的延D长线交于点D ,则D ∠的度数为_________12. 在等腰梯形ABCD 中,BC AD //,AD BC 4=,2=AD ,︒=∠45B 。

2012-2013上学期期末海淀区九年级数学试题及答案,纯word

2012-2013上学期期末海淀区九年级数学试题及答案,纯word

海淀区九年级第一学期上册期末考试试题数 学 试 卷(分数:120分 时间:120分钟) 2013.01班级 姓名 学号 成绩 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.x 的取值范围是 A .12x ≠B .x ≥12C .x ≤12D .x ≠-122.将抛物线2y x =平移得到抛物线25y x =+,下列叙述正确的是 A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位3.如图,A C 与BD 相交于点E ,A D ∥BC .若:1:2AE EC =,则:AED C EB S S ∆∆为 A.2:1 B. 1:2 C.3:1 D. 1:44.下列一元二次方程中,有两个相等的实数根的是 A .2210x x -+=B . 2240x x +-=C .2250x x --=D .2240x x ++=5.如图,⊙O 是△ABC 的外接圆,∠A =40°,则∠OCB 等于 A .60°B .50°C .40°D .30°6.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为 A .212y x =-B .21(1)2y x =-+C .1)1(212---=x y D . 21(1)12y x =-+-7.已知0a <2a 可化简为A. a -B. aC. 3a -D. 3a8. 如图,以(0,1)G 为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,C F AE⊥于F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为 A .2B.3C.4D6二、填空题(本题共16分,每小题4分) 9-= .10. 若二次函数223y x =-的图象上有两个点(3,)A m -、(2,)B n ,则m n (填“<”或“=”或“>”).11.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 _________cm. 12.小聪用描点法画出了函数y =F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90︒得到图象1F ,再将图象1F 绕原点逆时针旋转90︒得到图象2F ,如此继续下去,得到图象n F .在尝试的过程中,他发现点P (4,2)--在图象 上(写出一个正确的即可);若点P (a ,b )在图象127F 上,则a = (用含b 的代数式表示) . 三、解答题(本题共30分,每小题5分) 13.计算:2011()(3)3π--+---14. 解方程:2280x x +-= .(0,1)I15.已知3a b +=,求代数式22285a b a b -+++的值.16.如图,正方形网格中,△ABC 的顶点及点O 在格点上.(1)画出与△ABC 关于点O 对称的△111A B C ;(2)画出一个以点O 为位似中心的△222A B C ,使得△222A B C 与△111A B C 的相似比为2.17.如图,在△ABC 与△A D E 中,C E ∠=∠,12∠=∠,AC AD =2AB ==6,求AE 的长.18.如图,二次函数223y x x =-++的图象与x 轴交于A 、B 两点,与y 轴交于点 C ,顶点为D , 求△BCD 的面积.四、解答题(本题共20分,每小题5分) 19.已知关于x 的方程04332=++m x x 有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为符合条件的最大整数,求此时方程的根.20. 已知:二次函数2y ax bx c =++(0)a ≠中的x 和y 满足下表:(1) 可求得m 的值为 ; (2) 求出这个二次函数的解析式;(3) 当03x <<时,则y 的取值范围为 .21.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?22.如图,AB 为⊙O 的直径,BC 切⊙O 于点B ,AC 交⊙O 于点D ,E 为BC 中点. 求证:(1)DE 为⊙O 的切线;(2)延长ED 交BA 的延长线于F ,若DF =4,AF =2,求BC 的长.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.图1解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;图2(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P. (可以利用图1中的等距平行线)①在图3中作出点P,使得P M P N=.=;②在图4中作出点P,使得2P M P N图3 图424.抛物线2(3)3(0)y m x m x m =+-->与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,OB=OC . (1)求这条抛物线的解析式;(2)若点P 1(,)x b 与点Q 2(,)x b 在(1)中的抛物线上,且12x x <,PQ=n . ①求2124263x x n n -++的值;② 将抛物线在PQ 下方的部分沿PQ 翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x 轴恰好只有两个公共点时,b 的取值范围是 .25.如图1,两个等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,2D E =,1A B =.将直线E B 绕点E 逆时针旋转45︒,交直线A D 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C 、E 两点间的距离为k .图1 图2 图3解答问题:(1)①当点C 与点F 重合时,如图2所示,可得A M D M的值为 ;②在平移过程中,A M D M的值为 (用含k 的代数式表示);(2)将图2中的三角板A B C 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段D F 上时,如图3所示,请补全图形,计算A M D M的值;(3)将图1中的三角板ABC 绕点C 逆时针旋转α度,0α<≤90,原题中的其他条件保持不变.计算A M D M的值(用含k 的代数式表示).海淀区九年级第一学期期末练习数学试卷答案及评分参考二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 计算:2011()(3)3π--+---解:原式191+-- …………………………………………4分=7- …………………………………………5分14. 解方程:2280x x +-= .解法一:(4)(2)0x x +-=. …………………………………………3分40x +=或20x -=.∴ 124,2x x =-=. …………………………………………5分解法二: 1,2,8a b c ===-, …………………………………1分2241(8)360∆=-⨯⨯-=>. ……………………………………2分∴ 21x =⨯. …………………………………………3分∴ 124,2x x =-=. …………………………………………5分15.解法一:∵3a b +=,∴ 22285a b a b -+++=()()285a b a b a b +-+++ ………………………2分 =3()285a b a b -+++ ………………………3分 =5()5a b ++ ………………………4分 =535⨯+=20. ………………………5分解法二:∵3a b +=,∴3b a =-. .…………………………1分原式= 22(3)28(3)5a a a a --++-+.…………………………2分=22(96)22485a a a a a --+++-+ .…………………………3分 =582426922+-++-+-a a a a a .…………………………4分=20. ………………………5分16.例如:∴△111A B C 、△222A B C 为所求.(注:第(1)问2分;第(2)问3分,画出一个正确的即可.) 17. 解:∵12∠=∠,∴C A B E A D ∠=∠. ………………………1分 ∵C E ∠=∠,∴△CAB ∽△EAD . ………………………3分 ∴A B A C A DA E=. ………………………4分∵AC AD =2AB ==6, ∴=3A B . ∴36=6A E.∴12A E =. ………………………5分18. 解法一:依题意,可得223y x x =-++=214x --+(). ∴顶点(1,4)D . ……………1分 令0y =,可得3x =或1x =-.∴A (1,0)-、B (3,0). ……………2分令0x =,可得3y =.∴(0,3)C . ……………3分∴直线C D 的解析式为3y x =+. 设直线C D 交x 轴于E . ∴(3,0)E -.∴6B E =. …….………….…………4分 ∴3BC D BED BC E S S S =-= .∴△BCD 的面积为3. …….………….…………5分解法二:同解法一,可得A (1,0)-、B (3,0)、(0,3)C 、(1,4)D . ……………3分∴直线B C 的解析式为3y x =-+. 过点D 作D E ∥B C 交x 轴于E ,连接C E . ∴设过D 、E 两点的直线的解析式为y x b =-+.∵(1,4)D ,∴直线D E 的解析式为5y x =-+. ∴(5,0)E .∴2B E =. ….…………4分 ∵D E ∥B C , ∴132B C D B C E S S B E O C ==⨯⨯= .∴△B CD 的面积为3. . .………….………………5分 四、解答题(本题共20分,每小题5分)19.解:(1)∵关于x 的方程04332=++m x x有两个不相等的实数根,∴∆930m =->. …………………………1分∴3m <. .…………………………2分 (2)∵m 为符合条件的最大整数, ∴2m =. .…………………………3分 ∴23302x x ++=.2223333()()222x x ++=-+.233()24x +=.2331-=x ,2332--=x .∴方程的根为2331-=x ,2332--=x . .…………………………5分20.解:(1)m 的值为3; .…………………………1分 (2) ∵二次函数的图象经过点(1,0),(3,0),∴设二次函数的解析式为(1)(3)y a x x =--. .…………………………2分 ∵图象经过点(0,3),∴1a =. .…………………………3分∴这个二次函数的解析式为243y x x =-+. .…………………………4分 (3) 当03x <<时,则y 的取值范围为 1-≤3<y . .…………………5分 21. 解:如图所示,建立平面直角坐标系.设二次函数的解析式为2y ax =(0)a ≠. .…………………1分 ∵图象经过点(2,2)-, .…………………2分∴24a -=,12a =-.∴212y x =-. .…………………3分当3y =-时,x = .…………………4分答:当水面高度下降1米时,水面宽度为米. .…………………5分 22.(1)如图,连接,OD BD . ………………1分∵在⊙O 中,O D O B =, ∴∠1=∠2.∵A B 是⊙O 的直径,∴90AD B C D B ∠=∠=︒. ∵E 为BC 中点, ∴12E D B C E B ==.∴∠3=∠4. ∵BC 切⊙O 于点B ,∴90E B A∠=︒.∴132490∠+∠=∠+∠=︒,即90O D E∠=︒.∴O D⊥D E.∵点D在⊙O上,∴D E是⊙O的切线. ……………2分(2)∵O D⊥D E,∴90F D O∠=︒.设O A O D r==.∵222OF FD OD=+, DF=4,AF=2,∴222(2)4r r+=+.解得3r=. ……………………………………3分∴3,8OA OD FB===.∵,90F F FDO FBE∠=∠∠=∠=︒,∴△FDO∽△FBE. ……………………………………4分∴F D O D F B B E=.∴ 6.B E=∵E为BC中点,∴212.B C B E==……………………………………5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.)(2)①②……………………4分……………………7分24.解:(1)解法一:∵抛物线2(3)3(0)y m x m x m =+-->与y 轴交于点C ,∴(0,3)C -. ……………………1分 ∵抛物线与x 轴交于A 、B 两点,OB=OC , ∴B (3,0)或B (-3,0).∵点A 在点B 的左侧,0m >,∴抛物线经过点B (3,0). ……………………2分 ∴093(3)3m m =+--. ∴1m =.∴抛物线的解析式为322--=x x y . ……………………3分 解法二:令0y =, ∴2(3)3=0m x m x +--. ∴(1)(3)0x mx +-=. ∴31,=x x m=-.0m > ,点A 在点B 的左侧,∴3(1,0),(,0)A B m-. ……………………1分令0x =,可得3y =-. ∴(0,3)C -.∴3O C =. ……………………2分 O B O C = , ∴33m =.∴1m =.∴322--=x x y . ……………………3分(2)①由抛物线322--=x x y 可知对称轴为1x =. ……………4分∵点P 1(,)x b 与点Q 2(,)x b 在这条抛物线上,且12x x <,PQ n =, ∴121,122n n x x =-=+. ……………………5分∴1222,22x n x n =-=+.∴原式=736)2()2(2=+++--n n n n . ……………………6分②42b -<<-或0b =. ……………………8分 (注:答对一部分给1分.) 25.解:(1)①1;……………………1分②2k;……………………2分(2)解:连接AE .∵ABC DEF ∆∆,均为等腰直角三角形,2,1DE AB ==,∴2,1,90,4545.EF BC DEF ==∠=︒∠=∠=︒∴90.D F AC EFB ==∠=︒∴2,D F AC AD ==∴点A 为C D 的中点. ……………………3分 ∴,.EA DF EA DEF ⊥∠平分∴90,45MAE AEF ∠=︒∠=︒,AE =∵45,BEM ∠=︒ ∴1+2=3+2=45∠∠∠∠︒. ∴1= 3.∠∠∴A E M ∆∽F E B ∆. ∴.A M A E B FE F= ……………………4分∴2A M =∴22D M AD AM =-=-=∴1A M D M=. ……………………5分(3) 过B 作B E 的垂线交直线EM 于点G ,连接A G 、B G . ∴90E B G ∠=︒. ∵45B E M ∠=︒,∴45EG B BEM ∠=∠=︒. ∴B E B G =.∵△A B C 为等腰直角三角形, ∴90.BA BC ABC =∠=︒,∴12∠=∠. ∴△ABG ≌△CBE . ……………………6分 ∴34AG EC k ==∠=∠,.∵3+65+4=45∠∠=∠∠︒, ∴65∠=∠. ∴A G ∥D E . ∴△AGM ∽△DEM . ∴.2A M A G k D MD E== ……………………7分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分.)海淀区九年级第一学期期末练习数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)13. 计算:2011()(3)3π--+---.解:原式191+-- …………………………………………4分=7- …………………………………………5分14. 解方程:2280x x +-= .解法一:(4)(2)0x x +-=. …………………………………………3分40x +=或20x -=.∴ 124,2x x =-=. …………………………………………5分解法二: 1,2,8a b c ===-, …………………………………1分2241(8)360∆=-⨯⨯-=>. ……………………………………2分∴ 221x -±=⨯. …………………………………………3分∴ 124,2x x =-=. …………………………………………5分15.解法一:∵3a b +=,∴ 22285a b a b -+++=()()285a b a b a b +-+++ ………………………2分 =3()285a b a b -+++ ………………………3分 =5()5a b ++ ………………………4分 =535⨯+=20. ………………………5分 解法二:∵3a b +=,∴3b a =-. .…………………………1分原式= 22(3)28(3)5a a a a --++-+.…………………………2分=22(96)22485a a a a a --+++-+ .…………………………3分 =582426922+-++-+-a a a a a .…………………………4分=20. ………………………5分16.例如:∴△111A B C 、△222A B C 为所求.(注:第(1)问2分;第(2)问3分,画出一个正确的即可.) 17. 解:∵12∠=∠,∴C A B E A D ∠=∠. ………………………1分 ∵C E ∠=∠,∴△C A B ∽△EAD . ………………………3分∴A B A C A DA E=. ………………………4分∵AC AD =2AB ==6, ∴=3A B . ∴36=6A E.∴12A E =. ………………………5分18. 解法一:依题意,可得223y x x =-++=214x --+().∴顶点(1,4)D . ……………1分令0y =,可得3x =或1x =-.∴A (1,0)-、B (3,0). ……………2分令0x =,可得3y =.∴(0,3)C . ……………3分∴直线C D 的解析式为3y x =+. 设直线C D 交x 轴于E . ∴(3,0)E -.∴6B E =. …….………….…………4分 ∴3BC D BED BC E S S S =-= .∴△BCD 的面积为3. …….………….…………5分解法二:同解法一,可得A (1,0)-、B (3,0)、(0,3)C 、(1,4)D . ……………3分∴直线B C 的解析式为3y x =-+. 过点D 作D E ∥B C 交x 轴于E ,连接C E . ∴设过D 、E 两点的直线的解析式为y x b =-+.∵(1,4)D ,∴直线D E 的解析式为5y x =-+. ∴(5,0)E .∴2B E =. ….…………4分 ∵D E ∥B C ,∴132B C D B C E S S B E O C ==⨯⨯= .∴△BCD 的面积为3. . .………….………………5分 四、解答题(本题共20分,每小题5分) 19.解:(1)∵关于x 的方程04332=++m x x 有两个不相等的实数根,∴∆930m =->. …………………………1分 ∴3m <. .…………………………2分(2)∵m 为符合条件的最大整数, ∴2m =. .…………………………3分 ∴23302x x ++=.2223333()()222x x ++=-+.233()24x +=.2331-=x ,2332--=x .∴方程的根为2331-=x ,2332--=x . .…………………………5分20.解:(1)m 的值为3; .…………………………1分(2) ∵二次函数的图象经过点(1,0),(3,0),∴设二次函数的解析式为(1)(3)y a x x =--. .…………………………2分 ∵图象经过点(0,3),∴1a =. .…………………………3分∴这个二次函数的解析式为243y x x =-+. .…………………………4分 (3) 当03x <<时,则y 的取值范围为 1-≤3<y . .…………………5分 21. 解:如图所示,建立平面直角坐标系.设二次函数的解析式为2y ax =(0)a ≠. .…………………1分 ∵图象经过点(2,2)-, .…………………2分∴24a -=,12a =-.∴212y x =-. .…………………3分当3y =-时,x = .…………………4分答:当水面高度下降1米时,水面宽度为米. .…………………5分 22.(1)如图,连接,OD BD . ………………1分∵在⊙O 中,O D O B =,∴∠1=∠2.∵A B 是⊙O 的直径, ∴90AD B C D B ∠=∠=︒. ∵E 为BC 中点, ∴12E D B C E B ==.∴∠3=∠4.∵BC 切⊙O 于点B ,∴90E B A ∠=︒.∴132490∠+∠=∠+∠=︒, 即90O D E ∠=︒. ∴O D ⊥D E . ∵点D 在⊙O 上,∴D E 是⊙O 的切线. ……………2分 (2)∵O D ⊥D E , ∴90F D O ∠=︒. 设O A O D r ==.∵222OF FD OD =+, DF =4,AF =2, ∴222(2)4r r +=+.解得3r =. ……………………………………3分 ∴3,8OA OD FB ===. ∵,90F F FDO FBE ∠=∠∠=∠=︒,∴△F D O ∽△FBE . ……………………………………4分 ∴F D O D F BB E=.∴ 6.B E =∵E 为BC 中点,∴212.B C B E ==……………………………………5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.) (2)① ②……………………4分 ……………………7分24.解:(1)解法一:∵抛物线2(3)3(0)y m x m x m =+-->与y 轴交于点C ,∴(0,3)C -. ……………………1分 ∵抛物线与x 轴交于A 、B 两点,OB=OC ,∴B (3,0)或B (-3,0).∵点A 在点B 的左侧,0m >,∴抛物线经过点B (3,0). ……………………2分 ∴093(3)3m m =+--. ∴1m =.∴抛物线的解析式为322--=x x y . ……………………3分 解法二:令0y =, ∴2(3)3=0m x m x +--. ∴(1)(3)0x mx +-=. ∴31,=x x m=-.0m > ,点A 在点B 的左侧,∴3(1,0),(,0)A B m-. ……………………1分令0x =,可得3y =-.∴(0,3)C -.∴3O C =. ……………………2分 O B O C = , ∴33m =.∴1m =.∴322--=x x y . ……………………3分(2)①由抛物线322--=x x y 可知对称轴为1x =. ……………4分 ∵点P 1(,)x b 与点Q 2(,)x b 在这条抛物线上,且12x x <,PQ n =, ∴121,122n n x x =-=+. ……………………5分∴1222,22x n x n =-=+.∴原式=736)2()2(2=+++--n n n n . ……………………6分 ②42b -<<-或0b =. ……………………8分 (注:答对一部分给1分.) 25.解:(1)①1;……………………1分②2k ;……………………2分(2)解:连接AE .∵ABC DEF ∆∆,均为等腰直角三角形,2,1DE AB ==,∴2,1,90,4545.EF BC DEF ==∠=︒∠=∠=︒∴90.D F AC EFB ==∠=︒∴2,D F AC AD ==∴点A 为C D 的中点. ……………………3分 ∴,.EA DF EA DEF ⊥∠平分∴90,45MAE AEF ∠=︒∠=︒,AE =∵45,BEM ∠=︒ ∴1+2=3+2=45∠∠∠∠︒. ∴1= 3.∠∠∴A E M ∆∽F E B ∆. ∴.A M A E B FE F= ……………………4分∴2A M =.∴22D M AD AM =-==. ∴1A M D M =. ……………………5分(3) 过B 作B E 的垂线交直线EM 于点G ,连接A G 、B G . ∴90E B G ∠=︒.∵45B E M ∠=︒,∴45EG B BEM ∠=∠=︒.∴B E B G =.∵△A B C 为等腰直角三角形,∴90.BA BC ABC =∠=︒,∴12∠=∠.∴△ABG ≌△C B E . ……………………6分∴34AG EC k ==∠=∠,.∵3+65+4=45∠∠=∠∠︒,∴65∠=∠.∴A G ∥D E .∴△A G M ∽△D EM . ∴.2A M A G k D M D E == ……………………7分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区九年级数学第一学期期末练习2011.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2(= ( )A .3B .3-C .3±D .92.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( )A .外离B .外切C .相交D .内切 3.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为( )A .12B .13C .14D .164.如图,⊙O 是△ABC 的外接圆,已知∠ABO =30º, 则∠ACB 的大小为 ( ) A .60º B .30º C .45ºD .50º 5.下列一元二次方程中没有..实数根的是( )A .2240x x +-=B .2440x x -+=C .2250x x --=D .2340x x ++=6.如图,有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它 完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻 的硬币相外切,则这枚硬币周围最多可摆放 ( )A .4枚硬币B .5枚硬币C .6枚硬币D .8枚硬币7.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( )A .90°B .120°C .150°D .180°8.如图,E ,B ,A ,F 四点共线,点D 是正三角形ABC 的边AC 的中点,点P 是直线AB 上异于A ,B 的一个动点,且满足30CPD ∠=︒, 则 ( )A .点P 一定在射线BE 上B .点P 一定在线段AB 上 CC.点P可以在射线AF上,也可以在线段AB上D.点P可以在射线BE上,也可以在线段二、填空题(本题共16分,每小题4分)9.已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B.若PA=6,则PB=.10x的取值范围是.11.如图,圆形转盘中,A,B,C三个扇形区域的圆心角分别为150°,120°和90°. 转动圆盘后,指针停止在任何位置的可能性都相同(若指针停在分界线上,则重新转动圆盘),则转动圆盘一次,指针停在B区域的概率是.12.(1)如图一,等边三角形MNP的边长为1,线段AB的长为4,点M与A重合,点N 在线段AB上. △MNP沿线段AB按A B→的方向滚动,直至△MNP中有一个点与点B重合为止,则点P经过的路程为;(2)如图二,正方形MNPQ的边长为1,正方形ABCD的边长为2,点M与点A重合,点N在线段AB上,点P在正方形内部,正方形MNPQ沿正方形ABCD的边按A B C D A→→→→→的方向滚动,始终保持M,N,P,Q四点在正方形内部或边界上,直至正方形MNPQ回到初始位置为止,则点P经过的最短路程为.(注:以△MNP为例,△MNP沿线段AB按A B→的方向滚动指的是先以顶点N为中心顺时针旋转,当顶点P落在线段AB上时,再以顶点P为中心顺时针旋转,如此继续. 多边形沿直线滚动与此类似.)三、解答题(本题共30分,每小题5分)13.计算:)()A NP图二图一图三(AQ解:14.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.15.解方程:24120x x +-=.16.如图,在ABC △中,AB 是O 的直径,O 与AC 交于点D ,60,75AB B C =∠=︒∠=︒,求BOD ∠的度数;17.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上. (1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.18.列方程解应用题:随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.四、解答题(本题共20分,每小题5分)19.如图,在△ABC 中,120,C ∠=︒,4AC BC AB ==,半圆的圆心O 在AB 上,且与AC ,BC分别相切于点D ,E . (1)求半圆O 的半径; (2)求图中阴影部分的面积.20.如图,O 为正方形ABCD 对角线AC 上一点,以O 为圆心,OA 长为半径的⊙O 与BC 相ADCBODCFBEA切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.21.一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.(1)请用树状图或者列表法,表示事件发生的所有可能情况;(2)求关于x的方程20++=有两个不相等实数根的概率.x mx n22.如图一,AB是O相切与点C,AD EF的直径,AC是弦,直线EF和O⊥,垂足为D.(1)求证CAD BAC∠=∠;图一(2)如图二,若把直线EF向上移动,使得EF与O相交于G,C两点(点C在点G的右侧),连结AC,AG,若题中其他条件不变,这时图中是否存在与CAD∠相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.以坐标原点为圆心,1为半径的圆分别交x ,y 轴的正半轴于点A ,B .(1)如图一,动点P 从点A 处出发,沿x 轴向右匀速运动,与此同时,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动.若点Q 的运动速度比点P 的运动速度慢,经过1秒后点P 运动到点(2,0),此时PQ 恰好是O 的切线,连接OQ . 求QOP ∠的大小; 解:(2)若点Q 按照(1)中的方向和速度继续运动,点P 停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ 被O 截得的弦长. 解:24.已知关于x的方程221(1)04x a -++=有实根.(1)求a 的值;(2)若关于x 的方程2(1)0mx m x a +--=的所有根均为整数,求整数m 的值.图一图二(备用图)25.如图一,在△ABC 中,分别以AB ,AC 为直径在△ABC 外作半圆1O 和半圆2O ,其中1O 和2O 分别为两个半圆的圆心. F 是边BC 的中点,点D 和点E 分别为两个半圆圆弧的中点. (1)连结1122,,,,,O F O D DF O F O E EF ,证明:12DO F FO E △≌△;(2)如图二,过点A 分别作半圆1O 和半圆2O 的切线,交BD 的延长线和CE 的延长线于点P 和点Q ,连结PQ ,若∠ACB =90°,DB =5,CE =3,求线段PQ 的长;(3)如图三,过点A 作半圆2O 的切线,交CE 的延长线于点Q ,过点Q 作直线FA 的垂线,交BD 的延长线于点P ,连结PA . 证明:PA 是半圆1O 的切线. 图一图二Q图三7.海淀区九年级数学第一学期期末练习参考答案及评分标准 2011.1说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)注:第12题答对一个给2分,答对两个给4分 三、解答题(本题共30分,每小题5分)13.解:原式=…………………………….…………………………….2分= …………………………….…………………………….4分 =6 …………………………….…………………………….5分 14.(1)解: 48,…………………………….…………………………….1分 0.81…………………………….…………………………….2分 (2)解:()90.8P =射中环以上…………………………….…………………………….4分从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8. …………………………….…………………………….5分 注:简述的理由合理均可给分 15.解法一:因式分解,得()()620x x +-= …………………………….…………………………….2分 于是得 60x +=或20x -=126,2x x =-= …………………………….…………………………….5分解法二:1,4,12a b c ===-2464b ac ∆=-= …………………………….…………………………….2分482x -±== …………………………….…………………………….4分126,2x x =-= …………………………….…………………………….5分16.解:在ABC △中,60,75B C ∠=︒∠=︒ ,45A ∴∠=︒. …………………………….…………………………….2分AB 是⊙O 的直径,⊙O 与AC 交于点D, ∴290DOB A ∠=∠=︒. …………………………….…………………………….5分17.解:(1)D ;90︒. …………………………….…………………………….2分 (2)DCF DEA △旋转后恰好与△重合, DCF DAE ∴△≌△.3,2AE CF BF ∴===又. 5BC BF CF ∴=+=.AED BFDE ABFD S S S ∴=+△四边形四边形DCF ABFD S S ∆=+四边形ABCD S =正方形2BC =25= 5分18.解:设该地区2009年到2011年高效节能灯年销售量的平均增长率为x . ……………….1分依据题意,列出方程 ()210114.4x += ……………………….…………………………….2分 化简整理,得: ()21 1.44x +=, 解这个方程,得 11.2x +=±, ∴ 120.2, 2.2x x ==-.∵ 该地区2009年到2011年高效节能灯年销售量的平均增长率不能为负数. ∴ 2.2x =-舍去.∴ 0.2x =. …………………….…………………………….4分 答:该地区2009年到2011年高效节能灯年销售量的平均增长率为20%. …………….5分四、解答题(本题共20分,每小题5分) 19.(1)解:连结OD ,OC ,∵半圆与AC ,BC 分别相切于点D ,E . ∴DCO ECO ∠=∠,且OD AC ⊥. ∵AC BC =,∴CO AB ⊥且O 是AB 的中点. ∴122AO AB ==. ∵120C ∠=︒,∴60DCO ∠=︒. ∴30A ∠=︒.∴在R t AOD △中,112OD AO ==. 即半圆的半径为1.…………………………….…………………………….3分(2)设CO =x ,则在R t AOC △中,因为30A ∠=︒,所以AC =2x ,由勾股定理得:222AC OC AO -= 即 222(2)2x x -= 解得x =x =舍去)∴11422ABC S AB OC =⋅=⨯=△ (4)分∵ 半圆的半径为1, ∴ 半圆的面积为2π,∴2S π=-=阴影 …………………………….…………………………….5分20.(1)解:过O 作ON CD ⊥于N ,连结OM ,则OM BC ⊥.∵ AC 是正方形ABCD 的对角线,∴ AC 是BCD ∠的平分线.∴ OM =ON.即圆心O 到CD 的距离等于⊙O 半径, ∴ CD 与⊙O 相切. …………………………….…………………………….3分(2)由(1)易知MOC △为等腰直角三角形,OM 为半径, ∴ OM =MC =1.∴ 222112OC OM MC =+=+=, ∴OC =.∴1AC AO OC =+= 在R t ABC △中,AB =BC ,有 222A C A BB C =+ ∴ 222AB AC =∴AB = …………………………….…………………………….5分故正方形ABCD.21.(1)解:依题意画出树状图(或列表)如下或123123312m n…………………………….…………………………….2分注:画出一种情况就可给2分(2)解:当240m n ->时,关于x 的方程20x mx n ++=有两个不相等实数根,而使得240m n ->的m ,n 有2组,即(3,1)和(3,2). ………….…………………………….4分则关于x 的方程20x mx n ++=有两个不相等实数根的概率是13.∴P (有两个不等实根)=13.…………………….5分 22.(1)证明:如图一,连结OC ,则OC EF ⊥,且OC=OA , 易得OCA OAC ∠=∠. ∵ AD EF ⊥,∴OC//AD.∴OCA ∠=CAD ∠,∴CAD ∠=OAC ∠. 即 C A D B A C ∠=∠.…………………………….…………………………….2分 (2)解:与CAD ∠相等的角是BAG ∠.…………………………….…………………………….3分证明如下: 如图二,连结BG .∵ 四边形ACGB 是O 的内接四边形, ∴ 180ABG ACG ∠+∠=︒. ∵ D ,C ,G 共线, ∴ 180ACD ACG ∠+∠=︒. ∴ ACD ABG ∠=∠. ∵ AB 是O 的直径, ∴ 90BAG ABG ∠+∠=︒ ∵ AD EF ⊥∴ 90CAD ACD ∠+∠=︒ ∴ CAD BAG ∠=∠.…………………………….…………………………….5分五、解答题(本题共22分,第23题7分,第24题7分,第25题823.(1)解:如图一,连结AQ .由题意可知:OQ =OA =1. ∵OP =2, ∴A 为OP 的中点. ∵PQ 与O 相切于点Q ,∴OQP △为直角三角形. …………1分图一图二∴112AQ OP OQ OA ==== . …………2分即ΔOAQ 为等边三角形.∴∠QOP =60°. …………3分(2)解:由(1)可知点Q 运动1秒时经过的弧长所对的圆心角为30°,若Q 按照(1)中的方向和速度继续运动,那么再过5秒,则Q 点落在O 与y 轴负半轴的交点处(如图二).设直线PQ 与O 的另外一个交点为D ,过O 作OC ⊥QD 于点C ,则C 为QD 的中点. …………4分 ∵∠QOP =90°,OQ =1,OP =2, ∴QP …………5分 ∵1122OQ OP QP OC ⋅=⋅, ∴OC . …………6分 ∵OC ⊥QD ,OQ =1,OC ,∴QC ∴QD . …………7分24.(1)解:∵关于x 的方程为221(1)04x a -++=为一元二次方程,且有实根.故满足:220,1(4(1)0.4a a ≥⎧⎪⎨∆=--⨯⨯+≥⎪⎩ ……….…………………………….2分(注:每个条件1分) 整理得 20,(1)0.a a ≥⎧⎨-≤⎩∴1a = (4)分(2)由(1)可知1a =,故方程2(1)0mx m x a +--=可化为2(1)10mx m x +--=.①当m =0时,原方程为10x -=,根为1x =,符合题意. ………………………….5分②当m ≠0时,2(1)10mx m x +--=为关于x 的一元二次方程,2222(1)4(1)12421(1)0m m m m m m m m ∆=--⨯⨯-=-++=++=+≥.此时,方程的两根为 1211,x x m==-. ∵两根均为整数, 图二∴m =1±.………………………….7分综上所述,m 的值为1-,0 或1.25.(1)证明:如图一,∵1O ,2O ,F 分别是AB ,AC ,BC 边的中点,∴1O F ∥AC 且1O F =A 2O ,2O F ∥AB 且2O F =A 1O , ∴∠B 1O F=∠BAC ,∠C 2O F=∠BAC ,∴∠B 1O F=∠C 2O F∵点D 和点E 分别为两个半圆圆弧的中点, ∴1O F =A 2O =2O E ,2O F =A 1O =1O D , ………………………….2分∠B 1O D =90°,∠C 2O E =90°, ∴∠B 1O D=∠C 2O E . ∴∠D 1O F=∠F 2O E .∴12DO F FO E △≌△.………………………….3分(2)解:如图二,延长CA 至G ,使AG =AQ ,连接BG 、AE .∵点E 是半圆2O 圆弧的中点, ∴AE=CE=3 ∵AC 为直径 ∴∠AEC =90°,∴∠ACE =∠EAC =45°,AC=, ∵AQ 是半圆2O 的切线, ∴CA ⊥AQ ,∴∠CAQ =90°, ∴∠ACE =∠AQE =45°,∠GAQ =90° ∴AQ =AC =AG=同理:∠BAP =90°,AB =AP=∴CG=∠GAB =∠QAP ∴AQP AGB △≌△.……………………..5分 ∴PQ =BG ∵∠ACB =90°, ∴BC ∴BG∴PQ= ……………………..6分(3) 证法一:如图三,设直线FA 与PQ 的垂足为M ,过C 作CS ⊥MF 于S ,过B 作BR ⊥MF 于R ,连接DR 、AD 、DM.∵F 是BC 边的中点,∴ABF ACF S S =△△. ∴BR=CS ,由(2)已证∠CAQ =90°, AC =AQ, ∴∠2+∠3=90° ∵FM ⊥PQ , ∴∠2+∠1=90°, ∴∠1=∠3, 同理:∠2=∠4, ∴AMQ CSA △≌△, ∴AM=CS ,∴AM=BR ,图二同(2)可证AD=BD ,∠ADB =∠ADP =90°,∴∠ADB =∠ARB =90°, ∠ADP =∠AMP =90° ∴A 、D 、B 、R 四点在以AB 为直径的圆上,A 、D 、P 、M 四点在以AP 为直径的圆上, 且∠DBR+∠DAR =180°,∴∠5=∠8, ∠6=∠7, ∵∠DAM +∠DAR =180°, ∴∠DBR =∠DAM ∴DBR DAM △≌△, ∴∠5=∠9, ∴∠RDM =90°, ∴∠5+∠7=90°, ∴∠6+∠8=90°, ∴∠PAB =90°, ∴PA ⊥AB ,又AB 是半圆1O 直径, ∴PA 是半圆1O 的切线.……………………..8分证法二:假设PA 不是是半圆1O 的切线,如图四,过点A 作半圆1O 的切线交BD 的延长线于点P ', 则点P '异于点P ,连结P Q ',设直线FA 与PQ 的 垂足为M ,直线FA 与P Q '的交点为M '.延长AF 至N ,使得AF =FN ,连结BN ,CN ,由于点F 是 BC 中点,所以四边形ABNC 是平行四边形. 易知,180BAC ACN ∠+∠=︒, ∵AQ 是半圆2O 的切线, ∴∠QAC =90°,同理90P AB '∠=︒. ∴180P AQ BAC '∠+∠=︒. ∴P AQ ACN '∠=∠. 由(2)可知,,AQ AC AB AP '==,∴P AQ NCA '△≌△. ∴NAC P QA '∠=∠. ∵90QAC ∠=︒, ∴90NAC M AQ '∠+∠=︒.即 90AQM M AQ ''∠+∠=︒.∴90AM Q '∠=︒. 即 P Q A F '⊥.∵ PQ AF ⊥,Q图四∴过点Q有两条不同的直线P Q 和PQ同时与AF垂直.这与在平面内过一点有且仅有一条直线与已知直线垂直相矛盾,因此假设错误.所以PA是是半圆O的切线.1。

相关文档
最新文档