易错点09 解析几何(原卷版) -备战2021年高考数学一轮复习易错题

合集下载

2021年浙江省高考数学试卷-(解析版)

2021年浙江省高考数学试卷-(解析版)
(2)由 , ,而 与 相交,所以 平面 ,因为 ,所以 ,取 中点 ,连接 ,则 两两垂直,以点 为坐标原点,如图所示,建立空间直角坐标系,
则 ,
又 为 中点,所以 .
由(1)得 平面 ,所以平面 的一个法向量
从而直线 与平面 所成角的正弦值为 .
【点睛】本题第一问主要考查线面垂直的相互转化,要证明 ,可以考虑 ,
三、解答题:本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤。
18. 设函数 .
(1)求函数 的最小正周期;
(2)求函数 在 上的最大值.
【答案】(1) ;(2) .
【解析】
【分析】(1)由题意结合三角恒等变换可得 ,再由三角函数最小正周期公式即可得解;
(2)由三角恒等变换可得 ,再由三角函数的图象与性质即可得解.
【详解】对于A, ,该函数 非奇非偶函数,与函数图象不符,排除A;
对于B, ,该函数为非奇非偶函数,与函数图象不符,排除B;
对于C, ,则 ,
当 时, ,与图象不符,排除C.
故选:D.
8. 已知 是互不相同的锐角,则在 三个值中,大于 的个数的最大值是( )
A. 0B. 1C. 2D. 3
【答案】C
【详解】由题意作出图形,如图,
在 中,由余弦定理得 ,
即 ,解得 (负值舍去),
所以 ,
在 中,由余弦定理得 ,
所以 ;
在 中,由余弦定理得 .
故答案为: ; .
15. 袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为 ,若取出的两个球都是红球的概率为 ,一红一黄的概率为 ,则 ___________, ___________.
【详解】(1)由辅助角公式得 ,

2019年浙江省高考数学试卷(原卷答案解析版)

2019年浙江省高考数学试卷(原卷答案解析版)
A.当 B.当
C.当 D.当
【答案】A
【解析】
【分析】
本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.
【详解】选项B:不动点满足 时,如图,若 ,
排除
如图,若 为不动点 则
选项C:不动点满足 ,不动点为 ,令 ,则 ,
排除
选项D:不动点满足 ,不动点为 ,令 ,则 ,排除.
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
2019年普通高等学校招生全国统一考试(浙江卷)数学
参考公式:
若事件 互斥,则
若事件 相互独立,则
若事件 在一次试验中发生的概率是 ,则 次独立重复试验中事件 恰好发生 次的概率
台体的体积公式
其中 分别表示台体的上、下底面积, 表示台体的高
(2)当 时,分三种情况,如图 与 若有三个交点,则 ,答案选D
下面证明: 时,
时 , ,则 ,才能保证至少有两个零点,即 ,若另一零点在
【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..
10.设 ,数列 中, , ,则( )
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )

2019年浙江省高考数学(含解析版)

 2019年浙江省高考数学(含解析版)
【详解】因为双曲线的渐近线为 ,所以 ,则 ,双曲线的离心率 .
【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.
3.若实数 满足约束条件 ,则 的最大值是( )
A. B.1
C.10D.12
【答案】C
【解析】
【分析】
本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A.当 B.当
C.当 D.当
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.复数 ( 为虚数单位),则 ________.
12.已知圆 的圆心坐标是 ,半径长是 .若直线 与圆相切于点 ,则 _____, ______.
13.在二项式 的展开式中,常数项是________;系数为有理数的项的个数是_______.
C. 先增大后减小D. 先减小后增大
8.设三棱锥 底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A. B.
C. D.
9.已知 ,函数 ,若函数 恰有三个零点,则( )

专题8.5 椭圆及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

专题8.5 椭圆及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第八篇平面解析几何专题8.05椭圆及其几何性质【考试要求】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【微点提醒】点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( )(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( )【教材衍化】2.(选修2-1P49T1改编)若F 1(3,0),F 2(-3,0),点P 到F 1,F 2的距离之和为10,则P 点的轨迹方程是________.3.(选修2-1P49A6改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.【真题体验】4.(2018·张家口调研)椭圆x 216+y 225=1的焦点坐标为( )A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)5.(2018·全国Ⅰ卷)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.2236.(2018·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【考点聚焦】考点一 椭圆的定义及其应用【例1】 (1)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A.椭圆B.双曲线C.抛物线D.圆(2)(2018·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( ) A.24 B.12C.8D.6【规律方法】 (1)椭圆定义的应用主要有:判断平面内动点的轨迹是否为椭圆,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.【训练1】 (1)(2018·福建四校联考)已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A.2 3B.6C.4 3D.2(2)(2018·衡水中学调研)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任意一点,点M 的坐标为(6,4),则|PM |-|PF 1|的最小值为________.考点二 椭圆的标准方程【例2】 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1D.x 264+y 248=1 (2)(一题多解)若椭圆经过两点(2,0)和(0,1),则椭圆的标准方程为________________.【规律方法】 根据条件求椭圆方程的主要方法有:(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),不必考虑焦点位置,用待定系数法求出m ,n 的值即可. 【训练2】 (1)(2018·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( ) A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1D.x 216+y 212=1 (2)(2018·榆林模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的焦点,过F 2且垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=3,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1考点三 椭圆的几何性质多维探究角度1 椭圆的长轴、短轴、焦距【例3-1】 (2018·泉州质检)已知椭圆x 2m -2+y 210-m =1的长轴在x 轴上,焦距为4,则m 等于( )A.8B.7C.6D.5角度2 椭圆的离心率【例3-2】 (2018·全国Ⅱ卷)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12C.13D.14角度3 与椭圆性质有关的最值或范围问题【例3-3】 (2017·全国Ⅰ卷)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A.(0,1]∪[9,+∞)B.(0,3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)【规律方法】1.求椭圆离心率的方法(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.2.在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标准方程中x,y的范围、离心率的范围等不等关系.【训练3】(1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为()A.1B. 2C.2D.2 2(2)(2019·豫南九校联考)已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C 以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A.55 B.105 C.255 D.2105【反思与感悟】1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.2.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )【易错防范】1.判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.3.椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( )A.5B.3C.5或3D.82.(2019·聊城模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的方程为( ) A.x 23+y 2=1 B.x 23+y 22=1 C.x 29+y 24=1D.x 29+y 25=1 3.已知圆(x -1)2+(y -1)2=2经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F 和上顶点B ,则椭圆C 的离心率为( ) A.12 B. 2 C.2 D.224.(2019·湖北重点中学联考)已知椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过F 2且垂直于长轴的直线交椭圆于A ,B 两点,则△ABF 1内切圆的半径为( ) A.43 B.1C.45D.345.已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( ) A. 2 B.2 C.2 2 D. 3二、填空题6.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为________.7.设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB的面积为43的等边三角形,则椭圆C 的方程为______________.8.(2019·昆明诊断)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.三、解答题9.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.10.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.【能力提升题组】(建议用时:20分钟)11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM →·NF →=0,则椭圆的离心率为( ) A.32 B.2-12 C.3-12 D.5-1212.(2019·湖南湘东五校联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A.(3-12,1)B.(3-12,12)C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 13.(2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.14.(2019·石家庄月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.【新高考创新预测】15.(多填题)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),其关于直线y =bx 的对称点Q 在椭圆上,则离心率e =________,S △FOQ =________.。

专题8.7 双曲线及其几何性质-2020届高考数学一轮复习学霸提分秘籍(解析版)

专题8.7 双曲线及其几何性质-2020届高考数学一轮复习学霸提分秘籍(解析版)

第八篇平面解析几何专题8.07双曲线及其几何性质【考试要求】了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).【知识梳理】1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞)实虚轴线段A1A2叫做双曲线的实轴,它的长度|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长度|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2【微点提醒】1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a .2.离心率e =ca =a 2+b 2a=1+b 2a2. 3.等轴双曲线的渐近线互相垂直,离心率等于 2. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ) (2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( ) (3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(4)双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x m ±yn=0.( )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( )【答案】 (1)× (2)× (3)× (4)√ (5)√【解析】 (1)因为||MF 1|-|MF 2||=8=|F 1F 2|,表示的轨迹为两条射线. (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线. 【教材衍化】2.(选修2-1P62A6改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________________. 【答案】 x 28-y 28=1【解析】 设双曲线方程为:x 2-y 2=λ(λ≠0),把点A (3,-1)代入,得λ=8,故所求双曲线方程为x 28-y 28=1.3.(选修2-1P61A1改编)已知双曲线x 2-y 216=1上一点P 到它的一个焦点的距离等于4,那么点P 到另一个焦点的距离等于________. 【答案】 6【解析】 设双曲线的焦点为F 1,F 2,|PF 1|=4,则||PF 1|-|PF 2||=2,故|PF 2|=6或2,又双曲线上的点到焦点的距离的最小值为c -a =17-1,故|PF 2|=6. 【真题体验】4.(2018·浙江卷)双曲线x 23-y 2=1的焦点坐标是( )A.(-2,0),(2,0)B.(-2,0),(2,0)C.(0,-2),(0,2)D.(0,-2),(0,2)【答案】 B【解析】 由题可知双曲线的焦点在x 轴上,又c 2=a 2+b 2=3+1=4,所以c =2,故焦点坐标为(-2,0),(2,0).5.(2017·全国Ⅲ卷)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.【答案】 5【解析】 由题意可得3a =35,所以a =5.6.(2018·北京卷)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.【答案】 4【解析】 由题意可得,a 2+4a 2=⎝⎛⎭⎫522,即a 2=16,又a >0,所以a =4.【考点聚焦】考点一 双曲线的定义及应用【例1】 (1)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14B.35C.34D.45(2)(2019·济南调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________. 【答案】 (1)C(2)x 2-y 28=1(x ≤-1) 【解析】 (1)由x 2-y 2=2,知a =b =2,c =2.由双曲线定义知,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.(2)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8. 故点M 的轨迹方程为x 2-y 28=1(x ≤-1). 【规律方法】 1.利用双曲线的定义判定平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程; 2.在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|,|PF 2|的联系.【训练1】 (1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( ) A.215a 2 B.15a 2 C.30a 2D.15a 2(2)(2019·杭州质检)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△PAF 周长的最小值为( ) A.8B.10C.4+37D.3+317【答案】 (1)B (2)B【解析】 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca =2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a , ∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154, ∴S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×4a ×2a ×154=15a 2.(2)由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△PAF 的周长为|PF |+|PA |+|AF |=|PF ′|+4+|PA |+3,当F ′,P ,A 三点共线时,|PF ′|+|PA |有最小值,为|AF ′|=3,故△PAF 的周长的最小值为10. 考点二 双曲线的标准方程【例2】 (1)(2017·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1D.x 24-y 23=1 (2)(2018·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1D.x 29-y 23=1 【答案】 (1)B (2)C【解析】 (1)由题设知b a =52,①又由椭圆x 212+y 23=1与双曲线有公共焦点,易知a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1.(2)由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以c a =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1.【规律方法】 1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值.2.与双曲线x 2a 2-y 2b 2=1有相同渐近线时可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).【训练2】 (1)(2019·海南二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是( ) A.x 212-y 2=1B.x 29-y 23=1 C.x 2-y 23=1D.x 223-y 232=1 (2)已知双曲线的渐近线方程为2x ±3y =0,且双曲线经过点P (6,2),则双曲线的方程为 ________________.【答案】 (1)C (2)y 243-x 23=1【解析】 (1)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得⎩⎨⎧2a 2-3b 2=1,b a=3,解得⎩⎨⎧a =1,b =3,∴双曲线C 的标准方程是x 2-y 23=1. (2)由双曲线的渐近线方程为y =±23x ,可设双曲线方程为x 29-y 24=λ(λ≠0).因为双曲线过点P (6,2),所以69-44=λ,λ=-13,故所求双曲线方程为y 243-x 23=1.考点三 双曲线的性质角度1 求双曲线的渐近线【例3-1】 (一题多解)(2018·全国Ⅱ卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( ) A.y =±2x B.y =±3x C.y =±22xD.y =±32x【答案】 A【解析】 法一 由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,即ba =2,所以该双曲线的渐近线方程为y =±ba x =±2x .法二 由e =ca=1+⎝⎛⎭⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b ax =±2x . 角度2 求双曲线的离心率【例3-2】 (1)(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5B.2C. 3D. 2(2)(2018·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是( ) A.⎝⎛⎭⎫1,233B.⎝⎛⎭⎫233,+∞C.(1,2)D.(2,+∞)【答案】 (1)C (2)A【解析】 (1)不妨设一条渐近线的方程为y =b a x ,则F 2到y =b a x 的距离d =|bc |a 2+b 2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3.(2)由双曲线方程可得其渐近线方程为y =±b a x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a ,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b 2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝⎛⎭⎫1,233.角度3 与双曲线有关的范围(最值)问题【例3-3】 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223D.⎝⎛⎭⎫-233,233 【答案】 A【解析】 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33. 【规律方法】 1.求双曲线离心率或其取值范围的方法 (1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.2.与双曲线有关的取值范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决.【训练3】 (1)(2019·上海崇明区调研)在平面直角坐标系xOy 中,双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与圆(x -2)2+(y -1)2=1相切,则C 的离心率为( ) A.43B.54C.169D.2516(2)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是________.【答案】 (1)B (2)(0,2)【解析】 (1)双曲线C 的渐近线方程为by ±ax =0,结合图形易知与圆相切的只可能是by -ax =0,又圆心坐标为(2,1),则|b -2a |a 2+b 2=1,得3a =4b ,所以9a 2=16b 2=16(c 2-a 2),则e 2=2516,又e >1,故e =54.(2)对于焦点在x 轴上的双曲线x 2a 2-y 2b2=1(a >0,b >0),它的一个焦点(c ,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得 4<m <8,则焦点到渐近线的距离d =m -4∈(0,2). 【反思与感悟】1.与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有公共渐近线的双曲线的方程可设为x 2a 2-y 2b2=t (t ≠0).2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两条渐近线方程.【易错防范】1.双曲线方程中c 2=a 2+b 2,说明双曲线方程中c 最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1, +∞)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b 2=1 (a >0,b >0)的渐近线方程是y =±ab x .【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.(2019·郑州模拟)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A.y =±12xB.y =±22xC.y =±2xD.y =±2x【答案】 B【解析】 因为2b =2,所以b =1,因为2c =23,所以c =3,所以a =c 2-b 2=2,所以双曲线的渐近线方程为y =±b a x =±22x .2.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F ,过点F 作双曲线C 的一条渐近线的垂线,垂足为A ,且交y 轴于B ,若A 为BF 的中点,则双曲线的离心率为( ) A. 2 B. 3 C.2 D.62【答案】 A【解析】 由题易知双曲线C 的一条渐近线与x 轴的夹角为π4,故双曲线C 的离心率e =⎝⎛⎭⎫cos π4-1= 2. 3.(2018·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为( ) A. 2 B.2C.322D.2 2【答案】 D【解析】 法一 由离心率e =ca =2,得c =2a ,又b 2=c 2-a 2,得b =a ,所以双曲线C 的渐近线方程为y =±x .由点到直线的距离公式,得点(4,0)到C 的渐近线的距离为41+1=2 2. 法二 离心率e =2的双曲线是等轴双曲线,其渐近线方程是y =±x ,∴点(4,0)到C 的渐近线的距离为41+1=2 2. 4.(2019·天津和平区一模)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM 的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A.x 2-4y 25=1 B.x 22-2y 25=1 C.x 24-y 25=1D.x 216-y 220=1 【答案】 C【解析】 由题意可知e =c a =32,可得b a =52,取一条渐近线为y =bax ,可得F 到渐近线y =b a x 的距离d =bca 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎨⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5, 所以双曲线的方程为x 24-y 25=1. 5.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( )A.y =±2xB.y =±22xC.y =±6xD.y =±66x 【答案】 D【解析】 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x . 二、填空题6.直线l :y =2x +10过双曲线x 2a 2-y 2b2=1(a >0,b >0)一个焦点且与其一条渐近线平行,则双曲线方程为_________________________________.【答案】 x 25-y 220=1 【解析】 由题意得一个焦点为F (-5,0),c =5,b a=2, 又a 2+b 2=c 2,所以a 2=5,b 2=20,所以双曲线方程为x 25-y 220=1. 7.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.【答案】 3215 【解析】 a 2=9,b 2=16,故c =5.∴A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5),代入双曲线方程解得B ⎝⎛⎭⎫175,-3215.∴S △AFB =12|AF |·|y B |=12·2·3215=3215. 8.(2019·梅州质检)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点.P 是双曲线在第一象限上的点,直线PO ,PF 2分别交双曲线C 左、右支于M ,N .若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的离心率为________.【答案】 3【解析】 由题意,|PF 1|=2|PF 2|,由双曲线的定义可得,|PF 1|-|PF 2|=2a ,可得|PF 1|=4a ,|PF 2|=2a ,又|F 1O |=|F 2O |,|PO |=|MO |,得四边形PF 1MF 2为平行四边形,又∠MF 2N =60°,可得∠F 1PF 2=60°,在△PF 1F 2中,由余弦定理可得,4c 2=16a 2+4a 2-2·4a ·2a ·cos 60°,即4c 2=20a 2-8a 2,c 2=3a 2,可得c =3a ,所以e =c a = 3. 三、解答题9.(2019·安徽江南十校联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线的方程;(2)(一题多解)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.【答案】见解析【解析】(1)解 ∵e =2,∴可设双曲线的方程为x 2-y 2=λ(λ≠0).∵双曲线过点(4,-10),∴16-10=λ,即λ=6.∴双曲线的方程为x 2-y 2=6,即x 26-y 26=1. (2)证明 法一 由(1)可知,a =b =6,∴c =23,∴F 1(-23,0),F 2(23,0),∴k MF 1=m 3+23,k MF 2=m 3-23, k MF 1·k MF 2=m 29-12=-m 23. ∵点M (3,m )在双曲线上,∴9-m 2=6,m 2=3,故k MF 1·k MF 2=-1,∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.法二 由(1)可知,a =b =6,∴c =23,∴F 1(-23,0),F 2(23,0),MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2,∵点M (3,m )在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0.10.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.【答案】见解析【解析】(1)由题意知a =23,∵一条渐近线为y =b ax ,即bx -ay =0. ∴由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3. 又∵c 2=a 2+b 2,∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),其中x 0≥2 3.又OM →+ON →=tOD →,即(x 1,y 1)+(x 2,y 2)=t (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x +84=0,其中Δ=(163)2-4×84>0, 则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎨⎧x 0y 0=433,x 2012-y 203=1.解得⎩⎨⎧x 0=43,y 0=3. ∴t =4,点D 的坐标为(43,3).【能力提升题组】(建议用时:20分钟) 11.(2019·河南适应测试)已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( ) A.y =±2xB.y =±12xC.y =±22x D.y =±2x【答案】 D 【解析】 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6. 由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .12.已知点F 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈⎣⎡⎦⎤π12,π6,则该双曲线的离心率的取值范围是( )A.[2,2+6]B.[2,3+1]C.[2,2+6]D.[2,3+1]【答案】 D【解析】 如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF ,∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β, ∴e 2=11-sin 2β,又∵β∈⎣⎡⎦⎤π12,π6,∴sin 2β∈⎣⎡⎦⎤12,32, ∴e 2=11-sin 2β∈[2,(3+1)2].又e >1,∴e ∈[2,3+1]. 13.(2018·北京卷)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.【答案】 3-1 2【解析】 设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A ⎝⎛⎭⎫c 2,3c 2,由点A 在椭圆M 上得,c 24a 2+3c 24b 2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴4a 4-8a 2c 2+c 4=0,∴e 4椭-8e 2椭+4=0,∴e 2椭=4±23,∴e 椭=3+1(舍去)或 e 椭=3-1,∴椭圆M 的离心率为3-1.∵双曲线的渐近线过点A ⎝⎛⎭⎫c 2,3c 2,∴渐近线方程为y =3x ,∴n m =3,故双曲线的离心率e 双=m 2+n 2m 2=2. 14.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.【答案】见解析【解析】(1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0), 则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.故C 2的方程为x 23-y 2=1. (2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.② 由①②得13<k 2<1, 故k 的取值范围为⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1. 【新高考创新预测】15.(多填题)已知椭圆x 24+y 2m =1与双曲线x 2-y 2n=1的离心率分别为e 1,e 2,且有公共的焦点F 1,F 2,则4e 21-e 22=________,若P 为两曲线的一个交点,则|PF 1|·|PF 2|=________.【答案】 0 3【解析】 由题意得椭圆的半焦距满足c 21=4-m ,双曲线的半焦距满足c 22=1+n ,又因为两曲线有相同的焦点,所以4-m =1+n ,即m +n =3,则4e 21-e 22=4×4-m 4-(1+n )=3-(m +n )=0. 不妨设F 1,F 2分别为两曲线的左、右焦点,点P 为两曲线在第一象限的交点, 则⎩⎪⎨⎪⎧|PF 1|+|PF 2|=4,|PF 1|-|PF 2|=2.解得⎩⎪⎨⎪⎧|PF 1|=3,|PF 2|=1,则|PF 1|·|PF 2|=3.。

2020高考提分秘笈:直线与椭圆的位置关系(原卷版+解析版)

2020高考提分秘笈:直线与椭圆的位置关系(原卷版+解析版)
x2 y2 【例 1】 (2017·山东卷)在平面直角坐标系 xOy 中,双曲线 - =1(a>0,b>0)的右支与焦点为 F 的抛
a2 b2 物线 x2=2py(p>0)交于 A,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.
10 千里之行 始于足下
实用文档 用心整理
3
62 ,
3
6
C.-
3 3,
3 3
B.-2
3
32 ,
3
3
D.-
6 3,
6 3
8 千里之行 始于足下
实用文档 用心整理
【反思与感悟】 解决中点弦、弦长及最值与范围问题一般利用“设而不求”的思想,通过根与系数的关系构建方程求解参 数、计算弦长、表达函数. 【易错防范】 1.涉及直线的斜率时,要考虑直线斜率不存在的情况是否符合题意. 2.求某几何量的最值或范围要考虑其中变量的取值范围. 【核心素养提升】 【数学运算】——高考【解析】几何问题中的“设而不求”
9 千里之行 始于足下
实用文档 用心整理
1.数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程,解析几何正是利用数学运算 解决几何问题的一门科学. 2.“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点, 避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代 入等. 类型 1 巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求
83 = ?若存在,求出直线 l 的方程;若不存在,说明理由.
7
3 千里之行 始于足下
实用文档 用心整理
【规律方法】 1.解决直线与椭圆相交的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化 简,然后应用根与系数的关系建立方程,解决相关问题.

高二数学人教版试卷

高二数学人教版试卷

高二数学人教版试卷考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.经过点且在两坐标轴上的截距互为相反数的直线方程是()A.B.C.D.2.已知,“”是“”成立的A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件3.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件4.抛物线的焦点坐标是( )A. B. C. D.5.下列有关命题的说法正确的是A.命题“若,则”的否命题为“若,则”B.命题“若,则”的逆否命题是假命题C.命题“若,则全不为0”为真命题D.命题“若”,则”的逆命题为真命题6.动圆经过点并且与直线相切,若动圆与直线总有公共点,则圆的面积()A.有最大值 B.有最小值 C.有最小值 D.有最小值7.在等比数列中,,,,则项数为()A.3 B.4 C.5 D.68.设,那么()A.有最大值B.有最小值C.有最小值D.有最大值9.已知向量,且,则实数()A.1 B. 6 C.2或1 D.210..设函数在区间的导函数,在区间的导函数,若在区间上的恒成立,则称函数在区间上为“凸函数”,已知,若当实数满足时,函数在区间上为“凸函数”,则的最大值为()A. B. C. D.11.下列命题中正确的个数是()①命题“∀x∈(1,+∞),2x>2”的否定是“∀x∉(1,+∞),2x≤2”②“a=2”是“|a|=2”的必要不充分条件;③若命题p为真,命题¬q为真,则命题p∧q为真;④命题“在△ABC中,若,则”的逆否命题为真命题.A.0个 B.1个 C.2个 D.3个12.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y﹣4)2=1上一个动点,那么点P到点Q 的距离与点P到抛物线的准线距离之和的最小值是()A .5B .8C .﹣1D .+213.已知集合M={(x,y)|y=},N={(x,y)|y=x+b},且M∩N=,则( ) A .|b|≥3 B .0<b<C .-3≤b≤3D .b>3或b<-3 14.若双曲线上的右支上一点到直线的距离为,则的值为 .15.曲线在点处的切线的倾斜角为( )A .30°B .45°C .60°D .120°16.在正项数列{a n }中,若a 1=1,且对所有n ∈N *满足na n +1-(n +1)a n =0,则a 2015=( ) A .1011 B .1012 C .2014 D .201517.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( ) A .k =,b =-4 B .k =-,b =4 C .k =,b =4 D .k =-,b =-4 18.如果方程表示焦点在轴上的椭圆,则的取值范围是 ( ) A .B .C .D .19.如图所示,在▱ABCD 中,AE ∶EB =1∶2,若S △AEF =6 cm 2,则S △CDF 为A .54 cm 2B .24 cm 2C .18 cm 2D .12 cm 220.已知是虚数单位,复数,则的共轭复数是 ( ) A .B .C .D .二、填空题21.抛物线的准线方程为22.已知,抛物线上的点到直线的最段距离为__________。

(人教版)杭州市选修一第二单元《直线和圆的方程》测试卷(答案解析)

(人教版)杭州市选修一第二单元《直线和圆的方程》测试卷(答案解析)

一、选择题1.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关2.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( ) A .23BCD3.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±4.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=05.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2 CD.6.若实数x 、y 满足222210x y x y +--+=,则32y x --的取值范围为( ) A .30,4⎡⎤⎢⎥⎣⎦B .3,4⎛⎤-∞- ⎥⎝⎦C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,04⎡-⎫⎪⎢⎣⎭7.直线210y x -+=关于30y x -+=对称的直线方程是( ) A .280x y --=B .2100x y --=C .2120x y +-=D .2100x y +-=8.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( ) ABCD9.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解10.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( ) A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++= D .2430x y ++=12.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( )A .2215()(3)22x y -+-=B .2215()(3)22x y -++=C .22125()(3)24x y ++-=D .22125()(3)24x y +++=二、填空题13.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.14.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.15.已知圆C 的方程是2220x y y +-=,圆心为点C ,直线:20λλ+-=l x y 与圆C 交于A 、B 两点,当ABC 面积最大时,λ=______.16.过圆226430x y x y +-+-=的圆心,且垂直于2110x y ++=的直线方程是______.17.坐标平面内过点(2,1)A -,且在两坐标轴上截距相等的直线l 的方程为___________.18.若直线l :y x b =+与曲线C :y 有两个不同的公共点,则实数b 的取值范围是________19.过点()4,1P 作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点.当OA OB +取最小值时,直线l 的方程为___________.20.已知直线l 过点(4,1)A -,且和直线320x y -+=的夹角为30°,则直线l 的方程为____________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.已知直角三角形ABC 的项点坐标()4,0A -,直角顶点()2,22B --,顶点C 在x 轴上.(1)求BC 边所在的直线方程;(2)设M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)已知AB 与平行的直线DE 交轴x 于D 点,交轴y 于点(0,72E -.若P 为圆M 上任意一点,求三角形PDE 面积的取值范围.23.已知圆1C :222280x y x y +++-=与圆2C :22210240x y x y +-+-=相交于A 、B 两点.(1)求圆心在直线AB 上且经过A ,B 两点的圆P 的方程及弦AB 所在的直线方程; (2)直线l 经过点()2,3M 且被圆1C 所截得的弦长为25l 的方程.24.直线21:20l a x y a ++=,2:10l x ay ++=,圆22:650C x y y +-+=.(1)当a 为何值时,直线1l 与2l 垂直;(2)若圆心C 在直线2l 的左上方,当直线2l 与圆C 相交于P ,Q 两点,且22PQ =求直线2l 的方程.25.已知点E 与两个定点1,0A ,()4,0B 的距离的比为12. (1)记点E 的轨迹为曲线C ,求曲线C 的轨迹方程.(2)过点()2,3G 作两条与曲线C 相切的直线,切点分别为M ,N ,求直线MN 的方程. (3)若与直线1:22l y x =-垂直的直线l 与曲线C 交于不同的两点P ,Q ,若POQ∠为钝角,求直线l 在y 轴上的截距的取值范围. 26.已知O 为坐标原点,倾斜角为2π3的直线l 与x ,y 轴的正半轴分别相交于点A ,B ,AOB 的面积为(1)求直线l 的方程;(2)直线:3l y x =-',点P 在l '上,求PA PB +的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.2.D解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0,半径为5,yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan α=,y x 5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.3.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题4.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC 的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.C解析:C【分析】 令32y k x -=-,可得出320kx y k -+-=,问题转化为直线320kx y k -+-=与圆222210x y x y +--+=有公共点,可得出关于实数k 的不等式,进而可解得实数k 的取值范围. 【详解】 令32y k x -=-,可得出320kx y k -+-=, 将圆的方程化为标准方程得()()22111x y -+-=,圆心坐标为()1,1,半径为1, 则直线320kx y k -+-=与圆()()22111x y -+-=1≤,整理可得340k -≤,解得34k ≥. 因此,32y x --的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:C. 【点睛】结论点睛:常见的非线性目标函数的几何意义: (1)y bz x a-=-:表示点(),x y 与点(),a b 连线的斜率; (2)z =(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C++=倍.7.A解析:A 【分析】设所求直线上任意一点()()11,,,P x y Q x y 是P 关于直线30y x -+=的对称点,根据对称关系求得1133x y y x =+⎧⎨=-⎩,代入直线210y x -+=的方程整理即得所求. 【详解】解:设所求直线上任意一点()()11,,,P x y Q x y 是P 关于直线30y x -+=的对称点,则111113022y y x x y y x x -⎧=-⎪-⎪⎨++⎪-+=⎪⎩,解得1133x y y x =+⎧⎨=-⎩, 由对称性得Q 在直线210y x -+=上,()()23310x y ∴--++=,即280x y --=, 故选:A. 【点睛】根据“一垂直二中点”列出方程组,求得1133x y y x =+⎧⎨=-⎩是解决问题的关键,利用轨迹方程思想方法求直线的方程也是重要的思想之一.8.A解析:A 【分析】求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =, 则22345OM =+=,2512426OA =-==,则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得2465OA MA AB OM ⨯⨯==, 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.9.B解析:B 【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解. 【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-,∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确;若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误. 故选:B . 【点睛】本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.10.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.11.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.12.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】 因为圆心为1,32C ⎛⎫-⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=, 设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.二、填空题13.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与解析:(,11,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.14.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.15.或【分析】由三角形面积公式知当面积最大时即为等腰直角三角形再利用点到直线的距离公式和半径的关系可得答案【详解】圆C 的方程即圆心半径由面积公式知当时面积最大即为等腰直角三角形此时圆心C 到直线的距离为则解析:1λ=或17λ=. 【分析】由三角形面积公式in 12s S ab C =知,当ABC 面积最大时,90ACB ∠=,即ABC 为等腰直角三角形,再利用点到直线的距离公式和半径的关系可得答案. 【详解】圆C 的方程即22(1)1x y +=-,圆心(0,1)C ,半径1R =,由面积公式21sin 2ABCSR ACB =∠知,当90ACB ∠=时面积最大, 即ABC 为等腰直角三角形,此时圆心C 到直线:20λλ+-=l x y 的距离为d =1==,解得1λ=或17λ=,故答案为:1λ=或17λ=. 【点睛】本题考查了直线和圆的位置关系及求三角形面积最大值的问题.16.【分析】求出圆心坐标由垂直设出直线方程为代入圆心坐标求出参数得直线方程【详解】圆的标准方程是圆心坐标为垂直于的直线方程为则∴所求直线方程为故答案为:【点睛】方法点睛:本题考查由垂直求直线方程解题方法 解析:280x y --=【分析】求出圆心坐标,由垂直设出直线方程为20x y m -+=,代入圆心坐标求出参数m ,得直线方程. 【详解】圆226430x y x y +-+-=的标准方程是22(3)(2)10x y -++=,圆心坐标为(3,2)-,垂直于2110x y ++=的直线方程为20x y m -+=,则23(2)0m ⨯--+=,8m =-, ∴所求直线方程为280x y --=. 故答案为:280x y --=. 【点睛】方法点睛:本题考查由垂直求直线方程,解题方法有两种:(1)由垂直得斜率乘积为1-,得出所求主直线的斜率,再由写出点斜式方程, (2)与直线0Ax By C ++=垂直的直线方程可设为0Bx Ay m -+=,代入已知点坐标求出参数m 后可得.17.或【分析】按照截距是否为0分两种情况讨论可求得结果【详解】当直线在在两坐标轴上截距相等且为0时直线的方程为;当直线在在两坐标轴上截距相等且不为0时设直线的方程为又直线过点则解得所以直线的方程为;所以解析:12y x =-或1y x =--. 【分析】按照截距是否为0分两种情况讨论,可求得结果. 【详解】当直线l 在在两坐标轴上截距相等且为0时,直线l 的方程为12y x =-; 当直线l 在在两坐标轴上截距相等且不为0时,设直线l 的方程为1x ya a+=,又直线l 过点(2,1)A -,则211a a-+=,解得1a =-,所以直线l 的方程为1y x =--; 所以直线l 的方程为12y x =-或1y x =--.故答案为:12y x =-或1y x =--. 【点睛】易错点睛:本题考查了直线方程的截距式,但要注意:截距式1x ya b+=,只适用于不过原点或不垂直于x 轴、y 轴的直线,表示与x 轴、y 轴相交,且x 轴截距为a ,y 轴截距为b 的直线,考查学生分类讨论思想,属于基础题.18.【分析】曲线表示以为圆心半径等于1的半圆当直线过点时可得满足条件当直线和半圆相切时由解得数形结合可得实数的取值范围【详解】解:曲线方程变形为表示圆心为半径为1的上半圆根据题意画出图形如图所示:当直线解析:⎡⎣【分析】曲线表示以(0,0)C 为圆心、半径等于1的半圆,当直线y x b =+过点(0,1)时,可得1b =,满足条件.当直线y x b =+和半圆相切时,由1=b =结合可得实数b 的取值范围. 【详解】解:曲线方程变形为221(0)x y y +=,表示圆心C 为(0,0),半径为1的上半圆, 根据题意画出图形,如图所示:当直线y x b =+过点(0,1)时,可得1b =,满足直线y x b =+与曲线y 有两个不同的公共点.当直线y x b =+和半圆相切时,由1=b =b =(舍去),故直线y x b =+与曲线y =b 的取值范围为⎡⎣,故答案为:⎡⎣.【点睛】本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了数形结合的数学思想,属于中档题.19.【分析】设点写出直线的截距式方程代入点坐标利用基本不等式求出的最小值以及对应的从而求得直线的方程【详解】解:由题意设其中为正数则直线的截距式方程为代入点得;所以当且仅当即且时上式取等号;此时直线的方 解析:260x y +-=【分析】设点(,0)A a ,(0,)B b ,写出直线的截距式方程,代入点P 坐标,利用基本不等式求出||||OA OB +的最小值以及对应的a 、b ,从而求得直线l 的方程.【详解】解:由题意设(,0)A a ,(0,)B b ,其中a ,b 为正数, 则直线的截距式方程为1x y a b +=,代入点(4,1)P 得411a b+=; 所以4144||||()()4152549b a b aOA OB a b a b a b a b a b+=+=++=++++⋅+=, 当且仅当4b aa b=,即6a =且3b =时,上式取等号; 此时直线l 的方程为163x y+=,即260x y +-=. 故答案为:260x y +-=. 【点睛】本题考查了直线的方程与应用问题,也看出来基本不等式求最值问题,属于中档题.20.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由题直线的倾斜角为则直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为时直线为故答案为:或【点睛】本题考解析:4x =-330y -+= 【分析】分析可得已知直线的倾斜角为60︒,则直线l 的倾斜角为30或90︒,分类讨论,并利用点斜式方程求解即可 【详解】 由题,直线2y =+的倾斜角为60︒,则直线l 的倾斜角为30或90︒,当倾斜角为30时,直线l为)14y x -=+,330y -+=; 当倾斜角为90︒时,直线l 为4x =-, 故答案为:4x =-330y -+= 【点睛】本题考查直线倾斜角与斜率的关系,考查求直线方程,考查分类讨论思想三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭, ∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+,(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上, 所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-,所以AC 所在直线方程为280x y -+=. 【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)220x y --=;(2)()2219x y ++=;(3)422213422213,⎡⎤-+⎢⎥⎣⎦.【分析】(1)设AC 中点M 为(),0t ,则()42,0C t +,得到BM MC =,求出t ,利用点斜式写方程即可;(2)利用(1)得到圆心坐标以及半径即可得解;(3)先求AB k ,再求直线DE 的方程,点M 到直线DE 的距离,则三角形PDE 的高263,263h ⎡⎤∈-+⎣⎦,最后利用12PDESDE h =求解即可. 【详解】(1)设AC 中点M 为(),0t ,又()4,0A -, 则()42,0C t +,90ABC ∠=︒,则BM MC =,又(2,22B --, ()()222202424t t t t --+--=+-=+,则1t =-, 所以()2,0C , 故202222BC k -==--,则BC 边所在的直线方程为:)02202y x x -=-⇒--=;所以BC 边所在的直线方程为:20x --=; (2)由M 为直角三角形ABC 外接圆的圆心, 则M 为AC 的中点坐标为()1,0-, 又3MC r ==,则圆M 的方程为:()2219x y ++=;(3)由()4,0A -,(2,B --,得024AB k -==-+,直线AB 与直线DE 平行,又(0,E -,则直线DE 的方程为:y =- 则()7,0D -,所以点M 到直线DE 的距离d ==,则三角形PDE 的高3h ⎡⎤∈⎣⎦,DE ==则12PDESDE h ==∈⎣⎦,三角形PDE 面积的取值范围为22⎡⎢⎣⎦.【点睛】方法点睛:圆上的点到直线的距离的范围问题,转化为圆心到直线的距离加半径最大,减半径最小.23.(1)240x y -+=;()()22215x y ++-=;(2)240x y -+=或112160x y --=.【分析】(1)由已知两圆方程,可得相交弦AB 所在直线的方程,再与其中一圆的方程联立求交点A 、B 坐标,由题意圆P 是以AB 为直径,其中点为圆心的圆,写出圆P 的方程即可.(2)由直线l 过点()2,3M 且被圆1C 所截得的弦长为1C 到直线l 的距离,再讨论直线l 斜率,判断定点1C 到直线l 的距离是否符合要求,进而求直线的方程. 【详解】(1)由22222280210240x y x y x y x y ⎧+++-=⎨+-+-=⎩, ()2222228210240x y x y x y x y +++--+-+-=,即弦AB 所在的直线方程240x y -+=.∴24x y =-,代入圆的方程式,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩. ∴A ,B 两点的坐标分别为()4,-0,()0,2,中点坐标为()2,1P -,则圆P 的半径r PB ===∴圆的方程为()()22215x y ++-=.(2)圆1C :222280x y x y +++-=方程化为:()()221110x y +++=∴()11,1C --,半径r =,直线被圆所截得的弦长l =∴弦心距d == 若直线l 的斜率不存在,圆心()11,1C --到直线l :2x =的距离为3,不合题意. ∴直线l 的斜率存在,设为()32y k x -=-,即320kx y k -+-=圆心()11,1C --到直线l =,即2424110k k -+=,解得12k =或112k =,即有()1322y x -=-或()11322y x -=-,故直线l 的方程为240x y -+=或112160x y --=.【点睛】 关键点点睛:(1)由已知两圆的方程求相交弦直线方程,只需将两圆方程左右两边同时相减即可得到,再由直线与圆的关系求交点坐标,写出圆的方程.(2)由直线过定点,且已知与圆的相交弦长,即可得弦心距,讨论直线存在与否,保证弦心距符合要求,确定直线方程.24.(1)0a =或1a =-(2)10x y -+= 【分析】(1)根据两条直线平行的条件列式解得结果即可得解;(2)设圆心(0,3)C 到直线2l 的距离为d ,利用弦长求出d ,根据圆心到直线的距离求出d ,由此可求出a ,再根据圆心C 在直线2l 的左上方,舍去一个值,从而可得直线2l 的方程. 【详解】(1)由直线1l 与2l 垂直得20a a +=,解得0a =或1a =-; (2)圆22:650C x y y +-+=的圆心(0,3)C ,半径为2,设圆心(0,3)C 到直线2l 的距离为d ,则d ==又d ==,所以27610a a +-=,所以17a =或1a =-,当17a =时,21:107l x y ++=,由0x =得73y =-<,此时圆心C 在直线2l 的右上方,不符合题意;当1a =-时,2:10l x y -+=,由0x =得1y =3<,此时圆心C 在直线2l 的左上方; 故直线2l 的方程为:10x y -+= 【点睛】结论点睛:根据两条直线的位置关系求参数的结论:若1111:0l A x B y C ++=,2222:0l A x B y C ++=,11,A B 不同为0,22,A B 不同为0,①若12l l //,则12210A B A B -=且12210AC A C -≠或12210B C B C -≠;②若12l l ⊥,则12120A A B B +=.25.(1)224x y +=;(2)2340x y +-=;(3)(2,0)(0,2)-【分析】(1)设点E 点坐标为(),x y ,则||1||2EA EB =,利用两点间的距离公式得到方程,整理即可得解;(2)连接OG ,OM ,求出以G 为圆心,||GM 为半径的圆的方程,再跟圆C 求公共弦,即切点弦方程;(3)设直线的方程为:y x b =-+,()11,P x y ,()22,Q x y ,利用根与系数的关系可得P ,Q 两点横坐标的和与积,结合POQ ∠为钝角,得0OP OQ <,即12120x x y y +<,从而可得直线l 的纵截距的取值范围. 【详解】解:(1)设点E 点坐标为(),x y ,则||1||2EA EB = 得2222(1)1(4)4x y x y -+=-+ 整理得:2233120x y +-= 曲线C 的方程是224x y +=.(2)过G 点()2,3作两条与曲线C 相切的直线,G 点在圆外,连接OG ,OM ,由题意知22||2313OG =+=,22||3GM OG OM =-=, ∴以G 为圆心,||GM 为半径的圆的方程为22(2)(3)9x y -+-=①,又圆C 的方程为224x y +=②,由①-②得直线MN 的方程是2340x y +-=;(3)设直线的方程为:y x b =-+,联立224x y +=得:222240x bx b -+-=,设直线l 与圆的交点()11,P x y ,()22,Q x y由()22(2)840b b ∆=--->,得28b <, 12x x b +=.21242b x x -⋅= 因为POQ ∠为钝角,所以0OP OQ ⋅<,即12120x x y y +<,且OP 与OQ 不是反向共线,又11y x b =-+,22y x b =-+,所以()21212121220x x y y x x b x x b +=-++< 12x x b +=,21242b x x -= 222121240x x y y b b b +=--+<得24b <,即22b -<<,当OP 与OQ 反向共线时,直线y x b =-+过原点,此时0b =,不满足题意, 故直线l 在y 轴上的截距的取值范围是22b -<<,且0b ≠.【点睛】本题考查直线与圆的位置关系的应用,训练了利用圆系方程求两圆公共弦所在的直线方程,考查了平面向量的数量积运算,对于过圆222()()x a y b r -+-=外一点()00,x y 的切点弦方程为()()()()200x a x a y b y b r --+--=. 26.(1)y =+;(2) .【分析】(1)求出直线l 的斜率,设直线l的方程为:y b =+,求出横纵截距即可表示出AOB 的面积即可求解;(2)求出()4,0A,(0,B ,求出点()4,0A关于直线:3l y x =-'的对称点A ',PA PB PA PB A B '+='+≥,当A ',B ,P 三点共线时取得最小值.【详解】(1)由题意可得:直线l的斜率2πtan3k ==, 设直线l的方程为:y b =+. 可得直线l与坐标轴的正半轴交点为,03A b ⎛⎫ ⎪ ⎪⎝⎭,()0,B b ,其中0b >.12OAB S b ∴=⨯=△b =, ∴直线l的方程为:y =+.(2)由(1)可得:()4,0A,(0,B ,直线l '的方程为:y x =. 设点A 关于直线l '的对称点(),A m n ',则044232n m n m -⎧=⎪-⎪⎨+⎪=-⎪⎩,解得:2m n =⎧⎪⎨=-⎪⎩(,2A ∴'-. PA PB PA PB A B '+='+≥,∴当A ',B ,P 三点共线时,PA PB +取得最小值.()m in PA B PB A ='==∴+【点睛】关键点点睛:求出点()4,0A 关于直线l '的对称点(),A m n ',利用PA PA =', PA PB PA PB A B '+='+≥可求PA PB +的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

易错点09解析几何—备战2021年高考数学一轮复习易错题【典例分析】例1 (2020年普通高等学校招生全国统一考试数学)已知曲线22:1C mx ny +=.( ) A. 若m >n >0,则C 是椭圆,其焦点在y 轴上B. 若m =n >0,则CC. 若mn <0,则C 是双曲线,其渐近线方程为y =D. 若m =0,n >0,则C 是两条直线例2 (2020C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.例3 (2020年普通高等学校招生全国统一考试数学).已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【易错警示】易错点1.忽视斜率不存在致误例1 已知直线方程为3x +my -6=0,求此直线的斜率与此直线在y 轴上的截距. 易错点2.忽视截距为0致误例2 求过点(2,4)且在坐标轴上的截距之和为0的直线方程. 易错点3.忽视隐含条件致错例3 若过点A (4,2)可以作两条直线与圆C :(x -3m )2+(y -4m )2=25(m +4)2相切,则点A 在圆C 的________(填“外部”、“内部”、“上面”),m 的取值范围是________.易错点4.忽视多解过程致错例4:圆心在x 轴上,半径等于5,且经过原点的圆的方程是________________________. 易错点5.忽视检验结论致错例5:已知Rt △ABC 的斜边为AB ,点A (-2,0),B (4,0),求点C 满足的方程.易错点6.忽视前提条件致误例6:已知动点P 到点F (0,1)的距离是到直线l :y=1距离的2倍,则点P 的轨迹为( ) A 、直线 B 、椭圆 C 、双曲线 D 、抛物线 易错点7.忽视隐含条件致误例7:已知2226x y x +=,求22x y +的取值范围。

易错点8.实施非等价转化致误例8:在平面直角坐标系xOy 中,动点N 到定点M (1,0)的距离比它到y 轴的距离大1,求动点N 的轨迹方程。

易错点9.忽视圆锥曲线的严格定义例9:平面内与定点A (-1,2)和定直线230x y +-=的距离相等的点M 的轨迹是( ) A 、直线 B 、抛物线 C 、椭圆 D 、圆 易错点10.忽视题中条件致误例10:已知点A (-2,0),B (3,0),动点(,)P x y 满足2PA PB x ⋅=,则点P 的轨迹是( ) A 、圆 B 、椭圆 C 、双曲线 D 、抛物线【变式练习】1.当3(,)44ππα∈时,方程22sin cos 1x y αα+=表示的轨迹可以是( )A .两条直线B .圆C .椭圆D .双曲线2.若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是( )A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <53.已知双曲线C 过点(且渐近线为3y x =±,则下列结论正确的是( )A .C 的方程为2213x y -=B .CC .曲线21x y e -=-经过C 的一个焦点D .直线10x -=与C 有两个公共点4.已知A 、B 两点的坐标分别是(1,0),(1,0)-,直线AP 、BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当1m =-时,点P 的轨迹圆(除去与x 轴的交点)B .当10m -<<时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当01m <<时,点P 的轨迹为焦点在x 轴上的抛物线D .当1m 时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)5.设椭圆22:12x C y +=的左右焦点为1F ,2F ,P 是C 上的动点,则下列结论正确的是( )A .12PF PF +=B .离心率e =C .12PF F ∆D .以线段12F F 为直径的圆与直线0x y +-=相切6.如图,椭圆Ⅰ与Ⅱ有公共的左顶点和左焦点,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为1a 和2a ,半焦距分别为1c 和2c ,离心率分别为12,e e ,则下列结论正确的是( )A .()11222a c a c +>+B .1122a c a c -=-C .1221a c a c >D .2112e e +=7.已知抛物线2:4E y x =的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,C ,D 分别为A ,B 在l 上的射影,且||3||AF BF =,M 为AB 中点,则下列结论正确的是( ) A .90CFD ︒∠= B .CMD △为等腰直角三角形 C .直线AB的斜率为D .AOB 的面积为48.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.9.(2019•新课标Ⅱ)已知点(2,0),(2,0)A B -,动点(,)M x y 满足直线AM 和BM 的斜率之积为12-,记M 的轨迹为曲线C .(1)求C 的方程,并说明C 什么曲线;(2)过坐标原点的直线交C 于,P Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .①证明:PQG ∆是直角三角形; ②求PQG ∆的面积的最大值.10.出下列条件:①焦点在x 轴上;②焦点在y 轴上;③抛物线上横坐标为1的点A到其焦点F 的距离等于2;④抛物线的准线方程是2x =-.(1)对于顶点在原点O 的抛物线C :从以上四个条件中选出两个适当的条件,使得抛物线C 的方程是24y x =,并说明理由;(2)过点()4,0的任意一条直线l 与2:4C y x =交于A ,B 不同两点,试探究是否总有OA OB ⊥?请说明理由.【真题演练】1.【2020年高考全国Ⅰ卷理数】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = A .2 B .3C .6D .92.【2020年高考全国Ⅰ卷理数】已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=3.【2020年高考全国Ⅲ卷理数】设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A . 1,04⎛⎫⎪⎝⎭B . 1,02⎛⎫ ⎪⎝⎭C . (1,0)D . (2,0)4.【2020年高考全国Ⅲ卷理数】11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 85.【2020年高考全国Ⅱ卷理数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A BC D 6.【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .327.【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b -=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l垂直,则双曲线C 的方程为A .22144x y -= B .2214y x -= C .2214x y -= D .221x y -= 8.【2020年高考北京】已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为 A . 4 B . 5C . 6D . 79.【2020年高考北京】设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP10.【2020年高考浙江】已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=A BCD 11.【2020年新高考全国Ⅰ卷】已知曲线22:1C mx ny +=. A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线12.【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .13.【2020年高考天津】已知直线80x -+=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.14.【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.15.【2020年高考浙江】已知直线(0)y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______,b =_______.16.【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y x =,则该双曲线的离心率是 ▲ .17.【2020年新高考全国Ⅰ卷】C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.18.【2020年高考江苏】在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是▲ .19.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.20.【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.21.【2020年高考全国Ⅲ卷理数】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.22.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 23.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.24.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.25.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.26.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A为其左顶点,且AM的斜率为12,(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.。

相关文档
最新文档