极限思想在高中数学及应用
极限思想在高中数学中的应用开题报告

极限思想在高中数学中的应用开题报告开题报告数学与应用数学极限思想、地位和应用一、综述本课题国内外研究动态,说明选题的依据和意义极限是分析数学中最基本的概念之一,极限思想是数学中极为重要的思想。
极限一词从词源上讲含义是表示一个不可超越的限度,含有限制的意思。
数学中的"极限"在一定方面也有这个意思,但不完全是,更广地,如有"无穷逼近"之意。
在数学领域"极限"是有严格定义的,用以描述变量在一定的变化过程中的极限状态,它的建立是数学发展史中的一个重要转折点,它将初等数学扩展为变量数学,此后抽象空间中各类收敛性,也都是极限思想方法的运用和拓广。
而"极限"有其漫长的历史,历史上的数学家花了两千余年的时间将其概念完善和严密化。
古代朴素的,直观的极限思想是随着无限观的产生而产生的,古希腊的"穷竭法"、阿基米德圆周率计算、刘徽的割圆术等,无不含有朴素的极限思想的雏形,也揭示了极限概念的萌芽时期。
古朴的极限思想主要指通过整体细分,按照其中一种规律或发展趋势逼近终极状态近似获得整体值的一种思想。
希腊人的"穷竭法",从外推思想直观猜测出"两个圆的面积之比等于它们的直径(或半径)的平方之比",因为通过作两个圆的内接正多边形的面积之比,总是等于两个圆的半径的平方之比,所以外推"在终极的情况下"也应如此,即对于两个圆的面积,同样的结论也是成立的,这其中就蕴含有极限逼近思想。
希腊人在穷竭思想下发展的证明方法是严格的,并不是大致近似或是严格极限概念的其中一步,它根本不含明确的极限思想,仅依赖于间接证法,双归谬法,这样就避免了用到极限。
实际上欧几里得在面积和体积方面的工作比牛顿和莱布尼茨在这方面的工作严密可靠,因后者试图建立代数方法和数系并且想用极限概念。
但我们也能看到,双归谬法的确遏制了穷竭思想向极限思想的发展,远离了向严格极限发展的方向,将难处理的涉及无限的东西通过反证归谬给化解了。
极限思想在高中数学中的应用

教学实践JIAOXUESHIJIAN极限思想在高中数学中的应用广西壮族自治区北海市北海中学宁德芬【摘要】极限思想作为社会实践的产物,其渊源甚至可以追溯到古代。
用极限思想解决问题的一般步骤可概括为:对被考察的未知量,先设法构思一个与它有关的变量,再确认这个变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到结果。
在高中数学的学习过程中,极限思想可以给学生提供一条意想不到的解题思路,让原本烦琐的题目以相对简易的方式求得答案。
本文将围绕可以运用极限思想的几道例题阐述极限思想在高中数学中的妙用。
【关键词】极限思想高中数学解题思路一、极限思想对部分求范围的题目有奇效在解决高中数学选择题时,极限思想是必须掌握的一种解题技巧,它本质上是特殊值法的延伸,利用极限思想来解决小题不仅可以透析题目的深刻本质,还可以达到化繁为简的目的。
1.已知定义在(-8,+8)上的函数/(%) = [(3;1)%-4:严<1,是减函数,那么a的取值范围是Uog,%),%>1()。
A.(0,1)B.(0,1/3)C.(1/7,1/3)D.(1/7,1)解析:本题的关键在于讨论函数在分界点x=l的领域内,使得(3a-l)%-4a>log必,即前者图象在后者之上,然后再结合图象去求a的取值范围。
此时,利用极限思想就可以很快地确定满足这一条件下的a的取值范围,之后交集范围便是题目所求。
而又因为/(%)在R 上的减函数,所以解得l/7<a<l/3,故选择C o从这道题中,我们显然可以看到极限思想帮助我们省去不少烦琐的计算过程,而是透析这道题所求范围的本质,从而达到了快速高效解题的目的。
所以,充分掌握极限思想,并在做题时时刻保持对数学思想的“敏锐嗅觉”,将会成为解题制胜的一大法宝。
二、极限思想能处理复杂的无穷等比数列问题极限本质上是从微积分中剥离出来的基本概念,它从数量上描述变量在变化过程中的一种状态或者趋势,而我们知道无穷等比数列中,g代表了该数列的变化规律,所以克制无穷等比数列是按照特定规律g变化的一种不定状态。
极限思想在高中数学解题中的应用

极限思想在高中数学解题中的应用摘要:极限思想在函数、方程、不等式、三角函数﹑数列、立体几何等众多问题中都可巧妙运用。
在高中数学解题中,教师应渗透有关极限思想的教学,让极限思想进入学生数学思维领域,其次学生需善于总结发现运用极限思想解决相关题型。
下面就如何让极限思想应用于解高中几大类型题目,展开叙述。
关键词:极限思想;解题;应用;一、在日常教学中渗透,逐步形成认知在高中阶段,许多知识和方法和“无限趋近”相关﹐如区间的无穷远处、数列的项数﹑柱锥台之间的关系、函数图像的渐进线、曲边图形的面积及曲线的切线等。
因此,教师要在日常教学中进行渗透,让学生逐步形成对它的认知。
教科书这样呈现区间表示:实数集可以用区间表示为。
我们可以把满足, ,,的实数的集合分别表示为,,,。
二、在概念教学中渗透,深化理解与认识教科书虽然没有正面提及极限的概念,但是在导数的定义中,已经很紧密地把导数和极限概念关联在一起了。
当时,(为常数),把称为在点的导数,记作。
在这里,“无限趋近”的实质就是高等数学中的极限概念﹐实际教学中教师通常是借助导数的几何意义来帮助学生理解“无限趋近”,让学生直观地体验“无限趋近”,然后引导学生逐步认识“无限趋近”在解题中的作用。
三、在优化解题中渗透,体验巧妙解题的魅力数学思想的魅力在于能巧妙运用,优化解题思路,提升解题效率。
极限思想也不例外,它在函数、方程、不等式、三角函数﹑数列、立体几何等众多问题中都可巧妙运用。
尤其在解决带参数的超越函数的零点问题上,可利用参变量分离方法和极限思想对所构造超越函数的图像进行定位,从而避开繁杂的讨论,大大优化解题过程。
1.极限思想在立体几何中的应用立体几何很考验同学们的空间想象和计算能力,同学们一般会花费大量时间解答这类题,但如果能够恰当地运用极限思想,就可以将复杂图形简单化,计算也随之变得容易。
例1、圆台的上底面和下底面的半径分别是和,作一个平行于圆台底面的截面将圆台分为体积相等的两部分,则截面圆的半径为()。
极限思想在中学数学教学中的应用

极限思想在中学数学教学中的应用极限思想是一种重要的数学思想方法,在中学数学教学中运用极限思想,有助于学生对数列、定积分等复杂问题的理解,提高學生解决相关数学问题的能力。
如何引导学生掌握和应用极限思想,是中学数学教学中要认真思考的问题。
文章简单介绍了极限思想的内涵及在中学数学中的意义,并举出具体例子说明其在实际问题中的应用,以期提高学生的数学思维和解题能力。
标签:极限思想;中学数学教学;应用一、极限思想概述极限思想考察当变量按某种方式变化,譬如变量趋于无穷大或者趋于某一定值时,研究对象最终的变化趋势和趋向的唯一数值;是通过极限的概念,对研究对象从有限拓展到无限,从对常量的研究逐渐转化为对变量的研究,来分析和解决问题的一种思想方法。
二、极限思想在中学数学中的作用1.有利于提高数学思维能力新课标强调对学生数学思维能力和数学素养的培养。
教师通过极限思想教学的渗透,可让学生的思维从有限发散到无限,理解无限逼近的意义,掌握“分割、近似代替、求和、取极限”的思想方法,学会将极限思想应用到其他数学问题的学习和解决当中。
2.有利于解决复杂数学问题教学中灵活渗透极限思想,能降低问题难度,理顺解题思路,提高解题的效率和质量。
例如,求曲边梯形的面积,首先插入分点分割曲边梯形,每个小曲边梯形可近似看成小矩形,这些小矩形的面积和近似等于曲边梯形的面积,分划不同,得到的矩形面积和也不同,当分划足够细时求出极限从而得到曲边梯形面积。
利用这种极限思想,还能解决众多数学问题,如平面曲线的弧长问题。
3.有利于和大学数学知识衔接高等数学的许多概念和方法与极限密切相关,中学教学中让学生掌握极限思想方法,能促进中学与大学数学知识的衔接,为高等数学学习奠定基础。
三、极限思想在中学数学教学中的应用1.极限思想在函数中的应用函数是中学数学教学中的重要内容,贯穿于中学数学的始终,是变量数学的基础。
解决函数问题,可以充分利用极限思想。
通常可以用反函数的方法进行解答,答案为D,由于是选择题,也可以采用极限思想,迅速判断出大致范围,提高解题效率。
谈极限思维在高中数学教学中的应用

谈极限思维在高中数学教学中的应用摘要:在高中数学教学中,通过极限思维的应用,可以大大提高学生对数学知识的理解,并使学生更高质量地完成数学问题,对学生数学综合素养的培养有极大的帮助。
因此在实践教学中,教师需要根据学生的发展需要,让学生开展合理的思维训练,引导学生在训练中强化自己的数学思维观念。
本文就极限思维在高中数学教学中的应用展开分析。
关键词:高中数学;极限思维;教学策略;极限思维是数学学习中非常重要的思想,它可以引导学生用极限的方法对数学知识、数学问题进行分析,对学生数学学习能力的提高大有裨益。
在实践教学中,高校数学教师需要进一步提高学生对极限思维培养的重视程度,引导学生通过极限思维了解数学知识,并解决相应的数学问题。
因此,促进学生实际学习效果的提高。
教师在日常教学中也需要深入挖掘教材中的极限思想,结合学生的认知状况,引导学生运用极限思维处理复杂的数学问题,促进学生数学学习能力的提高。
一、高中数学教学现状分析数学学科是高中教育体系中最基础、最重要的课程,数学学习情况将会对学生的升学及综合素养提升都带来直接影响。
从高中数学教学现状看,还存在一些不足,从而制约了学生的全面发展。
首先是在教学中还存在学生自身的学习欲望比较低的状况。
高中阶段的数学知识抽象性强,加上数学知识比较零散、内容涉及面比较广,而学生自身的数学学习水平、数学基础能力都有差异,有的学生基础能力比较好,数学学习能力强,能在课堂上很好地掌握知识;但是也有的学生数学基础比较差,知识接受能力弱,难以完全掌握教师讲解的知识,在学习中存在一些问题,如果学生没有及时处理这些问题,就会出现问题积累越来越多,最终影响到学生学习效果,降低了学生的学习积极性。
对教师而言,为了保证学生能获取良好知识,教师在课堂上会抽出大量时间讲解知识,然后引导学生开展习题训练,让学生巩固所学知识。
这种方式会造成部分学生没有完全听懂、在做题时不知道如何下手的情况,不利于这部分学生的综合发展。
极限思想在高中数学中的应用

极限思想在高中数学中的应用作者:谈家国来源:《中学生数理化·教与学》2014年第08期极限思想是古人很早提出的一种设想.中国的古人曾经提出如果知识是无穷尽的,而人们所知是有穷尽的,假设人不受生、老、病、死的限制,那么人是否能够获得无限的知识?人们意识到无限的思想以后,就意识到如果不确定某个值,就选取一个最接近于它的值,并用这种值描述它的趋势,这种思想构建了现代微积分知识的基础.古时候,人们有时会无意识地应用这种知识.例如,中国古代有本书,讲述这样一则故事.有一个牧羊人,他有17只羊,又有3个儿子,他依照村规把一半的财产分给大儿子,又将剩下三分之一的财产分给二儿子,剩下九分之一财产分给三儿子.可是人们发现17只羊没有办法完整的分配.这时有位智者,他将自己的1只羊放进17只羊中,即为18只羊,那么老大得到9只羊,老二得到6只羊,老三得到2只羊,剩下1只羊智者自己带回家.古时人们夸赞这种分配方法非常公平,然而现在人们可以看到,它是利用了极限的方法,让分配的方法尽可能地合乎当初预定的结果.这种分配方法与现代微积分的知识是不谋而合的.极限的思想,即为一种无限接近于精准答案的思想,这种在精准答案不确定的的情形下,应用最接近于精准答案的思路,能够解决人们的很多数学问题.高中教师要引导学生理解到极限思想的最大应用价值.一、应用极限思想解决无限的问题所谓无限的问题是指人们需要求取一个数值,而这个数值求取的过程非常烦琐,人们如果穷举这个范围内所有的数值将会非常困难.但是如果人们有无限的思想,则可以就用无限接近的思想给出这个范围内最大的一个极限和一个最小的极限,则人们不需要穷举范围内所有的数值,直接可以判断该范围.例如,在讲“解析几何初步”时,教师引导学生思考:已知一个锐角三角形,它的边AC已固定,BC=1,现B点在以C为圆心,半径为1的圆周上做运动(图略),求取AB的极限范围.分析:如果这一题用普遍的方法计算,学生会把计算过程变得非常烦琐.然而如果学生能用数形结合的思想思考圆周运动的定义,则可迅速通过计算AB的取值范围直接得到答案为(3,5).二、应用极限思想解决逼近的问题所谓逼近的问题是指人们遇到某种问题时,需要了解它的取值,然而这种取值是没有精确答案的,人们于是使用极限的思想,尽可能取出与该精准值最接近的一个答案,它即为该问题的最终答案.这种逼近的问题能帮助人们尽可能的解决不可能解决的问题.三、应用极限思想解决决策的问题所谓的概述问题是指人们在统计或计算中,需要了解某种数值.这种数值人们如果要精准的计算,常常会得出不必要的循环小数,而在实践生活中人们不需要特别精准的答案,只需要一个大概的数值帮助自己决策,因此可以用极限的思想把一此过于复杂的计算与统计全部省略,得到人们需要的大概数字.例如,在讲“算法初步”时,教师可以引导学生思考:现在某凉茶公司出售一瓶饮料,它的售价为2元,顾客可以拿五只空瓶换一瓶饮料,如果该饮料成本为1元,使用该种销售方法,每瓶厂家可得到的毛利为多少?分析:学生如果能理解极限的思想,就可理解到x空瓶能换x5瓶凉茶,以此类推,它能再次换回x52瓶,如果以极限的思想计算,则可将它的公式列为:x+x5+x52+…=limn→∞x(1-x5n)1-15=5x4,则每瓶凉茶的价格为2x5x4=85=1.6,最终可得利润为6角钱.极限思想能帮人们化繁为简,解决实践生活中的一些问题,实际上那位古老的卖羊故事即利用极限思想完成该类问题.从以上的极限思想应用中可以看到,实际上极限思想拥有以下几种思想:无穷大的思想,它是指用一种数学方式描述出一种事物的趋势,人们可能不了解这件事情的极限,但是人们可以掌握该事物的趋势,并在该趋势范围内选取人们需要的一个范围,它能避免人们无穷列举的问题;无穷小的思想,它是指人们需要精准的掌握一件事物,然而这件事物几乎不可能让人们精准的了解或描述,因此人们用无限小的思想尽可能地选取最接近于精准答案的那个答案,它能避免人们无法精神描述的问题;辅助决策的思想,这是指人们在决策一件事物时,人们有时无法作准最精密无误的决策,然而人们却又必须解决决策的问题,所以人们寻找一个能帮助自己决策的答案,这个答案能接近于人们需要的这个目标.微积分是目前高中学生需要学习的数学知识,学生在学习微积分时,常常会感觉到微积分知识复杂,他们觉得学习那么复杂的事物不知道能解决什么问题,教师要引导学生理解到无限思想应用的方法,当学生理解到无限思想的巨大用处时,就会对学生微积分知识产生兴趣.。
极限思想在高中数学解题中的应用

极限思想在高中数学解题中的应用极限思想在高中数学解题中的应用极限思想作为一个重要的数学概念在高中数学教学中得到了培训,影响着后来数学解题的过程,也对提升高中数学解题水平比较有意义。
因此,如何应用极限思想在高中数学解题中显得尤为重要。
首先,要认识到极限中的关系。
极限的基本概念是“当x的值逐渐接近某个特定的值,y的值也会逐渐靠近某个特定的值”,换句话说,所谓的“靠近”,就是指每次减小x的值时,y的值也会靠近某个极限值。
根据极限的定义,某一极限存在时,x的关系可以抽象成一个方程,即极限=f(x)。
其次,要学会把握极限的推导过程,比如一些分式除以越来越小的常数,我们往往会把这样的分式将其多次连乘,并且把和分母相特殊的项放到分母里,最终将这样的分式简化成一个极限式。
再次,要学会利用极限的思想来解决实际问题,比如高中生求解一元二次方程,可以先进行联立方程求值,再使用极限的思想,当a,b极限的值为1的时候,极限的解为2a+db。
这样就可以轻松求出一元二次方程的解。
比如,当方程为:ax2+bx+c=0时,极限值为2a+db,从而得到方程的解。
最后,要保持极限思想的正确认识和理解,比如说,在一般条件下,极限的值及其对应的x的值是有限的,而不是无穷的,那么也就意味着,在一定的条件范围下,有些函数的极限就是有限的,所以,当c取不同值时,极限也就有所变化,从而达到解决数学问题的目的。
极限思想作为一个数学思想,最重要的还是要正确理解和运用。
极限思想是对极端情况的分析,也可以帮助我们在解决数学问题中节省不少时间和精力。
因此,广大高中生要加强极限思想的学习,用正确的思想来解决高中数学中的各种问题,从而提高数学解题的水平。
最新极限思想在高中数学解题中的应用

极限思想在高中解题中的运用 多伦县第三中学 刘洪庆极限的思想是近代数学的一种重要思想,我们在大学所学的数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科。
而在高中一些数学问题的解答上如运用极限的思想,会使我们的解答简单而高效。
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。
下面将用例题举出极限思想的妙处。
尝试将极限思想和方法渗透、融合在解题教学中,实现方法与内容的整合实践,以期引起广大师生的广泛关注和高度重视。
数学思想方法是数学的灵魂,没有数学思维就没有真正的数学学习。
要让学生学好数学,用好数学,就要让学生走进数学的“灵魂深处”。
给大家介绍说明本文要用到的数学符号:”。
“负向趋近于”表示③“”。
“正向趋近于”表示②““趋近于”。
”表示①“a :a a :a :-→+→→ 举例: 大”。
且比“正向趋近于”表示“11:1+→小”。
且比“负向趋近于”表示“11:1-→例1、函数xx xx e e e e y ---+=的图象大致为( )解析:x x x x x x x x e e e e e e ee y 11-+=-+=--当 +→0x 时,+→1x e ,-→11x e ,∴+→-0)1(x x e e 、2)1(→+x x e e , +∞→+=∴02y 。
故排除B 、C 、D 。
选A 例2、函数x x x y --=226cos 的图象大致为( )解析:当 +→0x 时,+→12x ,-→121x ,∴+→-0)212(x x ,16cos →x , ∴+∞→+=01y 。
当 -→0x 时,-→12x ,+→121x ,∴-→-0)212(x x ,16cos →x , ∴-∞→-=01y 。
排除A 、B 又应为x 6cos 是值域[]1,1-上的周期函数,所以选D例3、函数x x x f tan 2)(-=在⎪⎭⎫ ⎝⎛-2,2ππ上的图象大致为( )解析: 当-→2πx 时,+∞→x tan ,-∞→-x tan ,-∞→-x x tan 2,-∞→∴)(x f ,排除B 、D 选项当 +-→)2(πx 时, -∞→x tan ,+∞→-x tan ,+∞→-x x tan 2,+∞→∴)(x f 排除A 选项故选C例4、函数x e e y x x sin )(--=的图象(部分)大致是( )解析:当+→0x 时,+→1x e ,-→11x e ,∴+→-0)1(xx e e ,+→0sin x , +→+⨯+=∴0)0()0(y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限思想在高中解题中的运用
宜宾县一中 雷勇
极限的思想是近代数学的一种重要思想,我们在大学所学的数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科。
而在高中一些数学问题的解答上如运用极限的思想,会是我们的解答简单而高效。
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。
下面将用例题举出极限思想的妙处。
尝试将极限思想和方法渗透、融合在解题教学中,实现方法与内容的整合实践,以期引起广大师生的广泛关注和高度重视。
例1、过抛物线
)0(2
>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与QF 的长分别是p 、q ,则q p 1
1+等于( )
(A)a 2 (B) a 21
(C) a 4 (D) a 4
分析:本题是有关不变性的问题,常规解法是探求a q p 、、的关
系,过程繁琐,且计算较复杂。
若能充分借助于极限思想即取PQ 的极限位置可使问题变得简便易行:将直线PQ 绕点F 顺时针方向旋转到与y 轴重合,此时Q 与O 重合,点P 运动到无穷远处,虽不能再称它为抛物线的弦了,
它是弦的一种极限情形,因为
a OF p QF 41
=
==,而+∞→=q PF ,所以
a q
p 41
1→+,故选择(C )。
针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸现了试题的选拔功能。
例2、正n 棱锥中,相邻两侧面所成的二面角的取值范围是( ) A (
2,n n ππ-) B (1
,n n
ππ-) C (0,2
π
) D (
21
,n n n n
ππ--) x
y
F
P
Q
O
H
A n
A 1
A 2
A 3
S
分析:当正棱锥的顶角无限接近底面时,两侧面所成的二面角无限接近π.当正棱锥的高无限增大时,两侧面所成的二面角无限接近正n 多边形的一个内角,即为2n n π-,因此,所求二面角的范围应为(2
,n n
ππ-)
例3、已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和
AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 坐标为),0,(4x 若,2x 14<<则
θtg 的取值范围是( )
A .)1,31(
B .)32,31(
C .)2
1,52(
D .)32,52(
分析:本题命制得很有趣,它把人们常见的台球活动模型迁移到数学试题中,考查了处理几何、代数问题的能力,是一个小型综合题,我们可以充分利用几何关系通过“极端位置”找出θtg 的取值范围,根据极限的观点,令14→x ,不妨令
4P 与0P 重合,依据入射角等于反射角,即知1P 、2P 、3P 均为各边中点,此时
2
1
tan =θ,而四个选择项中仅有选择项(C )与此数据有关,故选(C )
例4、已知函数21()(1)4
f x x =+,若存在,t t 为实数,只要[1,]x m ∈(1)m
>,就有
()f x x ≤,则m 的最大值是
分析:作函数y x =与21
(1)4
y x =+的图像,平移f(x)的图像.使之与直线y x =交于(1,1)和(,),(1)m m m >两点,此时所得的图像是()y f x t =+,图像的极端位置;于是解方程组(1)1()f t f m t m +=⎧⎨+=⎩
,再由1m >,得4
9t m =-⎧⎨=⎩,所以max 9m =
x
θ
4P B
C
D
P 1
P 2
P 3
P A
y
例5、 已知数列{}n a 中,51=a 且对于任意正整数n ,总有2
1-=
+n n
n a a a ,是否存在实数b a ,,使得n n b a a )4
3
(--=,对于任意正整数n 恒成立?若存在,给出证
明;若不存在,说明理由。
分析: 如果这样的b a ,存在的话,则由n
n b a a ⎪⎭⎫
⎝⎛--=43,可得a a n n =∞
→lim 。
对2
1-=
+n n n a a a 两边取极限,得2-=a a
a ,解得0=a 或3=a 。
若0=a ,则数列{}n a 应该是以51=a 为首项、以4
3
-=q 为公比的等比数列,
于是,1
435-⎪
⎭
⎫
⎝⎛-⨯=n n a ,415
4351
22-
=⎪
⎭
⎫
⎝⎛-⨯=-a 不符合2112-=a a a 显然,不可能对任意的正整数n 都满足2
1-=
+n n
n a a a ; 若3=a ,将51=a 代入n
n b a a ⎪⎭
⎫
⎝⎛--=43 ,可求得38=b ,此时,n
n a ⎪⎭⎫ ⎝⎛--=43383,
验证:2
24338335⎪⎭⎫
⎝⎛--≠=a ,不符合n
n
a ⎪⎭⎫ ⎝⎛--=43383。
所以,这样的实数
b a ,不存在。
例6、设n 为自然数,求证:()4
1
121251912
<++++n 分析: 当1=n 时,不等式显然成立。
设()1≥=k k n 时,不等式成立,即
()4
1
121251912
<++++k ()1 那么,当1+=k n 时,
()()()
222321
4132112125191++<++++++k k k
由于
()4
1321412>++k , 证到此处,用数学归纳法证题思路受阻。
之所以用数学归纳法证题思路行不通,其原因在于
4
1
是一个常数,从k 到()1+k 右边常量不变,而左边在增大,这样,无法使用归纳假设。
当联想()4114lim
=+∞→n n n ,且当1=n 时,()9
1
8114>=+n n ,不妨把要证结论强化为:
()()
14121251912+<++++n n
n ()2 证明:①当1=n 时,
()9
1
8114>=+n n ,不等式()2成立, ②设()1≥=k k n 时,不等式()2成立,即
()()
14121251912+<++++k k k 那么,当1+=k n 时,
()())
2(41)42)(22(1
141)32(1)1(43211212519122
2++=
+++
+<++
+<++++++k k k k k k k k k k k 即当1+=k n
时,不等式()2成立,所以有
()
()4114121251912
<+<++++n n n
通过以上例题可以看出,让学生掌握和运用极限思想,不仅降低了某些问题的解题难度,而且在寻找解题思路、探索发现新结论有着重大作用。