Bigbird高中数学复习 - 极限
数学极限知识点总结

数学极限知识点总结一、极限的概念极限是一个重要的数学概念,它描述了一个函数在自变量趋近某个特定值时的行为。
具体地说,当自变量x在某一点a附近不断靠近,同时函数f(x)的取值也逐渐接近某个特定的数L时,我们就说函数f(x)在自变量x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
这个定义可以用符号表示为:对于任意给定的正数ε,存在一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε。
在这个定义中,ε和δ分别表示"误差"和"变化范围",而当自变量x距离a足够近时,函数f(x)的取值与极限L的差异也会变得足够小。
换句话说,极限描述了函数在某点附近的稳定性和趋势。
在实际问题中,极限的概念常常用于描述随着自变量的变化,函数取值的趋势。
比如,在物理学中,我们可以用极限来描述速度、加速度、流体的流动等随着时间或空间的变化而变化的量。
而在工程中,极限也可以描述材料的强度、电路的稳定性等。
因此,极限是数学中一个十分重要、普遍且有广泛应用的概念。
二、极限的性质1.极限的唯一性如果一个函数在某点附近有极限,那么这个极限是唯一的。
换句话说,对于一个自变量x趋近于a的函数f(x),其极限只能有一个确定的值。
这个性质使得我们可以不用担心在计算函数的极限时会出现多个可能的结果,从而保证了极限的一致性和确定性。
2.极限的局部保号性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则当L>0时,存在a的某个邻域,使得邻域内的函数值都大于0;当L<0时,存在a的某个邻域,使得邻域内的函数值都小于0。
这个性质表明了在极限存在的情况下,函数在足够靠近极限点的地方都具有一致的正负性。
3.极限的局部有界性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则存在一个正数M,使得a的某个邻域内函数的取值都在区间(-M,M)之间。
归纳极限知识点总结高中

归纳极限知识点总结高中一、极限的定义在介绍极限的相关知识之前,首先需要明确极限的定义。
在数学中,对于一个函数f(x),当x的取值趋于某个数a时,如果函数f(x)的取值也趋于某个数L,那么我们就说函数f(x)在x趋于a时的极限为L,记作lim(x→a)f(x)=L。
这个定义可以通过数学公式来表示,即对于任意的正实数ε,存在对应的正实数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立。
二、极限存在与不存在的判定1. 无穷极限存在的条件当x的取值趋于正无穷或负无穷时,如果函数的取值有限且有确定的值L,那么函数在无穷处的极限存在,即lim(x→+∞)f(x)=L或lim(x→-∞)f(x)=L。
2. 极限不存在的情况当x趋于某个数a时,如果函数f(x)的极限不存在,可能有以下几种情况:a) 函数f(x)在a的邻域内没有定义;b) 函数f(x)在a的邻域内存在无穷大的值;c) 函数f(x)在a的邻域内振荡或者是分段函数的情况。
三、极限的性质1. 唯一性如果函数f(x)在x趋于a时的极限存在,并且是唯一的,那么就可以说函数f(x)在x趋于a时的极限存在。
如果函数在x趋于a时的极限不存在或者不唯一,那么就可以说函数在x趋于a时的极限不存在。
2. 夹逼定理对于一个函数f(x)和g(x),如果它们在x趋于a时的极限存在且等于相同的值L,并且在x趋于a时,有h(x)≤f(x)≤g(x),那么函数h(x)在x趋于a时的极限也存在且等于L。
3. 有界性如果函数f(x)在x趋于a时的极限存在且为L,那么对于任意的小于L的正数ε,存在对应的正数δ,使得当0<|x-a|<δ时,就有|f(x)|<ε成立。
四、无穷小量与无穷大量1. 无穷小量在微积分中,对于一个函数f(x),如果在x趋于某个数a时,极限为零,那么我们就说函数f(x)是x趋于a时的无穷小量。
通常情况下,我们记作lim(x→a)f(x)=0。
极限概念知识点总结

极限概念知识点总结一、极限的基本概念1.1 极限的引入极限的概念最早是在微积分的发展过程中被引入的。
当人们试图解决一些问题时,发现需要对一些数列、函数、变量等的趋势进行描述和分析。
例如,当我们用一个数列的前几项来逼近某个数时,我们希望能够明确当数列的项数趋于无穷时,该数列是否真的能够逼近这个数;再如,当我们试图分析一个函数在某一点的性质时,我们也会遇到极限的概念。
因此,为了能够更加准确地描述数学对象在某个方面的性质,人们引入了极限的概念。
1.2 极限的定义数列的极限是极限的最基本形式之一。
对于一个数列{an},当n趋于无穷时,如果an可以无限地地接近某个确定的数a,则称a为数列{an}的极限,记作lim(n→∞)an=a。
这个定义也可以推广到函数的极限、变量的极限等其他情形,如对于函数f(x),当x趋于某一点c时,如果f(x)可以无限地地接近某个确定的数L,则称L为函数f(x)当x→c时的极限,记作lim(x→c)f(x)=L。
这就是极限的基本定义形式。
1.3 极限的性质极限具有一系列重要的性质,在实际应用中,这些性质被广泛地用于求解各种问题。
以下是一些极限的基本性质:1)唯一性:如果数列an有极限a,则这个极限是唯一的。
也就是说,一个数列只能有一个极限。
类似地,函数f(x)当x→c时的极限也是唯一的。
2)保号性:如果数列an的极限a>0(或a<0),则对于充分大的n,an>0(或an<0)。
3)夹逼准则:如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=a,那么必有lim(n→∞)bn=a。
这个性质在确定一些数列的极限时常常会被用到。
4)四则运算法则:如果lim(n→∞)an=a,lim(n→∞)bn=b,那么有lim(n→∞)(an±bn)=a±b,lim(n→∞)(an×bn)=a×b,lim(n→∞)(an÷bn)=a÷b(b≠0)。
高中数学中的极限运算知识点总结

高中数学中的极限运算知识点总结极限是高中数学中重要的概念和工具之一,具有广泛的应用领域。
本文将对高中数学中的极限运算知识点进行总结,包括极限的概念、性质、计算方法以及实际应用等方面。
一、极限的概念1. 定义:当自变量趋近于某个确定值时,函数的取值趋近于某个确定值。
即极限是函数在某一点附近的局部性质。
2. 记号:用lim来表示极限,例如lim(x→a) f(x) = L,表示当x趋近于a时,函数f(x)的极限为L。
3. 无穷大与无穷小:当x趋近于无穷大时,函数的极限可能是无穷大或无穷小。
二、极限的性质1. 唯一性:函数在某一点的极限若存在,则唯一。
2. 有界性:有界函数的极限存在,且极限值在该有界区间内。
3. 局部性:极限的存在只与该点附近的函数值有关,与整体函数的取值无关。
4. 保号性:如果函数在某一点的极限存在且不为零,且函数在该点附近连续,则函数在该点附近保持与极限相同的符号。
三、极限的计算方法1. 代数运算法则:极限具有代数运算的性质,可以通过极限的加减乘除法则进行计算。
2. 数列极限法则:对于递推公式给定的数列,可以通过将递推公式的项逐项求极限来计算数列的极限。
四、常用的极限运算知识点1. 常用极限:- sinx/x的极限lim(x→0) = 1;- a^x(x趋于无穷大)的极限lim(x→∞) = ∞;- e^x(x趋于无穷大)的极限lim(x→∞) = ∞;- ln(1+x)/x的极限lim(x→0) = 1。
2. 极限的四则运算:- 两个函数的和(差)的极限等于各自函数的极限之和(差);- 两个函数的乘积的极限等于各自函数的极限之积;- 两个函数的商的极限等于各自函数的极限之商,其中分母函数的极限不为0。
3. 极限的复合运算:- 实数函数与数列的极限运算;- 函数的函数与数列的极限运算。
五、极限的实际应用极限在数学、物理、经济等学科中具有广泛的应用,常见应用包括:1. 利用极限的概念和性质,推导出数学中的重要定理和公式;2. 在物理学中,通过极限,可以计算出物体在某一瞬间的速度、加速度等相关信息;3. 在经济学中,通过极限,可以计算出市场需求、供应等相关指标。
(整理)高三数学重点难点:函数的极限

第三节 函数的极限一、知识归纳 1、知识精讲:1)当x →∞时函数f(x)的极限:当自变量x 取正值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于正无穷大时, 函数f(x)的极限是a,记作a x f x =+∞→)(lim ,(或x →+∞时,f(x)→a)当自变量x 取负值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于负无穷大时, 函数f(x)的极限是a,记作a x f x =-∞→)(lim ,(或x →-∞时,f(x)→a)注:自变量x →+∞和x →-∞都是单方向的,而x →∞是双向的,故有以下等价命题=+∞→)(lim x f x a x f x =-∞→)(lim ⇔a x f x =∞→)(lim2)当x →x 0时函数f(x)的极限:当自变量x 无限趋近于常数x 0(但x ≠x 0)时,如果函数f(x)无限趋近于一个常数a ,就说当x 趋向于x 0时, 函数f(x)的极限是a,记作a x f x x =→)(lim 0,(或x →x 0时,f(x)→a)注:a x f x x =→)(lim 0与函数f (x )在点x 0处是否有定义及是否等于f (x 0)都无关。
3)函数f(x)的左、右极限:如果当x 从点x=x 0左侧(即x <x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的左极限,记作a x f x x =-→)(lim 0。
如果当x 从点x=x 0右侧(即x >x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的右极限,记作a x f x x =+→)(lim 0。
注:=-→)(lim 0x f x x a x f x x =+→)(lim 0⇔a x f x x =→)(lim 0。
并且可作为一个判断函数在一点处有无极限的重要工具。
注:极限不存在的三种形态:①左极限不等于右极限≠-→)(lim 0x f x x )(lim 0x f xx +→; ②0x x→时,()±∞→x f ,③0x x →时,()→x f 的值不唯一。
数学极限公式知识点总结

数学极限公式知识点总结极限的数学定义是非常严格和精确的,它可以在多种情况下应用,比如在求导和积分中。
极限是微积分基本概念之一,也是微积分的核心内容之一。
所以,掌握极限的概念和计算方法对于学习微积分课程非常重要。
下面我将对极限的基本概念、常见的极限计算方法以及一些常见的极限公式进行总结和归纳,希望对大家学习极限有所帮助。
一、极限的基本概念1. 自变量趋于无穷大时的极限当自变量趋于无穷大时,函数的极限情况是我们经常遇到的一种情况。
在这种情况下,我们可以利用一些方法来求解函数的极限。
比如,可以利用函数的单调性和有界性来求解函数的极限值。
在计算自变量趋于无穷大时函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用夹逼定理来求解自变量趋于无穷大时函数的极限值。
2. 自变量趋于有限数值时的极限当自变量趋于有限数值时,函数的极限情况也是我们经常遇到的一种情况。
在这种情况下,我们可以利用函数的特性来求解函数的极限。
比如,可以利用函数的连续性和可导性来求解函数的极限值。
在计算自变量趋于有限数值时函数的极限值时,我们通常使用洛必达法则,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用泰勒展开式和极坐标系等方法来求解自变量趋于有限数值时函数的极限值。
3. 无穷小量与极限无穷小量是微积分中一个非常重要的概念,它是用来描述函数在某一点附近的行为的。
在数学中,无穷小量是指在某一点附近(通常是无穷小范围内)取得非常小的值的变量。
无穷小量可以用来描述函数在某一点附近的变化情况,也可以用来求解函数的极限值。
在计算函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用函数的单调性和有界性来求解函数的极限值。
二、常见的极限计算方法1. 无穷大与无穷小的比较法在计算自变量趋于无穷大时函数的极限值时,我们可以利用无穷大与无穷小的比较法来求解。
高中数学复习――数列的极限(精选.)

●知识梳理1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n limn1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim (a n ·b n )=a ·b ; ∞→n limn n b a =ba(b ≠0). 特别提示(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个.1.下列极限正确的个数是①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n limnn n n 3232+-=-1 ④∞→n lim C =C (C 为常数)A.2B.3C.4D.都不正确 解析:①③④正确. 答案:B2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]等于A.0B.1C.2D.3解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ] =∞→n lim 22+n n=2. 答案:C3.下列四个命题中正确的是A.若∞→n lim a n 2=A 2,则∞→n lim a n =AB.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n解析:排除法,取a n =(-1)n ,排除A ; 取a n =n1,排除B;取a n =b n =n ,排除D . 答案:C4.(2005年春季上海,2) ∞→n limnn ++++ 212=__________.解析:原式=∞→n lim 2)1(2++n n n =∞→n lim 221212nn n ++=0.答案:05.(2005年春季北京,9) ∞→n lim 32222-+n nn =____________.解析:原式=∞→n lim23221nn -+=21. 答案:21 思考讨论●典例剖析【例1】 求下列极限: (1)∞→n lim757222+++n n n ;(2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n + (22)n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim757222+++n n n =∞→n lim 2275712nnn +++=52.(2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21. (3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n 1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim22n +∞→n lim 24n +…+∞→n lim22n n=0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n nn n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim n n n n cc 323211+---. ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim cc c n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim 22||||CD AB .剖析:要求∞→n lim 22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n . 又r =1,∴|AB |2=4(1-d 2)=218nn+. 设点C (x 1,y 1), D (x 2,y 2), 由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0,∴x 1+x 2=nn 12+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-n x 2)2=414n n +, ∴|CD |2=(x 1-x 2)2+(y 1-y 2)2=41n(4n +1)(n 2+1). ∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2)11)(14(8nn ++=2.评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =n n a a 2+=n n cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴n n b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c , ∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3. 解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0. 故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.夯实基础1.已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是A.2B.3C.21D.6 解析:由∞→n limcbn can ++=2,得a =2b . 由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b . ∴ca =6. ∴∞→n lim a cn c an ++22=∞→n lim22na c n c a ++=ca =6. 答案:D2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411 B.2417 C.2419 D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n n n nn n n n n即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n nn∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…).∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n . ∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1=_________________. 解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于A.52 B.72 C.41 D.254解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n .∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0.答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *). (1)求{b n }的通项公式; (2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值. 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1). ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2.(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ] =41∞→n lim [1+21-n 1-11+n ]=83. 能力提高7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2.又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S . 解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n--+----+--=--- 当p >1时,p >q >0,得0<p q <1,上式分子、分母同除以p n -1,得 .1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n nS S =p . 当p <1时,0<q <p <1, ∞→n lim1-n n S S =qb p a q bp a -+--+-11111111=1. 探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n . 解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.∴a n -32=-21(a n -1-32). ∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32.教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围.解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1.当q =1时,21a -1=21,∴a 1=3. 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21. 综上,得0<a 1<1且a 1≠21或a 1=3.最新文件 仅供参考 已改成word 文本 。
高中数学中的极限概念详解

高中数学中的极限概念详解在高中数学中,极限是一个关键的概念,它为我们理解数学的连续性和趋势提供了基础。
在本文中,我们将详细解释极限的概念、计算方法和应用。
首先,我们来了解极限的定义。
在数学中,极限表示一个函数在自变量无限接近某一特定的值时的趋势。
当自变量趋近于这个特殊值时,函数的取值也会逐渐接近于一个确定的数值。
这个特殊值被称为极限点,而函数在极限点处的取值则称为极限。
数学上用符号“lim”来表示极限,例如lim f(x) = L表示当x趋近于某一值时,f(x)的极限为L。
接下来,我们来看一些常用的极限计算方法。
在高中数学中,有几种常见的方法可以计算极限。
首先是代入法,即将自变量的值代入函数中计算。
如果得到的结果存在一个有限值,那么这个有限值即为函数在该点的极限。
如果得到的结果是无穷大(正无穷大或负无穷大),则说明函数在该点不存在极限。
其次是夹逼定理,它用于计算特定类型的极限。
夹逼定理基于一个原则:如果一个函数在两个连续的点之间被夹在两个其他函数之间,并且这两个函数的极限相等,那么这个函数的极限也等于这个公共极限。
另外还有无穷小量的概念,即当自变量趋近于某一值时,函数取值可以无限接近于零。
利用无穷小的性质,我们可以推导出一些特定类型的极限。
然后,我们来探讨极限的应用。
极限在数学中有广泛的应用,尤其在微积分和解析几何中。
在微积分中,极限是求导和积分的基本工具。
通过极限的概念,我们可以推导出导数的定义并计算各种函数的导数,进而研究函数的变化趋势。
在解析几何中,极限可以用来计算曲线的切线和曲率。
通过求解极限,我们可以确定曲线上某一点的切线斜率以及曲线在该点的曲率大小,从而揭示出曲线的几何性质。
最后,我们来总结一下。
高中数学中的极限概念是我们理解数学中连续性和趋势的基础。
极限的定义为我们提供了一种数学语言来描述函数在特定点的趋势。
我们可以通过代入法、夹逼定理和无穷小量的应用等方法计算极限。
极限的应用广泛,特别是在微积分和解析几何中。