第6讲 一元一次方程与二元一次方程组
中考数学复习教案一元一次方程与二元一次方程组

中考数学复习教案一元一次方程与二元一次方程组中考数学复习教案一元一次方程与二元一次方程组中考要求:1.根据具体问题中的数量关系,经历形成方程模型、解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.了解一元一次方程及其相关概念,会解一元一次方程(数字系数)3.能以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.4.在经历建立方程模型解决实际问题的过程中,体会数学的应用价值.5.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.6.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.7.了解二元一次方程组的图象解法,初步体会方程与函数的关系.8.了解解二元一次方程组的消元思想.从而初步理解化未知(1)代人消元法:解方程组的基本思路是消元一把二元变为一元,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.9.整体思想解方程组.(1)整体代入.如解方程组,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程二元一次方程与一次函数的区别和联系.区别:(1)二元一次方程有两个未知数,而一次函数有两个变量;(2)二元一次方程用一个等式表示两个未知数的关系,而一次函数既可以用一个等式表示两个变量之间的关系,又可以用列表或图象来表示两个变量之间的关系.联系:(1)在直角坐标系中分别描出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上;(2)在一次函数的图象上任取一点,它的坐标都适合相应的二元一次方程.10.两个一次函数图象的交点与二元一次方程组的解的联系:在同一直坐标系中,两个一次函数图象的交点的坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点,11.用作图象的方法解二元一次方程组:(1)将相应的二元一次方程组改写成一次函数的表达式;(2)在同一坐标系内作出这两个一次函数的图象;(3)观察图象的交点坐标,即得二元一次方程组的解.整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.经典例题剖析:1.若代数式是同类项,则x=__________.2.已知2x+5y=3,用含y的代数式表示x,则x=___________;当y=1时,x=________3.当k=_______时,方程5x-k=3x+8的解是-2.4.有一个数,十位数字是a,个位数字是b,十分位数字是c,那么这个数可表示为_______.5.三个连续奇数的和是15,那么其中最大的奇数为_______.6.若则 3x+2y=_______7.方程没有解,由此一次函数y=2-x与y= -x的图象必定( )A.重合B.平行C.相交D.无法判断8.已知点(2,-1)是方程y=kx+1的一个解,则直线y=kx+l 的图象不经过的象限是_______9.若与是同类二次根式,求a、b的值.10.解方程组:⑴11.若是方程组的解,则(a+b)(a-b)的值为_______.12.学生问老师多少岁,老师说我像你这么大时你才2岁,你长到我这么大时,我就35岁了,请你算算老师、学生各多少岁?13.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全省荔枝总产量为50 000吨,销售收入为61 000万元. 已知妃子笑品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求妃子笑和其它品种的荔枝产量各多少吨. 如果设妃子笑荔枝产量为x吨,其它品种荔枝产量为y吨,那么可列出方程组为 .解:14.甲、乙两件服装的成本共n0元,商店老板为获取利润,决定将甲服装按50%利润定价,乙服装接40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元? 答:甲、乙两件服装的成本分别为300元,200元.15.已知x=-3是方程的一个根,(1)求m的值;⑵求代数式的值.16.一个由父亲、母亲、叔叔和x个孩子组成的家庭去某地旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价的优惠.这两家旅行社的原价均为100元.试比较随着孩子人数的变化,哪家旅行社的收费额更优惠?解:甲旅行社的收费总额为:y1=400+50(x-1)= 50x+350,乙旅行社的收费总额为:y2=75(x+3)-75x+225. (1)当孩子数x5时,乙旅行社的收费优惠;(2)当孩子数x=5时,两旅行社的收费相同;(3)当孩子数x5时,甲旅行社的收费优惠. 专题八:一元一次不等式和一元一次不等式组一、中考要求:1.经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型,进一步发展符号感.2、能够根据具体问题中的大小关系了解不等式的意义.3.经历通过类比、猜测、验证发现不等式基本性质的探索过程,掌握不等式的基本性质.4.理解不等式(组)的解及解集的含义;会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会在数轴上确定其解集;初步体会数形结合的思想.5.能根据具体问题中的数量关系,列出一元一次不等式(组)解决简单的实际问题,并能根据具体问题的实际意义,检验结果是否合理.6.初步体会不等式、方程、函数之间的内在联系与区别.二、知识点讲解:1.不等式:用不等号()表示不等关系的式子.2.不等式的基本性质:()不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.5.解不等式:求不等式解集的过程叫做解不等式.6.一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不为零的不等式叫做一元一次不等式.7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0. 8.一元一次不等式的解法.解一元一次不等式的步骤:①去分母,②去话号,③移项,④合并同类项,⑤系数化为1(不等号的改变问题)9.求不等式的正整数解,可负整数解等特解,可先求出这个不等式的所有解,再从中找出所需特解.10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.12.解不等式组:求不等式组解集的过程,叫做解不等式组.13.不等式组的分类及解集(a14、一元一次不等式组的解.(1)分别求出不等式组中各个不等式的解集(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。
二元一次方程组与一元一次方程的区别和联系

二元一次方程组与一元一次方程的区别和联系
一元一次方程与二元一次方程组都是一次式,一次式都是线性方程;
解题时二元一次方程组需要化成一元一次方程的形式才能最后求解。
二元一次方程:如果一个方程含有两个未知数,并且未知数的指数是1那么这个整式方程就叫做二元一次方程,有无穷个解。
二元一次方程的一般形式:ax+by+c=0(a,b不为0)。
二元一次方程组:把两个共含有两个未知数的一次方程合在一起就组成一个二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
消元:将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
消元的方法有两种:
代入消元法。
加减消元法。
二元一次方程组的解
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
求方程组的解的过程,叫做解方程组。
《二元一次方程组》数学教学PPT课件(2篇)

项的次数是多少?
定义:含有两个未知数,并且含未知数的项的次 数都是一次的方程叫做二元一次方程.
未知数x、y为哪些值时能使 x+y=35?
二元一次方程的解:使二元一次方程两边相等的 两个未知数的值,叫二元一次方程的一组解.
x=30 解的写法:上下摆放,左弧号连接,如:
y=5
小结:二元一次方程的解有无数组.
紧扣相 关概念
Dx. y 1,
1 x
y
1
新课进行时
核心知识点二 二元一次方程组的解
问题:满足课堂开始篮球联赛问题中的方程x y 10 ,且
符合问题的实际意义的值有哪些?把它们填入表中。
xx 0 1 2 3 4 5 6 7 适合一y 个y10二元一9 次方8程的7一组6未知5数的4值, 3
叫做这个二元一次方程的一个解。
解:设安排第一道工序为x人,第二道工序为y人。
根据题意得
x y 7, 900x 1200y
新课进行时 针对练习
根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( D )
小红,你上周买的笔和笔记本 的价格是多少啊?
哦……我忘了!只记得先后 买了两次,第一次买了5支笔 和10本笔记本花了42元钱, 第二次买了10支笔和5本笔记 本花了30元钱。
新课进行时
x+y=10 2x+y=16
叫作方程组
方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共 有两个方程,像这样的方程组叫作二元一次方程组。
超越自我
下列方程组是二元一次方程组的是(B )
A. xy 1, B.x y 1,
x y 1
2 2 x y 1
Cxx .
z y
1, 1
初中数学 一元一次方程与二元一次方程组

知识点1——等式的基本性质
(1)等式的性质 1:等式两边加(或减)同一个数(或式子),结果仍相等.
如果 a=b,那么 a±c= b±c.
(2)等式的性质 2:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等.
如果
a=b,那么
ac=
bc;如果
a=b(c≠0),那么
a
b =
.
cc
(3)等式除了以上两条性质外,还有其他的一些性质:
5
2
解:方程的两边同乘以10, 得 2x-5(3-2x)=10x
去括号,得 2x-15+10x=10x
“去分母”要注意什么? ①不漏乘不含分母的项;
移项,得 2x+10x-10x=15
②分子是多项式,应添括号.
合并同类项,得 2x=15 两边都除以2,得 x=7.5
知识点2——二元一次方程组的求解
巩固练习2
C
知识点4——一次方程与其他知识的联系
二元一次方程组
一次函数
一元一次方程
分式方程
一元一次不等式 一元二次方程
知识点4——二元一次方程组与一次函数的联系
1.二元一次方程和一次函数的图象的联系:
①以二元一次方程的解为坐标的点都在相应的函数图象上; ②一次函数图象上的点的坐标都适合相应的二元一次方程.
例2
解方程组:32xx
y5 4y 2
① ②
3x 2 y 20 ① 4x 5y 19 ②
巩固练习1
x 2
y
4
x 3 y 2
-1 B
B
x 1 2m 3
1 2m 0 3
(1)代入消元法 (2)加减消元法
知识点3——一次方程(组)的应用
一元一次方程及二元一次方程组

2、(09齐齐哈尔)一宾馆有二人间、三人间、四人间三种 客房供游客租住, 某旅行团20人准备同时租用这三种客房 共7间,如果每个房间都住满, 租房方案有 ( C ) A. 4种 B. 3种 C. 2种 D. 1种 解:设租二人间x间, 租三人间y间, 则四人间客房7-x-y. 依题意得:
x=2, 已知 是二元一次方程组 y=1
mx+ny=8, 的解,则 2m-n 的算术平方根为( nx-my=1
C )
A.±2
B. 2
C.2
D.4
类型之三
一元一次方程的解法
0.3x+0.5 2x-1 例2:[2011·滨州] 依据下列解方程 = 的过 0.2 3 程,请在前面的括号内填写变形步骤,在后面的括号 内填写变形依据.
14、(09达州) 将一种浓度为15℅的溶液30㎏, 配制成浓度不低于20℅的同种溶液, 则至少 10 ㎏. 需要浓度为35℅的该种溶液______ 解:设35%溶液为x则得:
35%x+30×15%=(x+30)×20% 解得x=10kg,故至少需要35%的溶液 10kg.
练习:P15 第8题 P16 第9题
列方程解应用题:
1.审题 2.设元
3.列方程
4.解方程
5.检验
6.答
一元一次方程应用题的类型:
1.数字问题(包括日历) 2.体积(面积)变化 3.打折销售问题
4.行程问题
5.工程问题
6.储蓄问题
7.和、差、倍、分问题
顺水航行速度=静水速度+水流速度 逆水航行速度=静水速度-水流速度
六年级一元一次方程二元一次方程组的解法及应用

学生编号学生姓名授课教师辅导学科六年级数学教材版本上教课题名称一元一次方程、二元一次方程组的应用课时进度总第()课时授课时间5月26日教学目标1.熟练掌握一元一次不等式和一元一次方程的解法和应用;2.会解二元一次方程组;能够熟练的运用二元一次方程组解决实际问题;3.使学生掌握三元一次方程、三元一次方程组和它的解的含义;重点难点1.二元一次方程组和三元一次方程组的解题技巧;2.根据应用题的题意列出二元一次方程组。
同步教学内容及授课步骤一、一知识梳理1.列二元一次方程组解应用题的步骤①弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知数;②找出能够表示应用题全部含意的两个相等关系;③根据两个相等关系列出代数式,从而列出两个方程并组成方程组;④解这个二元一次方程组,求出未知数的值;⑤检查所得结果的正确性及合理性;⑥写出答案.2.设未知数的几种常见方法(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个.(2)设间接未知数:即设的不是所求量.有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程.(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解.(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数.3.应用题常见的几种类型:(1)行程问题:①基本量之间的关系:路程=速度×时间②解题时一般应画线段示意图。
(2)工程问题①基本量之间的关系:工作量=工作效率×工作时间甲、乙合做的工作效率=甲的工作效率+乙的工作效率②解题时,若工作总量是抽象的,通常把它设为单位1。
(3)浓度问题①基本量之间的关系:溶液=溶质+溶剂(指体积或质量)溶液的浓度=溶质溶液×100%②解题时应注意配制前后溶液中的不变量和变化量分别是什么?(4)利润问题:①有关量的关系:利润=售价-进价利润率=售价进价进价-×100%利息=本金×利率×期数1. 已知zy x zy x 26=-=+)0(≠xyz ,则z y x ::= ;2. 解方程组:⎩⎨⎧=++=20233:2:1::z y x z y x3. 解方程组: 435:4:3)(:)(:)(-=-+=+++z y x x z z y y x4. ⎪⎩⎪⎨⎧=++==355:4:3:2:z y x z y y x【拓展题】方程组⎩⎨⎧-=--=+322m y x m y x 的解满足32=+y x ,求m 的值.解法指导 把m 看作已知字母.求出的x 与y 的值是含有m 的式子,再把求出的x 与y 的值代入32=+y x ,得到关于m 的一元一次方程,再求出m 的值;也可以把这三个方程组成三元一次方程组,求出m 的值.【典型例题5】六年级(2)班去春游,全班分成若干个小组进行活动,其中女同学分成2组,第一组人数的2倍比第二组人数多4人;如果从第二组调2人到第一组,那么两个小组的人数相等,求女同学的第一组、第二组人数分别是多少人?解法指导 设第一组的人数是x 人,第二组的人数是y 人.根据“第一组人数的2倍比第二组多4人”列出第一个方程,“第二组调2人到第一组,那么两个小组的人数相等”列出第二个方程.【基础习题限时训练】1. 西部山区某县响应国家“退耕还林”号召,将该县一部分耕地改还为林地。
第6讲 一次方程与方程组

值为( A ) A.8 B.4 C.-4 D.-8
4 . (2014·襄 阳 ) 若 方 程
mx + ny= 6
的
两
个
解
是
x=1, y=1,
xy= =-2,1,则 m,n 的值为( A )
A.4,2
B.2,4
C.-4,-2
D.-2,-4
5.(2014·绍兴)如图①,天平呈平衡状态,其中左侧秤盘中有 一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有 2
两个方法 (1)代入消元法;(2)加减消元法.
1.(2014·咸宁)若代数式x+4的值是2,则x等于( B )
A.2
B.-2
C.6
D.-6
2.(2014·无锡)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2
元.该店在六一儿童节举行文具优惠售卖活动,铅笔按原价打八折出售,
圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得金额87元.若设
个各 20 克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘, 并拿走右侧秤盘的 1 个砝码后,天平仍呈平衡状态,如图②,则 被移动的玻璃球的质量为( A )
A.10 克 B.15 克 C.20 克 D.25 克
一元一次方程的解法
【例 1】 解下列方程: (1)12x-45=170;
解:(1)5x-8=7,5x=8+7,5x=15,∴x=3
x=3 9=0,x=3,∴y=-1 解法二:整理得(x+y-2)a=x-2y-5,
x+y-2=0,
x=3
∴x-2y-5=0,解得y=-1
ቤተ መጻሕፍቲ ባይዱ
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
一元一次方程、二元一次方程(组)及应用

一元一次方程、二元一次方程(组)及应用知识点1:一元一次方程及应用1,系数不等于0的整式方程,叫做一元一次方程.一元一次方程的标准式是:ax +b=0(其中x 是未知数,a 、b 是已知数,并且a≠0). 一元一次方程的最简式是:ax=b(a≠0).【例1】下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 ; C. x-y=6 D.都不是 【例2】选项中是方程的是( ) B. a-1>2 C. a 2+b 2-5 D. a 2+2a-3=5;解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a ≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。
【例3】解方程:(1)47815=-x ; (2) 21216231--=+--x x x ;解方程的问题。
【例4】甲、乙两个水池共蓄水50t,甲池用去5t ,乙池又注入8t 后,甲池的水比乙池的水少3t ,问原来甲、乙两个水池各有多少吨水?【例5】一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?知识点2:二元一次方程(组)及应用1,这样的方程,叫做二元一次方程.二元一次方程组:含有相同的两个未知数的两个一次方程所组成的方程组,叫做二元一次方程组.解:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方1、 代入消元法解二元一次方程组基本思路:未知数由多变少。
消元法的基本方法:将二元一次方程组转化为一元一次方程。
2、 加减消元法解二元一次方程组两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 方程(组)与不等式(组)
课题:第六讲 一元一次方程与二元一次方程组
【考点聚焦】
考点一、等式的概念与等式的性质
1、表示________关系的式子,叫做等式。
2、等式的性质 ①性质1:等式两边加上(或减去)同一个______或同一个______所得的结果仍相等.如果a =b ,那么a ±c =b ±c ②性质2:等式两边都乘以(或除以)同一个______(除数不为0)所得的结果仍是等式.如果a =b ,那么ac =bc ,a c =b
c
(c ≠0)
考点二:方程的概念
3、方程的概念:含有未知数的________叫做方程.
4、方程的解:使方程左右两边的值________的未知数的值叫做方程的解,也叫它的根.
5、解方程:求方程____的过程叫做解方程.
考点三:一元一次方程
6、一元一次方程的定义:只含有________个未知数,且未知数的最高次数是________次的整式方程,叫做一元一次方程.一元一次方程的一般形式______________.
7、解一元一次方程的一般步骤:
(1)去分母:在方程两边都乘各分母的_________,注意别漏乘. (2)去括号:注意括号前的系数与符号.
(3)移项:把含有__________的项移到方程的一边,其他项移到另一边,注意移项要__________. (4)合并同类项:把方程化成ax =b (a ≠0)的形式.
(5)系数化为1:方程两边同除以未知数的________,得x =b a
的形式.
考点四、二元一次方程(组)的有关概念
8、二元一次方程:含有________个未知数,并且含有未知数的项的次数都是________的整式方程.
9、二元一次方程的解:一般地,使二元一次方程两边的值_____的两个未知数的值,叫做二元一次方程的解. 10、二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 11、二元一次方程组的解:二元一次方程组的两个方程的________解,叫做二元一次方程组的解。
注意:二元一次方程组的解应写为⎩
⎪⎨⎪⎧x =a ,
y =b 的形式.
考点五、二元一次方程组的解法
12、解二元一次方程组的基本思路是通过___________使其传化为__________方程来解,常用的方法有______
消元法和_________消元法。
考点六、列方程(组)解应用题的一般步骤
13、列方程解应用题的一般步骤 (1)、审: (2)、找: (3)设: (4)列: (5)解:
(6)检: (7)答:
考点七、常见的几种方程类型及等量关系
14、工程问题
(1)基本工作量的关系:工作量=工作效率×工作时间
(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量 (3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题 15、行程问题
(1)基本量之间的关系:路程=速度×时间 (2)常见等量关系:
相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快):
同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程 16、水中航行问题:
顺流速度=船在静水中的速度+水流速度; 逆流速度=船在静水中的速度–水流速度 17、增长率问题:
常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率); 18、数字问题:
基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100
【典例精讲】
例1、如图6-1①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与________个砝码C 的质量相等.
例2、依据下列解方程0.3x +0.50.2=2x -1
3
的过程,请在前面的括号内填写变形步骤,在后面
的括号内填写变形依据.
解:原方程可变形为3x +52=2x -1
3
;(____________)
去分母,得3(3x +5)=2(2x -1);( ) 去括号,得9x +15=4x -2;(____________________) (__________),得9x -4x =-15-2;(__________) 合并,得5x =-17;(________)
(__________),得x =-17
5.(____________)
例3、已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩
⎪⎨⎪⎧x =1,y =2,求m ,n 的值. 例4、解方程组:
⎩⎪⎨⎪⎧2(x -y )3-(x +y )4=-112,
3(x +y )-2(2x -y )=3.
例5、为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.
(1)求1号线、2号线每千米的平均造价分别是多少亿元?
(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?
【回归教材】
教材母题 北师大版八上P231例1
医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?
【中考预测】
某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10个和B 型计算器8个,共需要资金880元;若购进A 型计算器2个和B 型计算器5个,共需要资金380元.求A 、B 两种型号的计算器每个进价是多少元.
【备考通关】
一、选择题
1.在解方程()()032312=---x x 中,去括号正确的是 ( ) A .09612=+--x x B.03622=---x x C.09622=---x x . D.09622=+--x x
2.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是( )
A. 28
B. 33
C. 45
D. 57
3.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人,如果设乙队的人数为x 人,则所列的方程为( )
A. 1004=+x x
B. 100104=-+x x
C.()100104=-+x x
D. 100104
1
=+-x x
4.若2
(341)3250x y y x +-+--=则x =( )
A .-1
B .1
C .2
D .-2
5.若关于x ,y 的二元一次方程组⎩
⎨⎧=-=+k y x ,
k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为( )
A.43-
B.43
C.34
D.3
4
-
6.已知 与 是同类项,则 与 的值分别是 ( )
A.4、1
B.1、4
C.0、8
D.8、0 二、填空题
7.在349x y +=中,如果26y =,那么x = .
8.在方程组 中,m 与n 互为相反数,则x=_________
9.娃哈哈矿泉水有大箱和小箱两种包装,3大箱、2小箱共92瓶;5大箱、3小箱共150瓶,那么一大箱有___________瓶,一小箱有__________瓶. 10.当m=______,n=______时, 是二元一次方程. 11.如果y x 3-=5 ,那么=+-y x 38_________ 12.写出一个二元一次方程组,使这个方程组的解为x 2
y 2=⎧⎨
=-⎩
,你所写的方程组
是 .
13.一个三位数的数字和为11,十位数字是x ,个位数字是十位数字的3倍,百位数字比十位数字的2倍少1,则这个三位数是______________ . 三、解方程(组)
14.35
122--
=+x x 15.
四.解答题 16.已知方程 的两个解为 和 ,求 的值.
17.已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度.
等 级 日 期 ⎩⎨⎧=+=+032
ny x my x 821=+-n m y x ⎩⎨⎧=+-=8372y x x y ⎩⎨⎧==333y x b kx y +=⎩⎨⎧-==271
y x b k ,y
x n 5m n。