浙江省义乌市2019-2020学年第二学期七年级期末教学质量评价卷数学试卷(义乌统考卷)
2019-2020学年度第二学期期末七年级数学

2019—2020学年度第二学期期末文化水平测试七年级数学试卷(本试卷共24小题,满分120分,考试分钟120分钟)一.单项选择题(每小题4分,共40分。
每小题只有一个正确答案) 1.如图,两条平行直线a 、b 被直线c 所截,下列说法正确的是 A.当∠1=55°时,∠2=125° B. 当∠1=55°时,∠2=55° C. 当∠1=55°时,∠2=145° D. 当∠2=55°时,∠1=145°的平方根等于 A.-10 B.±103.在平面直角坐标系中,点P (-2,3)位于 A.第一象限B. 第三象限C. 第二象限D. 第四象限4.下列调查的样本具有代表性的是A.为了了解全校同学喜欢课程情况,对某班成绩较好的20名学生进行调查B.为了了解某小区居民的防火意识,从每幢楼居民中随机抽取若干人进行调查C.为了了解商场的平均日营业额,选在周末进行调查D.为了了解贵州省空气质量情况,在凯里市设点调查 5.已知10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩都是方程y ax b =+的解,则2018a b ++的值是6.如图,AB ∥CD ,AD ∥BC ,下列推理中不正确的是A.∵AB ∥CD (已知)∴∠A =∠5(两直线平行,同位角相等) B. ∵AD ∥BC (已知)∴∠3=∠4(两直线平行,内错角相等) C. ∵AB ∥CD (已知)∴∠C +∠ABC =180°(两直线平行,同旁内角互补) D. ∵AD ∥BC (已知)∴∠1=∠2(两直线平行,内错角相等)7.一个扇形统计图中,有一扇形的圆心角为90°,则此扇形区域表示的统计量占全部统计量的 %B. 25%C. 10%D. 15%8.在一节数学课上,张老师带领同学们探究完不等式的性质后,让同学们完成一道有4个小题的填空题,小华同学很快完成,并在黑板上进行展示:D C BA54321如果每道小题完成正确得25分,那么小华的得分为 分分分分9.若关于x 的一元一次不等式组2(1)13x x m -+≤⎧⎨>⎩的整数解有4个,则m 的取值范围是A. 20m -<<B. 21m -<≤-C. 21m -≤<-D.以上答案都不对10.为了疫情防控,学校需用含30%和75%的消毒药水,配制含60%的消毒药水30kg ,则含30%和75%的消毒药水各需 、18kgB. 19kg 、11kgC. 17kg 、13kgD. 10kg 、20kg二.填空题:(每小题4分,共24分) 11.已知数据:2,7,7.5,,20173π---,其中出现负数的频率是 . 12.如图,已知:直线d 分别垂直于直线a ,b ,当∠1=52°,则∠2的度数为 . 13.点A (x ,y )是以方程组26y x y x =-+⎧⎨=-⎩的解为坐标的点,过点A 作直线平行于y 轴,交x 轴于点B ,则点B 的坐标为 .14.下列一组数:①7-;;③3.1010010001(两个1之间依次多1个0);④3.01;⑤0;;⑦9+;⑧2π-;⑨0010+中,属于无理数的是: (填数的序号). 15.已知3(21)27x -=,则根据立方根的意义,求得x 的值为 .16.某种苹果的进价为每千克元,销售中估计有5%的苹果正常损耗,商家为了避免亏本,售价至少定为每千克 元. 三.解答题:(共56分)17.(51)|3|+18.(5分)解方程组:135222(1)6x y x y ⎧-=-⎪⎨⎪-+=⎩19.(6分)解不等式组:1021321xx x --⎧≤-⎪⎨⎪-<⎩,并把解集在数轴上表示出来。
2019-2020学年浙江省金华市义乌市七年级下学期期末数学试卷 (解析版)

2019-2020学年浙江金华市义乌市七年级第二学期期末数学试卷一、选择题(共10小题).1.将如图所示的图案平移后可以得到下图中的()A.B.C.D.2.计算a3•a2的结果是()A.a6B.a5C.2a3D.a3.某微生物的直径为0.0000513,则数字0.0000513用科学记数法表示为()A.51.3×10﹣6B.51.3×10﹣5C.5.13×10﹣6D.5.13×10﹣5 4.下列调查中,适宜采用全面调查(普查)方式的是()A.对疫情后某班学生心理健康状况的调查B.对某大型自然保护区树木高度的调查C.对义乌市市民实施低碳生活情况的调查D.对某个工厂口罩质量的调查5.下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1|B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()26.若分式的值为0,则x的值是()A.2B.﹣2C.﹣4D.07.已知x﹣y=1,xy=2,则x2y﹣xy2的值为()A.﹣B.﹣2C.D.28.现有A、B两工厂每小时一共能做9000个N95口罩,两个工厂运作相同的时间后.得到A工厂做的960个口罩,B工厂做的840个口罩,设A工厂每小时能做x个口罩,根据题意列出分式方程正确的是()A.=B.=C.=D.=9.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9 10.如图,在△ABC中,∠B+∠C=α,按图进行翻折,使B'D∥C'G∥BC,B'E∥FG,则∠C'FE的度数是()A.B.90°﹣C.α﹣90°D.2α﹣180°二、填空题(共6小题).11.已知二元一次方程x﹣2y+1=0,用含y的代数式表示x,则x=.12.按照下面程序计算:若输入x的值为2.则输出的结果为.13.已知x=2y,则分式的值为.14.如图1表示去年某地12个月中每月的平均气温,图2表示该地一家庭去年12个月的用电量.请你根据统计图,描述该家庭用电量与气温的关系:.15.已知多项式:①x2+4y2;②﹣+;③﹣﹣;④3x2﹣4y;其中能运用平方差公式分解因式的是.(填序号即可)16.如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG 为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为.三、解答题(本题有8小题,共52分,各小题都必须写出解答过程)17.计算:(1)()﹣2﹣(﹣)0;(2)(9ab3﹣6a3b2)÷(3ab).18.解方程或方程组:(1)4+2(x﹣1)=x;(2).19.解分式方程:.20.如图,∠BAD=95°,∠FEG=45°,∠ADC=130°,AB∥EF,则DC∥EG.完成下面的说理过程(填空)解:已知AB∥EF,根据,可得∠BAD+∠AEF=180°,因为∠BAD=95°,所以∠AEF=85°,又因为∠FEG=45°,所以∠AEG=∠AEF+∠FEG=.因为∠ADC=130°,所以∠AEG=∠ADC.根据,可得DC∥EG.21.为了加强学生对新冠肺炎的预防意识,某校组织了学生参加新冠肺炎预防的知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如图(未完成),解答下列问题:(1)若A组的频数比B组小24,则a=,b=;(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不包括80分)优秀,全校共有1200名学生,估计成绩优秀的学生有多少名?22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点A,B,C都在格点(正方形网格的交点称为格点).现将△ABC平移,使点A平移到点D,点E,F分别是B,C的对应点.(1)在图中请画出平移后的△DEF;(2)△DEF的面积为.(3)在网格中画出一个格点P,使得S△BCP=S△DEF.(画出一个即可)23.杨梅是我国特产水果之一,素有“初疑一颗值千金”之美誉!六月,正值杨梅成熟上市的时候.某杨梅基地零售批发“黑碳”,“东魁”两种杨梅.已知零售3斤“黑碳”和5斤“东魁”共需59元;零售5斤“黑碳”和8斤“东魁”共需95元批发价是在零售价的基础上按下表进行打折:不超过100斤100斤~550斤550斤~1000斤1000斤~1550斤1550斤以上不打折九五折九折八折七五折(1)求“黑碳”,“东魁”两种杨梅的零售单价;(2)某水果商打算用12000元全部用于批发购进“东魁”杨梅,最多能购进多少斤?(3)现用A,B,C三种不同型号的水果箱共30只,将(2)中购得的杨梅进行装箱,装完所有的杨梅时,每只箱子刚好装满.已知A种型号的水果箱每只能装30斤,B种型号的水果箱每只能装50斤,C种型号的水果箱每只能装100斤,通过计算设计共有哪几种装箱方案?24.如图,已知AB∥CD,P是直线AB,CD间的一点,PF⊥CD于点F,PE交AB于点E,∠FPE=120°.(1)求∠AEP的度数;(2)如图2,射线PN从PF出发,以每秒40°的速度绕P点按逆时针方向旋转,当PN 垂直AB时,立刻按原速返回至PF后停止运动;射线EM从EA出发,以每秒15°的速度绕E点按逆时针方向旋转至EB后停止运动.若射线PN,射线EM同时开始运动,设运动时间为t秒.①当∠MEP=20°时,求∠EPN的度数;②当EM∥PN时,求t的值.参考答案一、选择题(共10小题).1.将如图所示的图案平移后可以得到下图中的()A.B.C.D.【分析】根据平移只改变图形的位置,不改变图形的形状与大小,即可得出结论.解:观察各选项图形可知,B选项的图案可以通过原图形平移得到.故选:B.2.计算a3•a2的结果是()A.a6B.a5C.2a3D.a【分析】根据同底数幂相乘,底数不变,指数相加解答.解:a3•a2=a3+2=a5.故选:B.3.某微生物的直径为0.0000513,则数字0.0000513用科学记数法表示为()A.51.3×10﹣6B.51.3×10﹣5C.5.13×10﹣6D.5.13×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000513=5.13×10﹣6,故选:C.4.下列调查中,适宜采用全面调查(普查)方式的是()A.对疫情后某班学生心理健康状况的调查B.对某大型自然保护区树木高度的调查C.对义乌市市民实施低碳生活情况的调查D.对某个工厂口罩质量的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.解:(1)对疫情后某班学生心理健康状况的调查,适合全面调查;(2)对某大型自然保护区树木高度的调查,适合抽样调查;(3)对义乌市市民实施低碳生活情况的调查,适合抽样调查;(4)对某个工厂口罩质量的调查,适合抽样调查.故选:A.5.下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1|B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()2【分析】根据有理数的乘方的定义,绝对值的性质对各选项分别计算,然后利用排除法求解.解:A、﹣|﹣1|=﹣1,﹣(﹣1)=1,﹣(﹣1)≠﹣|﹣1|,故本选项错误;B、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C、(﹣4)3=﹣64,﹣43=﹣64,(﹣4)3=﹣43,故本选项正确;D、=,=,≠,故本选项错误.故选:C.6.若分式的值为0,则x的值是()A.2B.﹣2C.﹣4D.0【分析】根据分式值为零的条件是分子等于零且分母不等于零求解可得.解:∵分式的值为0,∴x﹣2=0且x+4≠0,解得x=2,故选:A.7.已知x﹣y=1,xy=2,则x2y﹣xy2的值为()A.﹣B.﹣2C.D.2【分析】利用提公因数法,原式可得xy(x﹣y),再把x﹣y=1,xy=2代入计算即可.解:∵x﹣y=1,xy=2,∴x2y﹣xy2=xy(x﹣y)=2×1=2.故选:D.8.现有A、B两工厂每小时一共能做9000个N95口罩,两个工厂运作相同的时间后.得到A工厂做的960个口罩,B工厂做的840个口罩,设A工厂每小时能做x个口罩,根据题意列出分式方程正确的是()A.=B.=C.=D.=【分析】设A工厂每小时能做x个口罩,则B工厂每小时能做(9000﹣x)个口罩,根据工作时间=工作总量÷工作效率结合A工厂做960个口罩和B工厂做840个口罩所用时间相同,即可得出关于x的分式方程,此题得解.解:设A工厂每小时能做x个口罩,则B工厂每小时能做(9000﹣x)个口罩,依题意,得:=.故选:A.9.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.解:由方程组,有y﹣5=m∴将上式代入x+m=4,得到x+(y﹣5)=4,∴x+y=9.故选:C.10.如图,在△ABC中,∠B+∠C=α,按图进行翻折,使B'D∥C'G∥BC,B'E∥FG,则∠C'FE的度数是()A.B.90°﹣C.α﹣90°D.2α﹣180°【分析】设∠ADB′=γ,∠AGC′=β,∠CEB′=y,∠C′FE=x,利用平行线的性质,三角形内角和定理构建方程组即可解决问题.解:设∠ADB′=γ,∠AGC′=β,∠CEB′=y,∠C′FE=x,∵B'D∥C'G,∴γ+β=∠B+∠C=α,∵EB′∥FG,∴∠CFG=∠CEB′=y,∴x+2y=180°①,∵γ+y=2∠B,β+x=2∠C,∴γ+y+β+x=2α,∴x+y=α②,②×2﹣①可得x=2α﹣180°,∴∠C′FE=2α﹣180°.故选:D.二、填空题(本题有6小题,每小题3分,共18分)11.已知二元一次方程x﹣2y+1=0,用含y的代数式表示x,则x=2y﹣1.【分析】把y看做已知数表示出x即可.解:方程x﹣2y+1=0,解得:x=2y﹣1.故答案为:2y﹣1.12.按照下面程序计算:若输入x的值为2.则输出的结果为1.【分析】根据有理数的运算法则即可求出答案.解:由题意可知:(2×2)2﹣15=16﹣15=1,故答案为:113.已知x=2y,则分式的值为.【分析】把x=2y代入所求的式子计算,即可得到答案.解:x=2y代入所求的式子,得原式===.故答案为:.14.如图1表示去年某地12个月中每月的平均气温,图2表示该地一家庭去年12个月的用电量.请你根据统计图,描述该家庭用电量与气温的关系:当气温越高或越低时,用电量就越多.【分析】由折线统计图可以看出:1月份的气温最低,8月份的气温最高;由条形统计图可以看出:1月份和8月份的用电量最多;所以可得到信息:当气温最高或最低时,用电量最多.解:由折线统计图知,当气温越高或越低时,用电量就越多.故答案为:当气温越高或越低时,用电量就越多.15.已知多项式:①x2+4y2;②﹣+;③﹣﹣;④3x2﹣4y;其中能运用平方差公式分解因式的是②.(填序号即可)【分析】利用平方差公式的特点判断即可得到结果.解:①x2+4y2不能运用平方差公式分解因式;②﹣+能运用平方差公式分解因式;③﹣﹣不能运用平方差公式分解因式;④3x2﹣4y不能运用平方差公式分解因式,则能用平方差公式分解的是②.故答案为:②.16.如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG 为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为7或.【分析】利用矩形及正方形的性质可求解KI=2DG﹣10,KH=DG﹣3,根据当矩形KILH 的邻边的比为3:4可求解DG的长,再利用DG的长分别求解AF,CG,AJ的长,进而可求解,注意分类讨论.解:在矩形ABCD中,AB=CD=10,AD=BC=13.∵四边形DGIJ为正方形,四边形BFHE为矩形,BF=DG,∴四边形KILH为矩形,KI=HL=2DG﹣AB=2DG﹣10.∵BE=BA=10,∴LG=EC=3,∴KH=IL=DG﹣LG=DG﹣3.当矩形KILH的邻边的比为3:4时,(DG﹣3):(2DG﹣10)=3:4,或(2DG﹣10):(DG﹣3)=3:4,解得DG=9或.当DG=9时,AF=CG=1,AJ=4,∴S1+S2=AF•AJ+CE•CG=1×4+1×3=7;当DG=时,AF=CG=,AJ=,∴S1+S2=AF•AJ+CE•CG==.故答案为7或.三、解答题(本题有8小题,共52分,各小题都必须写出解答过程)17.计算:(1)()﹣2﹣(﹣)0;(2)(9ab3﹣6a3b2)÷(3ab).【分析】(1)根据负整数指数幂和零整数指数幂解答即可;(2)根据整式的混合计算解答即可.解:(1);(2)(9ab3﹣6a3b2)÷(3ab)=3b2﹣2a2b.18.解方程或方程组:(1)4+2(x﹣1)=x;(2).【分析】(1)去括号后求解一元一次方程;(2)用加减法求解比较简便.解:(1)4+2x﹣2=x,∴x=﹣2;(2)①×2+②,得4x=4,解得x=1.把x=1代入①,得1+2y=5,∴y=2.∴原方程组的解为.19.解分式方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得x+5=4x+2,解得:x=1,经检验,原方程的解为x=1.20.如图,∠BAD=95°,∠FEG=45°,∠ADC=130°,AB∥EF,则DC∥EG.完成下面的说理过程(填空)解:已知AB∥EF,根据两直线平行,同旁内角互补,可得∠BAD+∠AEF=180°,因为∠BAD=95°,所以∠AEF=85°,又因为∠FEG=45°,所以∠AEG=∠AEF+∠FEG=130°.因为∠ADC=130°,所以∠AEG=∠ADC.根据同位角相等,两直线平行,可得DC∥EG.【分析】根据平行线的性质得出∠BAD+∠AEF=180°,求出∠AEG=∠ADC=130°,根据平行线的判定得出即可.解:∵AB∥EF,∴∠BAD+∠AEF=180°(两直线平行,同旁内角互补),∵∠BAD=95°,∴∠AEF=85°,∵∠FEG=45°,∴∠AEG=∠AEF+∠FEG=130°,∵∠ADC=130°,∴∠AEG=∠ADC,∴DC∥EG(同位角相等,两直线平行),故答案为:两直线平行,同旁内角互补,130°,同位角相等,两直线平行.21.为了加强学生对新冠肺炎的预防意识,某校组织了学生参加新冠肺炎预防的知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如图(未完成),解答下列问题:(1)若A组的频数比B组小24,则a=16,b=40;(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不包括80分)优秀,全校共有1200名学生,估计成绩优秀的学生有多少名?【分析】(1)从统计图中可知,A组比B组少20%﹣8%=12%,A组比B组少24人,可求出调查人数,进而求出a、b的值;(2)D部分占整体的,因此相应的圆心角占360°的即可;求出C部分的人数,即可补全频数分布直方图;(3)样本估计总体,样本中优秀占,因此估计总体1200人的即为优秀的人数.解:(1)24÷(20%﹣8%)=200(人),a=200×8%=16(人),b=200×20%=40(人),故答案为:16,40;(2)n=360°×=126°,200×25%=50(人),E组人数:200﹣16﹣40﹣50﹣70=24(人),补全频数分布直方图如图所示:(3)1200×=564(人),答:全校共有1200名学生,成绩优秀的学生有564名.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点A,B,C都在格点(正方形网格的交点称为格点).现将△ABC平移,使点A平移到点D,点E,F分别是B,C的对应点.(1)在图中请画出平移后的△DEF;(2)△DEF的面积为7.(3)在网格中画出一个格点P,使得S△BCP=S△DEF.(画出一个即可)【分析】(1)依据点A平移到点D,即可得到平移的方向和距离,进而画出平移后的△DEF;(2)依据割补法进行计算,即可得到△DEF的面积;(3)根据S△BCP=S△DEF,即可得到点P可以在AB的中点处(答案不唯一).解:(1)如图所示,△DEF即为所求;(2)△DEF的面积为:4×4﹣×2×3﹣×1×4﹣×2×4=7;故答案为:7;(3)如图所示,点P即为所求(答案不唯一).23.杨梅是我国特产水果之一,素有“初疑一颗值千金”之美誉!六月,正值杨梅成熟上市的时候.某杨梅基地零售批发“黑碳”,“东魁”两种杨梅.已知零售3斤“黑碳”和5斤“东魁”共需59元;零售5斤“黑碳”和8斤“东魁”共需95元批发价是在零售价的基础上按下表进行打折:不超过100斤100斤~550斤550斤~1000斤1000斤~1550斤1550斤以上不打折九五折九折八折七五折(1)求“黑碳”,“东魁”两种杨梅的零售单价;(2)某水果商打算用12000元全部用于批发购进“东魁”杨梅,最多能购进多少斤?(3)现用A,B,C三种不同型号的水果箱共30只,将(2)中购得的杨梅进行装箱,装完所有的杨梅时,每只箱子刚好装满.已知A种型号的水果箱每只能装30斤,B种型号的水果箱每只能装50斤,C种型号的水果箱每只能装100斤,通过计算设计共有哪几种装箱方案?【分析】(1)可设“黑碳”杨梅的零售单价为x元/斤,“东魁”杨梅的零售单价为y 元/斤,根据等量关系:零售3斤“黑碳”和5斤“东魁”共需59元;零售5斤“黑碳”和8斤“东魁”共需95元;列出方程组求解即可;(2)由于1550×(10×0.75)=11625(元),可知用12000元全部用于批发购进“东魁”杨梅,可以1550斤以上,设能购进z斤,根据一共的钱数是12000元,列出不等式求解即可;(3)可设A种型号的水果箱m只,B种型号的水果箱n只,C种型号的水果箱k只,根据等量关系:A,B,C三种不同型号的水果箱共30只;购进1600斤;列出方程组,再根据整数的性质即可求解.解:(1)设“黑碳”杨梅的零售单价为x元/斤,“东魁”杨梅的零售单价为y元/斤,依题意有,解得.故“黑碳”杨梅的零售单价为3元/斤,“东魁”杨梅的零售单价为10元/斤;(2)∵1550×(10×0.75)=11625(元),∴用12000元全部用于批发购进“东魁”杨梅,可以1550斤以上,设能购进z斤,依题意有0.75×10z≤12000,解得z≤1600.故能购进1600斤;(3)设A种型号的水果箱m只,B种型号的水果箱n只,C种型号的水果箱k只,依题意有,即,②﹣①×3得2n+7k=70,n=35﹣k,∵m,n,k都是非负整数,∴k=0,n=35,m=﹣5(舍去);k=2,n=28,m=0;k=4,n=21,m=5;k=6,n=14,m=10;k=8,n=7,m=15;k=10,n=0,m=20;故共有5种装箱方案:①B种型号的水果箱28只,C种型号的水果箱2只;②A种型号的水果箱5只,B种型号的水果箱21只,C种型号的水果箱4只;③A种型号的水果箱10只,B种型号的水果箱14只,C种型号的水果箱6只;④A种型号的水果箱15只,B种型号的水果箱7只,C种型号的水果箱8只;⑤A种型号的水果箱20只,C种型号的水果箱10只.24.如图,已知AB∥CD,P是直线AB,CD间的一点,PF⊥CD于点F,PE交AB于点E,∠FPE=120°.(1)求∠AEP的度数;(2)如图2,射线PN从PF出发,以每秒40°的速度绕P点按逆时针方向旋转,当PN 垂直AB时,立刻按原速返回至PF后停止运动;射线EM从EA出发,以每秒15°的速度绕E点按逆时针方向旋转至EB后停止运动.若射线PN,射线EM同时开始运动,设运动时间为t秒.①当∠MEP=20°时,求∠EPN的度数;②当EM∥PN时,求t的值.【分析】(1)通过延长PG作辅助线,根据平行线的性质,得到∠PGE=90°,再根据外角的性质可计算得到结果;(2)①由∠MEP=20°,计算出EM的运动时间t,根据运动时间可计算出∠FPN,由已知∠FPE=120°可计算出∠EPN的度数;②根据题意可知,当EM∥PN时,分两种情况,Ⅰ射线PN由PF逆时针转动,EM∥PN,根据题意可知∠AEM=15t°,∠FPN=40t°,再平行线的性质可得∠AEM=∠AHP,再根据三角形外角和定理可列等量关系,求解即可得出结论;Ⅱ射线PN垂直AB时,再顺时针向PF运动时,EM∥PN,根据题意可知,∠AEM=15t°,∠GPN=40(t﹣)°,根据(1)中结论,∠PEG=30°,∠PGE=60,可计算出∠PEM与∠EPN代数式,再根据平行线的性质,可列等量关系,求解可得出结论.解:(1)延长FP与AB相较于点G,如图1,∵PF⊥CD,∴∠PFD=∠PGE=90°,∵∠EPF=∠PGE+∠AEP,∴∠AEP=∠EPF﹣∠PGE=120°﹣90°=30°;(2)①如图2,∵∠AEP=30°,∠MEP=20°,∴∠AEM=10°,∴射线ME运动的时间t=(秒),∴射线PN旋转的角度∠FPN=,又∵∠EPF=120°,∴∠EPN=∵∠EPF﹣∠EPN=120°﹣=;②Ⅰ当PN由PF运动如图3时EM∥PN,PN与AB相交于点H,根据题意可知,经过t秒,∠AEM=15t°,∠FPN=40t°,∵EM∥PN,∴∠AEM=∠AHP=15t°,又∵∠FPN=∠PGH+∠AHP,∴40t°=90°+15t°,解得t=(秒);Ⅱ当PN由PG运动如图4时,EM∥PN,根据题意可知,经过t秒,∠AEM=15t°,∠GPN=40(t﹣)°,∵∠AEP=30°,∠EPG=60°,∴∠PEM=15t°﹣30°,∠EPN=40(t﹣)°﹣60°,又∵EM∥PN,∴∠PEM+∠EPN=180°,∴15t°﹣30°+40(t﹣)°﹣60°=180°,解得t=(秒),当t的值为秒或秒时,EM∥PN.。
2019-2020七年级下册数学期末质量检测试卷及参考答案

(7 分)
24.( 8 分) 解:设原计划拆除旧校舍 x 平方米,新建校舍 y 平方米,根据题意得:
x y 7200,
(1)
( 3 分)
(1 10%)x 80%y 7200.
x 4800, 解得
y 2400.
( 5 分)
(2)实际比原计划拆除与新建校舍节约资金是
(4800 80 2400 700) 4800 (1 10%) 80 2400 80% 700
1
2
3
4
5
6
7
8
9
10
B
A
C
D
C
A
B
D
B
B
二.填空题(本题有 6 小题,每小题 3 分,共 18 分)
11. x ≠2 12 . 略
13
. 135 °
14. x+1 15
. 1 16 .10 或 11 (写出 1 个得 2 分、 2 个得 3 分) 2
三.解答题(本题有 8 小题,共 52 分 . 其中第 17、18、19、20、21 题每小题 6 分, 第 22、23 题每小题 7 分,第 24 题 8 分)
(1) 2x 2 y
(2)
(x y)2 6( x y) 9
18.化简 ( 每小题 3 分 )
(1) (x+2) 2-(2x) 2
(2)
(2 a 3b) 2 4a(a 3b 1)
19.解方程 ( 组 )( 每小题 3 分 )
x 2 y,
(1)
(2)
2x y 5.
12 x1 x
20.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图的方法画一个 三角形,使所得的三角形和原来的三角形全等. (不要求写作法,保留作图痕迹. )
2019-2020学年七年级第二学期期末考试数学试卷(含答案解析)

2019-2020学年七年级第二学期期末考试数学试卷(含答案解析)一、选择题:(每小题4分,共40分)1.下列调查中,适合采用全面调查方式的是()A.对沱江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对市场上某种雪糕质量情况的调查D.对本班45名学生身高情况的调查2.9的算术平方根是()A.±3 B.3 C.-3 D3.已知a>b,则下列不等式一定成立的是()A.-a<-b B.a-1<b-1 C.a+2<b+2 D.2a<2b4.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60° D.80°5.用代入法解方程组27345x yx y-⋯⋯-⋯⋯⎧⎨⎩=,①=.②代入后,化简比较容易的变形为()A.由①得x=7+2yB.由①得y=2x-7C.由②得x=5+43yD.由②得y=354x-6.不等式组43xx<⎧⎨⎩…的解集在数轴上表示为()A.B.C.D.7.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④同角或等角的补角相等。
其中是真命题的有()个。
A.1 B.2 C.3 D.48.下列选项中,属于无理数的是()AB.πCD.09.在平面直角坐标系中,将点A(m-1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是()A.m<0,n>0 B.m<1,n>-2 C.m<0,n<-2 D.m<-2,m>-410.一个两位的十位数字与个位数字的和是7,如果把两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是()A.34 B.25 C.16 D.61二、填空题:(每小题4分,共32分)11.如图,已知AB∥CD,∠A=70°,则∠1的度数是度。
浙江省金华市义乌市2019-2020学年七年级(下)期末考试数学试卷解析版

2019-2020学年浙江省金华市义乌市七年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)将如图所示的图案平移后可以得到下图中的()A.B.C.D.2.(3分)计算a3•a2的结果是()A.a6B.a5C.2a3D.a3.(3分)某微生物的直径为0.0000513,则数字0.0000513用科学记数法表示为()A.51.3×10﹣6B.51.3×10﹣5C.5.13×10﹣6D.5.13×10﹣5 4.(3分)下列调查中,适宜采用全面调查(普查)方式的是()A.对疫情后某班学生心理健康状况的调查B.对某大型自然保护区树木高度的调查C.对义乌市市民实施低碳生活情况的调查D.对某个工厂口罩质量的调查5.(3分)下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1|B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()26.(3分)若分式的值为0,则x的值是()A.2B.﹣2C.﹣4D.07.(3分)已知x﹣y=1,xy=2,则x2y﹣xy2的值为()A.﹣B.﹣2C.D.28.(3分)现有A、B两工厂每小时一共能做9000个N95口罩,两个工厂运作相同的时间后.得到A工厂做的960个口罩,B工厂做的840个口罩,设A工厂每小时能做x个口罩,根据题意列出分式方程正确的是()A.=B.=C.=D.=9.(3分)已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9 10.(3分)如图,在△ABC中,∠B+∠C=α,按图进行翻折,使B'D∥C'G∥BC,B'E∥FG,则∠C'FE的度数是()A.B.90°﹣C.α﹣90°D.2α﹣180°二、填空题(本题有6小题,每小题3分,共18分)11.(3分)已知二元一次方程x﹣2y+1=0,用含y的代数式表示x,则x=.12.(3分)按照下面程序计算:若输入x的值为2.则输出的结果为.13.(3分)已知x=2y,则分式的值为.14.(3分)如图1表示去年某地12个月中每月的平均气温,图2表示该地一家庭去年12个月的用电量.请你根据统计图,描述该家庭用电量与气温的关系:.15.(3分)已知多项式:①x2+4y2;②﹣+;③﹣﹣;④3x2﹣4y;其中能运用平方差公式分解因式的是.(填序号即可)16.(3分)如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为.三、解答题(本题有8小题,共52分,各小题都必须写出解答过程)17.(6分)计算:(1)()﹣2﹣(﹣)0;(2)(9ab3﹣6a3b2)÷(3ab).18.(6分)解方程或方程组:(1)4+2(x﹣1)=x;(2).19.(6分)解分式方程:.20.(6分)如图,∠BAD=95°,∠FEG=45°,∠ADC=130°,AB∥EF,则DC∥EG.完成下面的说理过程(填空)解:已知AB∥EF,根据,可得∠BAD+∠AEF=180°,因为∠BAD=95°,所以∠AEF=85°,又因为∠FEG=45°,所以∠AEG=∠AEF+∠FEG=.因为∠ADC=130°,所以∠AEG=∠ADC.根据,可得DC∥EG.21.(6分)为了加强学生对新冠肺炎的预防意识,某校组织了学生参加新冠肺炎预防的知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如图(未完成),解答下列问题:(1)若A组的频数比B组小24,则a=,b=;(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不包括80分)优秀,全校共有1200名学生,估计成绩优秀的学生有多少名?22.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点A,B,C都在格点(正方形网格的交点称为格点).现将△ABC平移,使点A平移到点D,点E,F分别是B,C的对应点.(1)在图中请画出平移后的△DEF;(2)△DEF的面积为.(3)在网格中画出一个格点P,使得S△BCP=S△DEF.(画出一个即可)23.(8分)杨梅是我国特产水果之一,素有“初疑一颗值千金”之美誉!六月,正值杨梅成熟上市的时候.某杨梅基地零售批发“黑碳”,“东魁”两种杨梅.已知零售3斤“黑碳”和5斤“东魁”共需59元;零售5斤“黑碳”和8斤“东魁”共需95元批发价是在零售价的基础上按下表进行打折:不超过100斤100斤~550斤550斤~1000斤1000斤~1550斤1550斤以上不打折九五折九折八折七五折(1)求“黑碳”,“东魁”两种杨梅的零售单价;(2)某水果商打算用12000元全部用于批发购进“东魁”杨梅,最多能购进多少斤?(3)现用A,B,C三种不同型号的水果箱共30只,将(2)中购得的杨梅进行装箱,装完所有的杨梅时,每只箱子刚好装满.已知A种型号的水果箱每只能装30斤,B种型号的水果箱每只能装50斤,C种型号的水果箱每只能装100斤,通过计算设计共有哪几种装箱方案?24.(8分)如图,已知AB∥CD,P是直线AB,CD间的一点,PF⊥CD于点F,PE交AB 于点E,∠FPE=120°.(1)求∠AEP的度数;(2)如图2,射线PN从PF出发,以每秒40°的速度绕P点按逆时针方向旋转,当PN 垂直AB时,立刻按原速返回至PF后停止运动;射线EM从EA出发,以每秒15°的速度绕E点按逆时针方向旋转至EB后停止运动.若射线PN,射线EM同时开始运动,设运动时间为t秒.①当∠MEP=20°时,求∠EPN的度数;②当EM∥PN时,求t的值.2019-2020学年浙江省金华市义乌市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)将如图所示的图案平移后可以得到下图中的()A.B.C.D.【分析】根据平移只改变图形的位置,不改变图形的形状与大小,即可得出结论.【解答】解:观察各选项图形可知,B选项的图案可以通过原图形平移得到.故选:B.【点评】本题考查了利用平移设计图案,图形的平移只改变图形的位置,而不改变图形的形状和大小.2.(3分)计算a3•a2的结果是()A.a6B.a5C.2a3D.a【分析】根据同底数幂相乘,底数不变,指数相加解答.【解答】解:a3•a2=a3+2=a5.故选:B.【点评】本题主要考查了同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.(3分)某微生物的直径为0.0000513,则数字0.0000513用科学记数法表示为()A.51.3×10﹣6B.51.3×10﹣5C.5.13×10﹣6D.5.13×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000513=5.13×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)下列调查中,适宜采用全面调查(普查)方式的是()A.对疫情后某班学生心理健康状况的调查B.对某大型自然保护区树木高度的调查C.对义乌市市民实施低碳生活情况的调查D.对某个工厂口罩质量的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【解答】解:(1)对疫情后某班学生心理健康状况的调查,适合全面调查;(2)对某大型自然保护区树木高度的调查,适合抽样调查;(3)对义乌市市民实施低碳生活情况的调查,适合抽样调查;(4)对某个工厂口罩质量的调查,适合抽样调查.故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(3分)下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1|B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()2【分析】根据有理数的乘方的定义,绝对值的性质对各选项分别计算,然后利用排除法求解.【解答】解:A、﹣|﹣1|=﹣1,﹣(﹣1)=1,﹣(﹣1)≠﹣|﹣1|,故本选项错误;B、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C、(﹣4)3=﹣64,﹣43=﹣64,(﹣4)3=﹣43,故本选项正确;D、=,=,≠,故本选项错误.故选:C.【点评】本题考查了绝对值、有理数的乘方.解题的关键是掌握有理数的乘方运算法则,要注意﹣43与(﹣4)3的区别.6.(3分)若分式的值为0,则x的值是()A.2B.﹣2C.﹣4D.0【分析】根据分式值为零的条件是分子等于零且分母不等于零求解可得.【解答】解:∵分式的值为0,∴x﹣2=0且x+4≠0,解得x=2,故选:A.【点评】本题主要考查分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.(3分)已知x﹣y=1,xy=2,则x2y﹣xy2的值为()A.﹣B.﹣2C.D.2【分析】利用提公因数法,原式可得xy(x﹣y),再把x﹣y=1,xy=2代入计算即可.【解答】解:∵x﹣y=1,xy=2,∴x2y﹣xy2=xy(x﹣y)=2×1=2.故选:D.【点评】此题考查了因式分解的应用.注意整体思想在解题中的应用.8.(3分)现有A、B两工厂每小时一共能做9000个N95口罩,两个工厂运作相同的时间后.得到A工厂做的960个口罩,B工厂做的840个口罩,设A工厂每小时能做x个口罩,根据题意列出分式方程正确的是()A.=B.=C.=D.=【分析】设A工厂每小时能做x个口罩,则B工厂每小时能做(9000﹣x)个口罩,根据工作时间=工作总量÷工作效率结合A工厂做960个口罩和B工厂做840个口罩所用时间相同,即可得出关于x的分式方程,此题得解.【解答】解:设A工厂每小时能做x个口罩,则B工厂每小时能做(9000﹣x)个口罩,依题意,得:=.故选:A.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(3分)已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由方程组,有y﹣5=m∴将上式代入x+m=4,得到x+(y﹣5)=4,∴x+y=9.故选:C.【点评】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.10.(3分)如图,在△ABC中,∠B+∠C=α,按图进行翻折,使B'D∥C'G∥BC,B'E∥FG,则∠C'FE的度数是()A.B.90°﹣C.α﹣90°D.2α﹣180°【分析】设∠ADB′=γ,∠AGC′=β,∠CEB′=y,∠C′FE=x,利用平行线的性质,三角形内角和定理构建方程组即可解决问题.【解答】解:设∠ADB′=γ,∠AGC′=β,∠CEB′=y,∠C′FE=x,∵B'D∥C'G,∴γ+β=∠B+∠C=α,∵EB′∥FG,∴∠CFG=∠CEB′=y,∴x+2y=180°①,∵γ+y=2∠B,β+x=2∠C,∴γ+y+β+x=2α,∴x+y=α②,②×2﹣①可得x=2α﹣180°,∴∠C′FE=2α﹣180°.故选:D.【点评】本题考查三角形内角和定理,平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.二、填空题(本题有6小题,每小题3分,共18分)11.(3分)已知二元一次方程x﹣2y+1=0,用含y的代数式表示x,则x=2y﹣1.【分析】把y看做已知数表示出x即可.【解答】解:方程x﹣2y+1=0,解得:x=2y﹣1.故答案为:2y﹣1.【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.12.(3分)按照下面程序计算:若输入x的值为2.则输出的结果为1.【分析】根据有理数的运算法则即可求出答案.【解答】解:由题意可知:(2×2)2﹣15=16﹣15=1,故答案为:1【点评】本题考查整式的运算,解题的关键是正确理解流程图,本题属于基础题型.13.(3分)已知x=2y,则分式的值为.【分析】把x=2y代入所求的式子计算,即可得到答案.【解答】解:x=2y代入所求的式子,得原式===.故答案为:.【点评】本题考查的是求分式的值,能够正确用含y的代数式表示x的式子代入所求的式子是解题的关键.14.(3分)如图1表示去年某地12个月中每月的平均气温,图2表示该地一家庭去年12个月的用电量.请你根据统计图,描述该家庭用电量与气温的关系:当气温越高或越低时,用电量就越多.【分析】由折线统计图可以看出:1月份的气温最低,8月份的气温最高;由条形统计图可以看出:1月份和8月份的用电量最多;所以可得到信息:当气温最高或最低时,用电量最多.【解答】解:由折线统计图知,当气温越高或越低时,用电量就越多.故答案为:当气温越高或越低时,用电量就越多.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.15.(3分)已知多项式:①x2+4y2;②﹣+;③﹣﹣;④3x2﹣4y;其中能运用平方差公式分解因式的是②.(填序号即可)【分析】利用平方差公式的特点判断即可得到结果.【解答】解:①x2+4y2不能运用平方差公式分解因式;②﹣+能运用平方差公式分解因式;③﹣﹣不能运用平方差公式分解因式;④3x2﹣4y不能运用平方差公式分解因式,则能用平方差公式分解的是②.故答案为:②.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.16.(3分)如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为7或.【分析】利用矩形及正方形的性质可求解KI=2DG﹣10,KH=DG﹣3,根据当矩形KILH 的邻边的比为3:4可求解DG的长,再利用DG的长分别求解AF,CG,AJ的长,进而可求解,注意分类讨论.【解答】解:在矩形ABCD中,AB=CD=10,AD=BC=13.∵四边形DGIJ为正方形,四边形BFHE为矩形,BF=DG,∴四边形KILH为矩形,KI=HL=2DG﹣AB=2DG﹣10.∵BE=BA=10,∴LG=EC=3,∴KH=IL=DG﹣LG=DG﹣3.当矩形KILH的邻边的比为3:4时,(DG﹣3):(2DG﹣10)=3:4,或(2DG﹣10):(DG﹣3)=3:4,解得DG=9或.当DG=9时,AF=CG=1,AJ=4,∴S1+S2=AF•AJ+CE•CG=1×4+1×3=7;当DG=时,AF=CG=,AJ=,∴S1+S2=AF•AJ+CE•CG==.故答案为7或.【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.三、解答题(本题有8小题,共52分,各小题都必须写出解答过程)17.(6分)计算:(1)()﹣2﹣(﹣)0;(2)(9ab3﹣6a3b2)÷(3ab).【分析】(1)根据负整数指数幂和零整数指数幂解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1);(2)(9ab3﹣6a3b2)÷(3ab)=3b2﹣2a2b.【点评】此题考查整式的除法,关键是根据整式的混合计算法则解答.18.(6分)解方程或方程组:(1)4+2(x﹣1)=x;(2).【分析】(1)去括号后求解一元一次方程;(2)用加减法求解比较简便.【解答】解:(1)4+2x﹣2=x,∴x=﹣2;(2)①×2+②,得4x=4,解得x=1.把x=1代入①,得1+2y=5,∴y=2.∴原方程组的解为.【点评】本题考查了一元一次方程的解法、二元一次方程组的解法.掌握一元一次方程、二元一次方程组的解法,是解决本题的关键.19.(6分)解分式方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得x+5=4x+2,解得:x=1,经检验,原方程的解为x=1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(6分)如图,∠BAD=95°,∠FEG=45°,∠ADC=130°,AB∥EF,则DC∥EG.完成下面的说理过程(填空)解:已知AB∥EF,根据两直线平行,同旁内角互补,可得∠BAD+∠AEF=180°,因为∠BAD=95°,所以∠AEF=85°,又因为∠FEG=45°,所以∠AEG=∠AEF+∠FEG=130°.因为∠ADC=130°,所以∠AEG=∠ADC.根据同位角相等,两直线平行,可得DC∥EG.【分析】根据平行线的性质得出∠BAD+∠AEF=180°,求出∠AEG=∠ADC=130°,根据平行线的判定得出即可.【解答】解:∵AB∥EF,∴∠BAD+∠AEF=180°(两直线平行,同旁内角互补),∵∠BAD=95°,∴∠AEF=85°,∵∠FEG=45°,∴∠AEG=∠AEF+∠FEG=130°,∵∠ADC=130°,∴∠AEG=∠ADC,∴DC∥EG(同位角相等,两直线平行),故答案为:两直线平行,同旁内角互补,130°,同位角相等,两直线平行.【点评】本题考查了平行线的性质和判定,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.21.(6分)为了加强学生对新冠肺炎的预防意识,某校组织了学生参加新冠肺炎预防的知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如图(未完成),解答下列问题:(1)若A组的频数比B组小24,则a=16,b=40;(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不包括80分)优秀,全校共有1200名学生,估计成绩优秀的学生有多少名?【分析】(1)从统计图中可知,A组比B组少20%﹣8%=12%,A组比B组少24人,可求出调查人数,进而求出a、b的值;(2)D部分占整体的,因此相应的圆心角占360°的即可;求出C部分的人数,即可补全频数分布直方图;(3)样本估计总体,样本中优秀占,因此估计总体1200人的即为优秀的人数.【解答】解:(1)24÷(20%﹣8%)=200(人),a=200×8%=16(人),b=200×20%=40(人),故答案为:16,40;(2)n=360°×=126°,200×25%=50(人),E组人数:200﹣16﹣40﹣50﹣70=24(人),补全频数分布直方图如图所示:(3)1200×=564(人),答:全校共有1200名学生,成绩优秀的学生有564名.【点评】本题考查频数分布直方图、扇形统计图的意义和制作方法,从统计图中获取数量和数量关系是正确解答的关键.22.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点A,B,C都在格点(正方形网格的交点称为格点).现将△ABC平移,使点A平移到点D,点E,F分别是B,C的对应点.(1)在图中请画出平移后的△DEF;(2)△DEF的面积为7.(3)在网格中画出一个格点P,使得S△BCP=S△DEF.(画出一个即可)【分析】(1)依据点A平移到点D,即可得到平移的方向和距离,进而画出平移后的△DEF;(2)依据割补法进行计算,即可得到△DEF的面积;(3)根据S△BCP=S△DEF,即可得到点P可以在AB的中点处(答案不唯一).【解答】解:(1)如图所示,△DEF即为所求;(2)△DEF的面积为:4×4﹣×2×3﹣×1×4﹣×2×4=7;故答案为:7;(3)如图所示,点P即为所求(答案不唯一).【点评】本题考查平移变换、三角形的面积等知识,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(8分)杨梅是我国特产水果之一,素有“初疑一颗值千金”之美誉!六月,正值杨梅成熟上市的时候.某杨梅基地零售批发“黑碳”,“东魁”两种杨梅.已知零售3斤“黑碳”和5斤“东魁”共需59元;零售5斤“黑碳”和8斤“东魁”共需95元批发价是在零售价的基础上按下表进行打折:不超过100斤100斤~550斤550斤~1000斤1000斤~1550斤1550斤以上不打折九五折九折八折七五折(1)求“黑碳”,“东魁”两种杨梅的零售单价;(2)某水果商打算用12000元全部用于批发购进“东魁”杨梅,最多能购进多少斤?(3)现用A,B,C三种不同型号的水果箱共30只,将(2)中购得的杨梅进行装箱,装完所有的杨梅时,每只箱子刚好装满.已知A种型号的水果箱每只能装30斤,B种型号的水果箱每只能装50斤,C种型号的水果箱每只能装100斤,通过计算设计共有哪几种装箱方案?【分析】(1)可设“黑碳”杨梅的零售单价为x元/斤,“东魁”杨梅的零售单价为y元/斤,根据等量关系:零售3斤“黑碳”和5斤“东魁”共需59元;零售5斤“黑碳”和8斤“东魁”共需95元;列出方程组求解即可;(2)由于1550×(10×0.75)=11625(元),可知用12000元全部用于批发购进“东魁”杨梅,可以1550斤以上,设能购进z斤,根据一共的钱数是12000元,列出不等式求解即可;(3)可设A种型号的水果箱m只,B种型号的水果箱n只,C种型号的水果箱k只,根据等量关系:A,B,C三种不同型号的水果箱共30只;购进1600斤;列出方程组,再根据整数的性质即可求解.【解答】解:(1)设“黑碳”杨梅的零售单价为x元/斤,“东魁”杨梅的零售单价为y 元/斤,依题意有,解得.故“黑碳”杨梅的零售单价为3元/斤,“东魁”杨梅的零售单价为10元/斤;(2)∵1550×(10×0.75)=11625(元),∴用12000元全部用于批发购进“东魁”杨梅,可以1550斤以上,设能购进z斤,依题意有0.75×10z≤12000,解得z≤1600.故能购进1600斤;(3)设A种型号的水果箱m只,B种型号的水果箱n只,C种型号的水果箱k只,依题意有,即,②﹣①×3得2n+7k=70,n=35﹣k,∵m,n,k都是非负整数,∴k=0,n=35,m=﹣5(舍去);k=2,n=28,m=0;k=4,n=21,m=5;k=6,n=14,m=10;k=8,n=7,m=15;k=10,n=0,m=20;故共有5种装箱方案:①B种型号的水果箱28只,C种型号的水果箱2只;②A种型号的水果箱5只,B种型号的水果箱21只,C种型号的水果箱4只;③A种型号的水果箱10只,B种型号的水果箱14只,C种型号的水果箱6只;④A种型号的水果箱15只,B 种型号的水果箱7只,C种型号的水果箱8只;⑤A种型号的水果箱20只,C种型号的水果箱10只.【点评】此题主要考查了二元一次方程组的应用、三元一次方程组的应用、一元一次不等式的应用等知识,根据题意得出正确的等量关系和不等关系是解题关键.24.(8分)如图,已知AB∥CD,P是直线AB,CD间的一点,PF⊥CD于点F,PE交AB 于点E,∠FPE=120°.(1)求∠AEP的度数;(2)如图2,射线PN从PF出发,以每秒40°的速度绕P点按逆时针方向旋转,当PN 垂直AB时,立刻按原速返回至PF后停止运动;射线EM从EA出发,以每秒15°的速度绕E点按逆时针方向旋转至EB后停止运动.若射线PN,射线EM同时开始运动,设运动时间为t秒.①当∠MEP=20°时,求∠EPN的度数;②当EM∥PN时,求t的值.【分析】(1)通过延长PG作辅助线,根据平行线的性质,得到∠PGE=90°,再根据外角的性质可计算得到结果;(2)①由∠MEP=20°,计算出EM的运动时间t,根据运动时间可计算出∠FPN,由已知∠FPE=120°可计算出∠EPN的度数;②根据题意可知,当EM∥PN时,分两种情况,Ⅰ射线PN由PF逆时针转动,EM∥PN,根据题意可知∠AEM=15t°,∠FPN=40t°,再平行线的性质可得∠AEM=∠AHP,再根据三角形外角和定理可列等量关系,求解即可得出结论;Ⅱ射线PN垂直AB时,再顺时针向PF运动时,EM∥PN,根据题意可知,∠AEM=15t°,∠GPN=40(t﹣)°,根据(1)中结论,∠PEG=30°,∠PGE=60,可计算出∠PEM 与∠EPN代数式,再根据平行线的性质,可列等量关系,求解可得出结论.【解答】解:(1)延长FP与AB相较于点G,如图1,∵PF⊥CD,∴∠PFD=∠PGE=90°,∵∠EPF=∠PGE+∠AEP,∴∠AEP=∠EPF﹣∠PGE=120°﹣90°=30°;(2)①如图2,∵∠AEP=30°,∠MEP=20°,∴∠AEM=10°,∴射线ME运动的时间t=(秒),∴射线PN旋转的角度∠FPN=,又∵∠EPF=120°,∴∠EPN=∵∠EPF﹣∠EPN=120°﹣=;②Ⅰ当PN由PF运动如图3时EM∥PN,PN与AB相交于点H,根据题意可知,经过t秒,∠AEM=15t°,∠FPN=40t°,∵EM∥PN,∴∠AEM=∠AHP=15t°,又∵∠FPN=∠PGH+∠AHP,∴40t°=90°+15t°,解得t=(秒);Ⅱ当PN由PG运动如图4时,EM∥PN,根据题意可知,经过t秒,∠AEM=15t°,∠GPN=40(t﹣)°,∵∠AEP=30°,∠EPG=60°,∴∠PEM=15t°﹣30°,∠EPN=40(t﹣)°﹣60°,又∵EM∥PN,∴∠PEM+∠EPN=180°,∴15t°﹣30°+40(t﹣)°﹣60°=180°,解得t=(秒),当t的值为秒或秒时,EM∥PN.【点评】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.。
2019-2020学年人教版七年级数学下册期末质量检测卷及答案

2019—2020学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是5题图。
· 43 2 -1118题图AD BCP QA .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…ABECDF10题图12题图ABCB ′′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABCACBDAADC二、填空题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分1、只要朝着一个方向努力,一切都会变得得心应手。
2019-2020学年七年级下学期数学期末考试试卷(附答案)

2019-2020学年七年级下学期数学期末考试试卷(附答案)一、选择题(共10题;共20分)1.下列各命题中,属于假命题的是()A. 若a-b=0,则a=b=0B. 若a-b>0,则a>bC. 若a-b<0,则a<bD. 若a-b≠0,则a≠b2.已知等式3a=b+2c,那么下列等式中不一定成立的是( )A. 3a﹣b=2cB. 4a=a+b+2cC. a=b+ cD. 3=+3.下列因式分解正确的是()A. x2-9=(x-3)2B. -1+4a2=(2a+1)(2a-1)C. 8ab-2a2=a(8b-2a)D. 2x2-4x+2=2(x2-2x+1)4.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区空气的质量;③调查全市中学生一天的学习时间.A. ①②B. ①③C. ②③D. ①②③5.如果两个相似多边形的面积比是4:9,那么它们的周长比是()A. 4:9B. 2:3C.D. 16:816.如果方程有增根,那么m的值为()A. 0B. -1C. 3D. 17.如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A. 1对B. 2对C. 3对D. 4对8.一次函数y=kx+b(k,b是常数,k≠0 )的图象如图所示,则不等式kx+b>0的解集是( )A. x>-2B. x>0C. x<-2D. x<09.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的面积为()A. B. 10 C. 20 D. 2010.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A. 1B. 2C. 3D. 4二、填空题(共6题;共7分)11.当x=________时,分式的值为1;当x=________时,分式的值为﹣1.12.设点O为投影中心,长度为1的线段AB平行于它在面H内的投影A′B′,投影A′B′的长度为3,且O到直线AB的距离为1.5,那么直线AB与直线A′B′的距离为________.13.若a=2,a+b=3,则a2+ab=________.14.当a=3,a﹣b=2时,代数式a2﹣ab的值是________.15.如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC,其中正确的结论是________(把你认为正确的结论的序号都填上).16题16.如图,在中,和的平分线交于点,过点作交于,交于,若,那么线段的长为________.三、解答题(共8题;共63分)17.解不等式组:.18.先化简,再求值:,其中x=4sin45°-2sin30°19.利用位似图形的方法把四边形ABCD缩小为原来的.20.如图,△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别频数(人数)频率小说 0.5戏剧 4散文 10 0.25其他 6合计 m 1(1)计算m=________ (2)在扇形统计图中,“其他”类所占的百分比为________(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.22.已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC于点D,过点D 作DE⊥AD 交AB 于点E,以AE 为直径作⊙O.(1)求证:BC 是⊙O 的切线;(2)若AC=3,BC=4,求BE 的长.(3)在(2)的条件中,求cos∠EAD 的值.23.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.24.8月25日,高德公司发布了《2015年第二季度中国主要城市交通分析报告》,在国内城市拥堵排行中,北京、杭州、广州位列前三,山城重庆排第九.为了解重庆市交通拥堵情况,经调查统计:菜园坝长江大桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的一次函数,且满足v=﹣x+88(其中20≤x≤220).(1)在交通高峰时段,为使菜园坝长江大桥上车流速度不小于48千米/时且不大于60千米/时,应控制菜园坝长江大桥上的车流密度在什么范围内?(2)若规定车流量(单位:辆/时)是单位时间内通过桥上某观测点的车辆数.即:车流量=车流速度×车流密度.那在(1)的条件下.菜园坝长江大桥上车流量的最大值是多少?(3)当车流量为4680辆/时时,为了使桥上的更畅通,则桥上的车流密度应为多少?答案一、选择题1. A2. D3. B4. D5. B6. D7.C8. A9.A 10. D二、填空题11.﹣;12.3 13. 6 14.6 15.①、②、④ 16. 10三、解答题17. 解:,由①得x>2,由②得x<3,所以原不等式组的解集是2<x<318. 解:原式= =其中x= 4sin45°-2sin30°=则原式= =19.解:作图如下:20.解:∵∠A=40°,∠B=76°,∴∠ACB=180°-40°-76°=64°,∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,∵CD⊥AB ∴∠CDE=90°,∵DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=72°.21. (1)40(2)15%(3)解:画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.22. (1)证明:连接OD,如图所示.在Rt△ADE中,点O为AE的中心,∴DO=AO=EO= AE,∴点D在⊙O上,且∠DAO=∠ADO.又∵AD平分∠CAB,∴∠CAD=∠DAO,∴∠ADO=∠CAD,∴AC∥DO.∵∠C=90°,∴∠ODB=90°,即OD⊥BC.又∵OD为半径,∴BC是⊙O的切线(2)解:在Rt△ACB中,∵AC=3,BC=4,∴AB=5.设OD=r,则BO=5﹣r.∵OD∥AC,∴△BDO∽△BCA,∴,即,解得:r= ,∴BE=AB﹣AE=5﹣=(3)解:∵△BDO∽△BCA,∴,即,BD= ,∴CD=BC﹣BD= ,∴AD= ,∴cos∠EAD= .23. (1)解:如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)(2)解:∵O到菱形边的距离为,当⊙O与AB相切时AE= ,当过点A,C时,⊙O与AB交于A,E两点,此时AE= ×2= ,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<时,如图,存在2个矩形EFGH;③当m=时,如图,存在1个矩形EFGH;④当<m≤ 时,如图,存在2个矩形EFGH;⑤当<m<5时,如图,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH24. (1)解:由题意,得,解得:70≤x≤120.故应控制大桥上的车流密度在70≤x≤120范围内(2)解:设车流量y与x之间的关系式为y=vx,当70≤x≤120时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆(3)解:当y=4680时,即4680=﹣(x﹣110)2+4840,解得:x=130,或x=90,故当车流量为4680辆/时时,为了使桥上的更畅通,则桥上的车流密度应为130辆/千米,或90辆/千米。
2019-2020学年人教版七年级数学下学期期末质量检测题及答案

2019—2020学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,ΛΛΛΛ.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图。
·432-1 118题图AD BCP QA .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…ABECDF10题图12题图ABCB ′′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABCACBDAADC13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分1、读书破万卷,下笔如有神。