37圆有关性质(二)

合集下载

课时37圆的有关概念与性质

课时37圆的有关概念与性质

1课时37 圆的有关概念与性质【课前热身】1.(08重庆)如图,AB 是⊙O 的直径,点C 在⊙O 上,则ACB ∠的度数为( )A .30B .45C .60D .902.(08湖州)如图,已知圆心角78BOC ∠=,则圆周角BAC ∠的度数是( ) A .156B .78C .39D .123.(08梅州)如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 是( )A .正方形 B.长方形C .菱形D .以上答案都不对4.(08福州)如图,AB 是⊙O 的弦,OC AB ⊥于点C ,若8cm AB =,3cm OC =,则⊙O 的半径为 cm . 5. (08荆门)如图,半圆的直径AB =___ .【考点链接】1. 圆上各点到圆心的距离都等于 .2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.3. 垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .5. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 .6. 直径所对的圆周角是 ,90°所对的弦是 .【典例精析】例1 (08呼伦贝尔)如图:AC⌒ =CB ⌒ ,D E ,分别是半径OA 和OB 的中点,CD 与CE 的大小有什么关系?为什么?A CB O 第4题 第5题 0 1 2-1 -21 A B CBOEDA第2题 第3题 第1题2例2 (08济南)已知:如图,30PAC ∠=︒,在射线AC 上顺次截取AD =3cm ,DB =10cm , 以DB 为直径作⊙O 交射线AP 于E 、F 两点,求圆心O 到AP 的距离及EF 的长.【中考演练】1.(08台州)下列命题中,正确的是( )① 顶点在圆周上的角是圆周角; ② 圆周角的度数等于圆心角度数的一半; ③ 90的圆周角所对的弦是直径; ④ 不在同一条直线上的三个点确定一个圆; ⑤ 同弧所对的圆周角相等A .①②③B .③④⑤C .①②⑤D .②④⑤2.(08湘潭)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径 OA =10 m ,高度CD 为_ ____m .3.(08襄樊)如图,⊙O 中OA BC ⊥,25CDA ∠=,则AOB ∠的度数为 .4.(08广州)如图,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且BC ⌒ =DE ⌒ .(1)求证:AC = AE ;(2)利用尺规作图,分别作线段CE 的垂直平分线与∠MCE 的平分线,两线交于点F (保留作图痕迹,不写作法),求证:EF 平分∠CEN .O AD B CEFP AB CDEMNBACD第2题第3题3CE﹡5. (07德州) 如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 的AB⌒ 上一点,延长DA 至点E ,使CE CD =.(1)求证:AE BD =;(2)若AC BC ⊥,求证:AD BD +=.。

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分
47.(2021•德阳)在锐角三角形ABC中,∠A=30°,BC=2,设BC边上的高为h,则h的取值范围是.
48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14, 取1.73)
A.95°B.100°C.105°D.130°
16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是( )
A.40°B.45°C.50°D.55°
17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧 上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为( )
31.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)
32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.
三.解答题(共12小题)
49.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.
(1)求证DB平分∠ADC,并求∠BAD的大小;
(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.
50.(2023•内蒙古)如图,AB是⊙O的直径,AC是弦,D是 上一点,P是AB延长线上一点,连接AD,DC,CP.

24.1.2垂直于弦的直径

24.1.2垂直于弦的直径
C
O
A
E D
B
证明:连结OA、OB,则OA= OB.∵ 垂直于弦AB的直径CD所在 的直线 既是等腰三角形OAB的对称轴又 是⊙ O的对称轴. ∴ 当把圆沿着直径CD折叠时, CD两侧的两个半圆重合, A点和B点重合, ⌒ ⌒ AE和BE重合, ⌒ ⌒ AC、AD分别和BC、BD重合. ⌒ ⌒ ⌒ ⌒ ∴ AE=BE,AC=BC,AD=BD
A E B
解:连结OA.过O作OE⊥AB, . O 垂足为E, 则OE=3cm,AE=BE. ∵AB=8cm ∴AE=4cm 在Rt△AOE中,根据勾股定理有OA=5cm ∴⊙O的半径为5cm.
2. 在⊙O中,AB、AC为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E, 求证:四边形ADOE是 正方形.
① 直径过圆心 ③ 平分弦 ⑤ 平分弦所对的劣弧
② 垂直于弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ③ 平分弦 ④ 平分弦所对优弧
(4)垂直于弦并且平分弦所对的一条弧的 直径过圆心,并且平分弦和所对的另一条弧.
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心 ② 垂直于弦 ⑤ 平分弦所对的劣弧
③ 平分弦 ⑤ 平分弦所对的劣弧
证明: Q O E A C O D A B A B A C
O EA 90
o
EAD 90
o
O D A 90
C E A
o
∴四边形ADOE为矩形, 1 1 AE AC,AD AB 2 2 又∵AC=AB ∴ AE=AD ∴ 四边形ADOE为正方形.
· O
D B
24.1
24.1.2
圆的有关性质
垂直与弦的直径
轴 中心 圆心

第3讲 圆的方程

第3讲 圆的方程

30
聚焦必备知识 突破核心命题 限时规范训练
反思感悟 建立函数关系式求最值:列出关于所求目标式子的函数关系式,然 后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.
31
聚焦必备知识 突破核心命题 限时规范训练
训练2 (1)设P(x,y)是圆(x-2)2+y2=1上的任意一点,则(x-5)2+(y
27
聚焦必备知识 突破核心命题 限时规范训练
反思感悟
求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最 值问题的基本思路
(1)动化定:把与圆上动点的距离转化为与圆心的距离. (2)曲化直:将折线段之和转化为同一直线上的两线段之和,一般要 通过对称性解决.
28
聚焦必备知识 突破核心命题 限时规范训练
14
聚焦必备知识 突破核心命题 限时规范训练
法三:设 A(3,0),B(0,1),⊙M 的半径为 r, 则 kAB=10--03=-13,AB 的中点坐标为(32,12), ∴AB 的垂直平分线方程为 y-12=3(x-32), 即 3x-y-4=0. 联立23xx+-yy--14==00,,解得xy= =- 1,1,
17
聚焦必备知识 突破核心命题 限时规范训练
训练1 在平面直角坐标系xOy中,已知过点M(-2,-1)的圆C和直 线x-y+1=0相切,且圆心在直线y=2x上,则圆C的标准方程为_______ _____________.
根据题意,圆心在直线y=2x上, 则设圆心为(n,2n),圆的半径为r, 又圆C过点M(-2,-1)且与直线x-y+1=0相切,
答案:(-1,3) x2+y2-4x+2y+1=0
9
聚焦必备知识 突破核心命题 限时规范训练

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)
2
P在半圆弧AB上运动(不与A,B两点重合),过点C作直线PB的垂线CD交PB于点D.
(1)如图1,求证:△PCD∽△ABC.
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由.
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
28
【解析】(1)∵AB是☉O的直径,
∴∠BCD=30°.
31
本课结束
∴BF=BE=5.
∵∠ABE=∠AMF=90°,∠BAE=∠MAF,
∴△AMF∽△ABE,


∴ = ,即 = = =2.


设MF=x,则AM=2x,
∴BM=10-2x.
5
∵BM2+MF2=BF2,
∴(10-2x)2+x2=52,解得x=3,x=5(不符合题意,舍去),即MF=3.
∴∠PCD=60°.
∵四边形ABDC内接于☉O,
∴∠B=∠PCD=60°.
9

(2)∵点C为的中点,
∴∠CAD=∠CDA,∴AC=CD.
∵∠ADB=90°,
∴∠CDA+∠CDP=90°.
在Rt△ADP中,∠CAD+∠P=90°,
∴∠CDP=∠P,
∴CD=PC=2 ,
∴AC=CD=PC=2 ,
෽ ,对角线AC为☉O

【例2】(2024·济南三模)如图,四边形ABCD内接于☉O,=
的直径,延长BC交过点D的切线于点E.
(1)求证:DE⊥BE;
3
(2)若☉O的半径为5,tan∠DAC= ,求DE的长.
4
12
【自主解答】(1)连接DO并延长交AB于F,

精编2019深圳中考数学第一轮课时训练含答案(31-40课时).docx

精编2019深圳中考数学第一轮课时训练含答案(31-40课时).docx

精编2019深圳中考数学第一轮课时训练含答案(31-40课时)目录:2019深圳中考数学第一轮课时训练含答案31:2019深圳中考数学第一轮课时训练含答案32:2019深圳中考数学第一轮课时训练含答案33:2019深圳中考数学第一轮课时训练含答案34:2019深圳中考数学第一轮课时训练含答案35:2019深圳中考数学第一轮课时训练含答案36:2019深圳中考数学第一轮课时训练含答案37:2019深圳中考数学第一轮课时训练含答案38:2019深圳中考数学第一轮课时训练含答案39:圆的有关性质直线与圆的位置关系弧长和扇形面积投影与三视图多面体的表面展开图图形的变换图形变换的应用数据与图表2019深圳中考数学第一轮课时训练含答案40:概率课时训练(三十一)圆的有关性质(限时:40分钟)/考场过关/1. [2017 •泸州]如图K31-1,初是00的直径,弦〃丄個于点氏若A. V7B. 2^7C. 6D. 82. [2018 •盐城]如图K31-2,初为00的直径,仞为00的弦,么ADC=35°,则ZGJg 的度数为 ()A. 35°B.45。

C. 55°D. 65°3..[2018 •白银]如图 K31-3,过点 0(0, 0), C 血,0), 〃(0, 1),点〃是x 轴下方CM 上的一点,连接% 血则ZO 肋的度数是 ()畑8,处二1,则弦〃的长是图 K31-24. [2017 •西宁]如图K31~4,初 是OO 的直径,弦皿 交初 于点P 、AP=2, BP 弋 ZAPC=30° ・则〃的长为()图K3WA. V15B. 2V5C. 2V15D. 85. [2018 •烟台]如图K31-5,方格纸上每个小正方形的边长均为1个 单位长度,点a 勺$ C 在格点(两条网格线的交点叫格点)上,以点。

为 原点建立直角坐标系,则过昇,3 C 三点的圆的圆心坐标 为 ・图 K31-56. [2017 -十堰]如图 K31-6, A ABC 内接于 OO, ZACB^0° , ZACB 的 平分线交O 。

24-1 圆的有关性质 课件(共60张PPT)

24-1 圆的有关性质 课件(共60张PPT)
平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。

能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。

概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论

分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5

2021年中考数学真题 圆的有关性质(共54题)-(原卷版)

2021年中考数学真题 圆的有关性质(共54题)-(原卷版)

24圆的有关性质(共54题)一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,16AB =厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( ).A .1.0厘米/分B .0.8厘米分C .12厘米/分D .1.4厘米/分4.(2021·山东聊城市·中考真题)如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB ⊙CAB =30°,则⊙ABC 的度数为( )A .95°B .100°C .105°D .110°5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD∠的度数为( )A .15︒B .22.5︒C .30D .45︒9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD 内接于O ,点P 在AB 上,则P ∠的度数为( )A .30B .45︒C .60︒D .90︒14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .1916.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B C D .419.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,620.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .321.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ; ⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .425.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为( )A .27︒B .108︒C .116︒D .128︒27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒ 二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.39.(2021·内蒙古通辽市·中考真题)如图,AB 是⊙O 的弦,AB =C 是⊙O 上的一个动点,且60ACB ∠=︒,若点M ,N 分别是AB ,BC 的中点,则图中阴影部分面积的最大值是__________.40.(2021·湖北襄阳市·中考真题)点O 是ABC 的外心,若110BOC ∠=°,则BAC ∠为______. 41.(2021·湖北恩施土家族苗族自治州·中考真题)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆形木材的直径___________寸;42.(2021·湖南长沙市·中考真题)如图,在⊙O 中,弦AB 的长为4,圆心O 到弦AB 的距离为2,则AOC ∠的度数为______.43.(2021·湖南怀化市·中考真题)如图,在O 中,3OA =,45C ∠=︒,则图中阴影部分的面积是_________.(结果保留π)三、解答题44.(2021·山东临沂市·中考真题)如图,已知在⊙O 中, AB BC CD ==,OC 与AD 相交于点E .求证: (1)AD ⊙BC(2)四边形BCDE 为菱形.45.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长. 46.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.47.(2021·浙江中考真题)如图,已知AB 是⊙O 的直径,ACD ∠是AD 所对的圆周角,30ACD ∠=︒.(1)求DAB ∠的度数;(2)过点D 作DE AB ⊥,垂足为E ,DE 的延长线交⊙O 于点F .若4AB =,求DF 的长. 48.(2021·四川泸州市·中考真题)如图,ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值49.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.50.(2021·甘肃武威市·中考真题)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,AB C 是弦AB 上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):⊙作线段AC 的垂直平分线DE ,分别交AB 于点,D AC 于点E ,连接,AD CD ;⊙以点D 为圆心,DA 长为半径作弧,交AB 于点F (,F A 两点不重合),连接,,DF BD BF . (2)直接写出引理的结论:线段,BC BF 的数量关系.51.(2021·四川广元市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,AD 是BAC ∠的平分线,以AD 为直径的O 交AB 边于点E ,连接CE ,过点D 作//DF CE ,交AB 于点F .(1)求证:DF 是O 的切线;(2)若5BD =,3sin 5B ∠=,求线段DF 的长. 52.(2021·四川遂宁市·中考真题)如图,⊙O 的半径为1,点A 是⊙O 的直径BD 延长线上的一点,C 为⊙O 上的一点,AD =CD ,⊙A =30°.(1)求证:直线AC 是⊙O 的切线;(2)求⊙ABC 的面积;(3)点E 在BND 上运动(不与B 、D 重合),过点C 作CE 的垂线,与EB 的延长线交于点F . ⊙当点E 运动到与点C 关于直径BD 对称时,求CF 的长;⊙当点E 运动到什么位置时,CF 取到最大值,并求出此时CF 的长.53.(2021·四川广元市·中考真题)如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(,)x y 的坐标值:(1)求出这条抛物线的解析式及顶点M 的坐标;(2)PQ 是抛物线对称轴上长为1的一条动线段(点P 在点Q 上方),求AQ QP PC ++的最小值;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴,垂足为F ,ABD △的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.54.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线: (2)若2,33OA BE OD ==,求DA 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A p
D C B O 三十七、圆的有关性质(二)
一、填空题:
1.若⊙O 中等于1200的劣弧所对的弦长312,则⊙O 半径是_______ 。

2.在半径为4cm 的圆中,垂直平分半径的弦长是_______。

3.如图,在⊙O 中,弦AB 与CD 相交于点P ,已知PA =3cm ,PB =4cm ,PC =2cm ,那么PD = cm 。

4.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,P 是BA 延长线上的点,连结PC ,交⊙O 于F ,如果PF=7,FC=13,且PA :AE :EB=2:4:1,那么CD 的长是 。

5.如图,PA 、PB 、DE 分别切⊙O 于A 、B 、C ,如果PA=8厘米,则△PDE 的周长是___ 。

6.如图,PC 是半圆的切线,且PB=OB ,过B 的切线交PC 与D ,若PC=6,则⊙O 半径为 ,CD :DP=_______。

7.等腰梯形ABCD 外切于圆,且
MN 长为
10
,那么这个等腰梯形的周长是_______。

8.如图,AB 是半圆的直径,直线MN 切半圆于C ,AM ⊥MN ,BN ⊥MN ,如果AM=a ,BN=b ,那么半圆的半径是_____________。

9.如图,AB ,CD 是⊙O 的两条弦,它们相交于点P ,连结AD 、BD ,已知AD=BD=4,PC=6,那么CD 的长是 。

10.已知:如图,面积为2的四边形ABCD 内接干⊙O ,对角线AC 经过圆心,若 ∠BAD=450,CD =2,则AB 的长等于 。

二、选择题:
1.如图,⊙O 的两条弦AB ,CD 交于点P ,已知PA =2cm ,PB=3cm ,
PC=lcm ,则PD 的长为( )
(A )3 cm (B )4cm (C )5cm (D )6cm
2.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为
(A )3cm (B )4cm (C )5cm (D )6cm
A E O p D C
B
3.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,
若AM=1.5,BM =4,则OC 的长为( )
(A )62 (B )6 (C )32 (D )22
4.如图,在⊙O 中,P 为弦AB 上一点,PO ⊥PC ,PC 交⊙O 于
C ,那么( )
(A )OP 2=PA ·PB (B )PC 2=PA ·PB (C )PA 2=PB ·PC (D )PB 2=PA ·PC
5.如图AB 是半圆O 的直径,点C 、D 在弧AB 上,且AD 平分∠CAB ,
已知AB=10,AC=6,则AD=( )
(A )8 (B )10 (C )102 (D )54
6.如图,过点P 作⊙O 的两条割线分别交⊙O 于点A 、B 和点C 、
D ,已知PA=3,AB=PC=2,则PD 的长是( )
(A )3 (B )7.5 (C )5 (D )5.5
7.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点
A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH 等于( )
(A )a 2 (B )a 1 (C )2a (D )3
a 8.如图,圆外切等腰梯形ABCD 的中位线EF= 15 cm ,那么
等腰梯形ABCD 的周长等于 ( )
(A )15 cm (B )20 cm (C )30 cm (D )60 cm
三、证明题:
1、如图,AM 是⊙O 的直径,过⊙O 上一点B 作BN ⊥AM ,垂足为N ,其延长线交⊙O 于点C ,弦CD 交AM 于点E.
(1) 如果CD ⊥AB ,求证:EN=NM ;
(2)如果弦CD 交AB 于点F ,且CD=AB ,求证:CE 2=EF ·
2。

如图,过⊙O 的直径AB 上两点M ,N ,分别作弦CD ,EF , 若CD ∥EF ,AC=BF 。

求证:(1)弧BEC=弧ADF ; (2)AM=BN 。

M D。

相关文档
最新文档