2010届中考数学专题复习8
2010年中考数学试题分类汇编

2010年中考数学试题分类汇编整式的乘除(幂的运算性质,乘法,除法,公式,因式分解)(2010哈尔滨)1。
把多项式2a2-4ab+2b2分解因式的结果是2(a-b)2(2010珠海)2.分解因式=________________. a(x+y)(x-y)(2010年镇江市)3.化简:= a3;a4 .(2010年镇江市)5.分解因式:=;化简:= .(2010遵义市) 计算的结果是A.B.C.D.答案:D(2010台州市)下列运算正确的是(▲)A.B.C.D.答案:C(2010遵义市) 分解因式: = ▲ .答案:(2010遵义市) 已知,则▲ .答案:2010(2010台州市)因式分解:= ▲.答案:(2010年无锡)2.下列运算正确的是(▲)A.B.C.D.答案 D(2010年无锡)13.分解因式:▲.答案(2a+1) (2a-1)(2010年连云港)2.下列计算正确的是()A.a+a=x2B.a·a2=a2C.(a2) 3=a5D.a2 (a+1)=a3+1答案B(2010年连云港)19.(本题满分8分)计算:(2)已知x=-1,求x2+3x-1的值( 2 ) 法一:当时,=.............................................................7分= ..........................................................................................8分法二:即:..............................................................7分...........................8分(2010宁波市)2.下列运算正确的是A.x·x2=x2 B.(xy) 2=xy2 C.(x2) 3=x6 D.x2+x2=x4(2010宁波市)4.据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为A.0.82×1011 B.8.2×1010 C.8.2×109D.82×108(2010宁波市)17.若x+y=3,xy=1,则x2+y2=_________________.7(2010年金华)分解因式▲.答案:(x-3)(x+3);7.(2010年长沙)下列计算正确的是 CA.B.C.D.(2010年湖南郴州市)4.下列运算,正确的是A.B. C.D.答案:A(2010年湖南郴州市)10. 分解因式: .答案:(2010湖北省荆门市)11.如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( )(A)75(1+)cm2(B)75(1+)cm2(C)75(2+)cm2(D)75(2+)cm2答案:C2.(2010湖北省咸宁市)下列运算正确的是A.B.C.D.答案:C4.(2010年郴州市)下列运算,正确的是A.B. C.D.答案:A10. (2010年郴州市)分解因式:.答案:17.(2010年郴州市)计算:.答案:17. 解:原式=2+2+1218.(2010年郴州市)先化简再求值:,其中x=2.答案:原式===当x=2时,原式==3.(2010年怀化市)若,,则的值是().A.2 B.4 C.D.答案:B10.(2010年怀化市)若,则、、的大小关系是()A.B.C.D.答案:C4.(2010年济宁市)把代数式分解因式,结果正确的是A.B.C.D.答案:D12.(2010年济宁市)若代数式可化为,则的值是.答案:5(2010年成都)2.表示()(A)(B)(C)(D)答案:C(2010年眉山)5.把代数式分解因式,下列结果中正确的是A. B. C. D.答案:D(北京)10. 分解因式:m2 4m= 。
2010中考数学基础知识复习回顾

2010中考数学基础知识复习回顾一、数与式1、实数的分类正整数整数 零有理数 负整数 正分数 实数 分数负分数正无理数无理数 负无理数 注意:(1)实数还可按正数,零,负数分类.(2)整数可分为奇数,偶数,零是偶数,偶数一般用2n (n 为整数)表示;奇数一般用2n -1或2n +1(n 为整数)表示.(3)正数和零常称为非负数.2、数轴上的点和实数一一对应,如何在数轴上找到无理数所对应的点。
3、⎪⎩⎪⎨⎧<-=>=.,,)0()0(0)0(a a a a a a注意: (1)0≥a .(2)零的绝对值是它的本身,也可看成它的相反数,如:若,a a =则0≥a ;若0≤-=a a a ,则. (3)正数大于零,负数小于零,正数大于一切负数;两个负数,绝对值大的反而小.4、有效数字和科学记数法(1)一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.(2)把一个数记成n a 10⨯±的形式,其中:n a ,101<≤是整数,这种记数法叫做科学记数法注意:如果这个数的整数数位不比要求保留的有效数字多,则可以直接用四舍五入表示出来;如果整数数位比有效数字多,一定要先用科学记数法表示,然后四舍五入表示.例如15876保留两位有效数字是1.6×104,而不能写成16000.5、⎩⎨⎧<-≥==.,)0()0(2a a a a a a注意:a 的“双重非负性” :⎩⎨⎧≥≥.,00a a6、n 次方根、n 次算术根:如果一个数的n 次方(n 是大于1的整数)等于a ,那么这个数就叫做a 的n 次方根,即如果a x n=,那么x 就叫做a 的n 次方根.根指数是偶数的方根叫做偶次方根.根指数是奇数的方根叫做奇次方根.注意:(1)正数的偶次方根有两个,它们互为相反数;零的偶次方根为零;负数没有偶次方根.(2)正数的奇次方根是一个正数;负数的奇次方根是一个负数;零的奇次方根是零.(3)n 为奇数,则nna a -=-.正数a 的正的n 次方根叫做a 的n 次算术根.零的n 次方根也叫做零的n 次算术根.n a 有“双重非负性” :0≥a ;0≥na .7、实数的运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 8、用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.9、乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-; ③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.10、10=a (0≠a );p a aa p p ,0(1≠=-为正整数).11、因式分解的常用方法(1)提公因式法: (2)运用公式法: (3)分组分解法: (4)十字相乘法:因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.12、当分子等于零而分母不等于零时,分式的值才是零.13、二次根式的性质(1))0()(2≥=a a a .(2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a(3))0,0(≥≥⋅=b a b a ab . (4))0,0(>≥=b a bab a . 二、方程(组)不等式(组)1、如果两个方程的解相同,那么这两个方程叫做同解方程.如方程23=-x 与方程102=x 就是同解方程.2、一元二次方程的一般形式是:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3、一元二次方程的解法直接开平方法: 配方法: 公式法 因式分解法:4、一元二次方程根的情况与判别式 ∆ 的关系:(1)判别式定理:∆>0⇒方程有两个不相等的实数根; ∆=0⇒方程有两个相等的实数根; ∆<0⇒方程没有实数根;∆⇒≥0方程有两个实数根.(2)判别式定理的逆定理:方程有两个不相等的实数根⇒∆>0; 方程有两个相等的实数根⇒∆=0; 方程没有实数根⇒∆<0; 方程有两个实数根⇒∆≥0.5、分式方程的一般解法:解分式方程的思想是将“分式方程”转化为“整式方程” .它的一般解法是:(1)去分母,方程两边都乘以最简公分母; (2)解所得的整式方程;(3)验根:将所得的根代入最简公分母,若等于0就是增根,应该舍去;若不等于0就是 原方程的根.6、二元一次方程组的解法(1)代入消元法: (2)加减消元法:7、三元一次方程组的解法三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.解三元一次方程组的一般步骤:①利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;②解这个二元一次方程组,求出两个未知数的值; ③将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;④解这个一元一次方程,求出最后一个未知数的值,从而得到方程组的解.8、一元一次不等式的解集用数轴表示有以下四种情况,如下图所示:(1)a x >如图中A 所示:(2)a x <如图中B 所示:(3)a x ≥如图中C 所示:(4)a x ≤如图中D 所示:9、求不等式组公共解的一般规律:同大取大,同小取小,一大一小中间找.三、函数及其图像1、关于x 轴、y 轴或原点对称的点的坐标特征:(1)点P 与点'P 关于x 轴对称⇔横坐标相等,纵坐标互为相反数.(2)点P 与点''P 关于y 轴对称⇔纵坐标相等,横坐标互为相反数.(3)点P 与点'''P 关于原点对称⇔横、纵坐标均互为相反数.2、点(),P x y 到坐标轴及原点的距离(如图):(1)点P (x ,y )到x 轴的距离等于|y |;(2)点P (x ,y )到y 轴的距离等于|x |;(3)点P (x ,y )到原点的距离等于22y x +3、一般的,如果b kx y +=(b k ,是常数,0≠k ),那么y 叫做x 的一次函数.特别的,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,0≠k ).这时,y 叫做x 的正比例函数.4、一般的,一次函数b kx y +=有下列性质: (1)当k >0时,y 随x 的增大而增大; (2)当0<k 时,y 随x 的增大而减小.5、设直线1l 和2l 的解析式为11b x k y +=和22b x k y +=,则它们的位置关系可由其系数确定:;;.6、一般的,如果)0,,,(2≠++=a c b a c bx ax y 是常数,那么,y 叫做x 的二次函数.(1)一般式:c bx ax y ++=2(0≠a ).(2)顶点式:k h x a y +-=2)((0≠a ),其中ab ac k a b h 44,22-=-=.(3)两根式:)0)()((21≠--=a x x x x a y ,其中21,x x 是抛物线与x 轴交点的横坐标.如果没有交点,则不能这么表示.7、如果自变量的取值范围是全体实数,那么函数在顶点相交与2121l l k k ⇔≠平行与212121l l b b k k ⇔⎩⎨⎧≠=重合与212121l l b b k k ⇔⎩⎨⎧==处取得最大值(或最小值),即当ab x 2-=时,ab ac y 442-=最值.如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当abx 2-=时,ab ac y 442-=最值;若不在此范围内,则需考虑函数在21x x x ≤≤范围内的增减性.如果在此范围内,y 随x的增大而增大,则2x x =时,c bx ax y ++=222最大,当1x x=时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大;当2x x =时,c bx ax y ++=222最小.8、反比例函数中比例系数的几何意义过反比例函数)0(≠=k xky 图象上任一点P 作x 轴、y 轴的垂线PM 、PN ,则所得的矩形PMON的面积xy x y PN PM S=⋅=⋅=.x k y = ,k xy =∴.k S =∴.即过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积为k.四、统计与概率1、平均数的概念:①平均数:一般的,如果有n 个数1x ,2x ,…n x ,那么,nx1=(1x +2x +…+n x )叫做这n 个数的平均数,x读作“x 拔” .②加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f n =+++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k +++= 2211,这样求得的平均数x叫做加权平均数,其中1f ,2f ,…k f 叫做权. 2、平均数的计算方法:①定义法:当所给数据1x ,2x ,…n x 比较分散时,一般选用定义公式:nx 1=(1x +2x +…n x ). ②加权平均数法:)(12211k k f x f x f x nx +++=,其中1f +2f +…+k f =n .当所给数据重复出现时,一般选用加权平均数公式: ③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='.其中,常数a 通常取接近于这组数据的平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -=', )'''(1'21n x x x nx +++=是新数据的平均数(通常把1x ,2x ,…n x 叫做原数据,1'x ,2'x ,…n x '叫做新数据).3、统计学中的几个基本概念总体:所要考察对象的全体叫做总体. 个体:总体中每一个考察对象叫做个体.样本:从总体中所抽取的一部分个体叫做总体的一个样本.样本容量:样本中个体的数目叫做样本容量.样本平均数:样本中所有个体的平均数叫做样本平均数.总体平均数:总体中所有个体的平均数叫做总体平均数.在统计中,通常用样本平均数估计总体平均数.注意:(1)弄清考察对象是明确总体、个体、样本的关键,这里考察对象指的是数据.(2)总体或样本中的每个数据都是一个个体,不同的个体在数值上是可以相同的,样本中有多少个个体,样本容量就是多少.4、方差的计算:(1)基本公式:()()()[]2222121x x x x x x ns n -++-+-=.(2)简化计算公式(I):])[(12222212x n x x x ns n -+++=. 也可写成2222212)(1x x x x n s n -+++= .此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化计算公式(II):]')'''[(12222212x n x x x ns n -+++= .当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…a x x n n -=',那么,])'''[(12222212x n x x x ns n'-+++= ,也可写成 2222212)(1x x x x ns n '-'++'+'= .此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方.(4)新数据法:原数据1x ,2x ,…,n x 的方差与新数据a x x -=11',a x x -=22',…a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得1'x ,2'x ,…n x '的方差就等于原数据的方差.五、三角形1、三角形的主要线段:(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.这里我们要注意两点:一是一个三角形有三条角平分线,并且相交于三角形内部一点 (内心);二是三角形的角平分线是一条线段,而角的平分线是一条射线.(2)在三角形中,连结一个顶点和它对边的中点的线段叫做三角形的中线.这里我们要注意两点:一是一个三角形有三条中线,并且相交于三角形内部一点(重心);二是三角形的中线是一条线段. (3)从三角形一个顶点向它对边画垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).这里我们要注意三角形的高是线段,而垂线是直线.三条高线相交于一点(垂心)。
2010年部分省市中考数学试题分类汇编(共28专题)17[1(精)

2010年部分省市中考数学试题分类汇编 (1平行四边形、矩形、菱形与正方形1. (2010重庆市潼南县如图24,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. (1证明:△AB E ≌△DAF ;(2若∠AGB =30°,求EF 的长. 解:(1∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF -----------------------4分(2∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =1----------------------------------------8分由(1得△ABE ≌△ADF∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分2. (2010年青岛已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1求证:BE = DF ;(2连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案】证明:(1∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°.∵AE = AF ,∴Rt Rt ABE ADF △≌△.∴BE =DF .(2四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,题图24A D B E F O CM第21题图∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.3.(2010福建龙岩中考20.(10分如图,平行四边形ABCD 中,E 、F 是对角线BD 上的点,且BE =DF . (1请你写出图中所有的全等三角形(2试在上述各对全等三角形中找出一对加以证明.4.(2010年益阳市如图7,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E . (1 求∠ABD 的度数; (2求线段BE 的长.【关键词】菱形性质、等边三角形、【答案】解:⑴在菱形ABCD 中,AD AB =,︒=∠60A∴ABD ∆为等边三角形∴︒=∠60ABD⑵由(1可知4==AB BD又∵O 为BD 的中点∴2=OB 又∵AB OE ⊥,及︒=∠60ABD ∴︒=∠30BOE ∴1=BE5.(2010年山东省青岛市已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1求证:BE = DF ;(2连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.7图【关键词】菱形的判定【答案】证明:(1∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF .(2四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC . ∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.6. (2010年浙江省绍兴市 (1 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°. 求证:BE =CF .(2 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.(3 已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°,EF =4. 直接写出下列两题的答案:①如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长; ②如图4,矩形ABCD 由n 个全等的正方形组成,求GH 的长(用n的代数式表示.【答案】(1 证明:如图1,∵四边形ABCD 为正方形,∴ AB =BC ,∠ABC =∠BCD =90°, ∴∠EAB +∠AEB =90°. ∵∠EOB =∠AOF =90°, ∴∠FBC +∠AEB =90°,∴∠EAB =∠FBC ,∴△ABE ≌△BCF , ∴ BE =CF .(2 解:如图2,过点A 作AM //GH 交BC 于M ,第23题图1第23题图3 第23题图 4 第23题图1第23题图2O ′N AD BEFOC第21题图过点B 作BN //EF 交CD 于N ,AM 与BN 交于点O /, 则四边形AMHG 和四边形BNFE 均为平行四边形, ∴ EF=BN ,GH=AM ,∵∠FOH =90°, AM //GH ,EF//BN , ∴∠NO /A =90°, 故由(1得, △ABM≌△BCN , ∴ AM =BN , ∴ GH =EF =4. (3 ① 8.② 4n .7.(2010年宁德市(本题满分13分如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴求证:△AMB ≌△ENB ;⑵①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶当AM +BM +CM 的最小值为13【答案】解:⑴∵△ABE 是等边三角形, ∴BA =BE ,∠ABE =60°. ∵∠MBN=60°,∴∠MBN -∠ABN =∠ABE -∠ABN. 即∠BMA =∠NBE. 又∵MB =NB ,∴△AMB ≌△ENB (SAS .⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时, AM +BM +CM 的值最小. ………………9分理由如下:连接MN.由⑴知,△AMB ≌△ENB , ∴AM =EN.∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形. ∴BM =MN.∴AM +BM +CM =EN +MN +CM.根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F , ∴∠EBF =90°-60°=30°.A DB C F A DB CABC DFED CB AO E设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2, ∴(2x 2+(23x +x 2=(213+.解得,x =2(舍去负值. ∴正方形的边长为2.8.(2010年四川省眉山市如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1试判断四边形OCED 的形状,并说明理由;(2若AB =6,BC =8,求四边形OCED 的面积.【关键词】平行四边形的判定、菱形的性质与判定和面积、矩形的性质【答案】解:(1四边形OCED 是菱形.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, 又在矩形ABCD 中,OC =OD , ∴四边形OCED 是菱形.(2连结OE .由菱形OCED 得:CD ⊥OE , ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8 ∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=9.(2010年浙江省东阳市(6分如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF . (1 请你判断AD 是△ABC 的中线还是角平分线?请证明你的结论.(2连接BF 、CE ,若四边形BFCE 是菱形,则△ABC 中应添加一个条件▲ 【关键词】三角形的全等【答案】(1AD 是△ABC 的中线.................................1分理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°.........1分又∵BE=CF,∠BDE=∠CFD ∴△BDE≌△CFD(AAS.......2分(2AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC.......2分10. (2010年安徽中考如图,AD ∥FE ,点B 、C 在AD 上,∠1=∠2,BF =BC⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD ,求证:△ACF ≌△BDE 。
2010年中考数学专题复习课件9

课时
• • • • •
数据的收集与处理(统计图表) 1课时 数据的集中与离散(基本统计量) 1课时 运用统计思想方法解决实际问题 1课时 频率与概率 1课时 概率的简单应用 1课时
三、复习建议
〈二〉准确把握考试要求,知识讲解适度即可 1. 对普查与抽样调查的讲解定位为基本了解,能结合实 例分析何时选择普查,何时选择抽样调查,但不必作更 多、更高的要求. 2. 能识别、补充、绘制统计表、条形统计图、扇形统计 图和折线统计图,并能认识到各种统计数据描述形式的 特点及优缺点,但不必对此深入挖掘. 3. 会计算平均数、加权平均数、中位数、众数等反映数 据集中趋势的特征数据,会计算反映数据离散程度的极 差、方差,理解这两类统计量的意义. 4. 理解频率与概率之间的关系,知道大量重复实验时, 频率的稳定值可近似地作为随机事件发生的概率,但对 “大量”不必做解释说明.
绘制统计图的注意事项
1. 统计图类型。例如:独立资料用条形图;连续资料 用折线图或直方图;构成比资料用扇形统计图;
2. 统计图要有合适的标题。标题写在图的下方,其要 求和统计表的标题的要求一样,要能够概括图的内 容。
3.条形图、折线图、直方图的纵、横坐标上要有刻度 和单位,刻度要均匀等距。
4.直条图与直方图纵坐标要求从0开始。如果不从0开 始,容易造成错觉 。 5.比较不同事物时用不同的线条和颜色来表示,并附 上图例。
二、知识结构图
不可能事件
确定事件 可能还是确定 概 率 概 率 分析预测概率 列举法 不确定事件
必然事件
机会的 游戏的
大小比较
公平与否
实验估计概率
模拟等效实验 画树状图 列表
统 计
借助统计活动研究概率 从概率角度分析统计数据特征
2010中考数学真题分类汇编1.实数的有关概念

2010中考数学分类汇编一、选择题 1.(2010江苏苏州)32的倒数是A .32B .23C .32-D .23-【答案】B2.(2010江苏苏州)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为 A .1.3×104B .1.3×105C .1.3×106D .1.3×107【答案】C3.(2010安徽蚌埠二中)记n S =n a a a +++ 21,令12nn S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为 A .2004 B .2006 C .2008 D .2010 【答案】C4.(2010安徽蚌埠二中)某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 A .15B .16C .17D .18【答案】B5.(2010安徽省中中考)在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( ) A )1- B )0 C )1 D )2【答案】B 6.(2010安徽省中中考) 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是 …………………………( )A )2.89×107. B )2.89×106.C )2.89×105. D )2.89×104.【答案】B 7.(2010安徽省中中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。
2010中考数学

2010中考数学介绍2010年中考数学试题是中国教育系统中的一项重要考试。
这篇文档将介绍2010年中考数学试题的主要内容和解题方法,并提供一些参考答案和解析。
希望通过本文档的阅读,读者能对2010年中考数学试题有更深入的了解。
题目1:代数式计算题目描述已知a=3,b=4,则a^2 - b^2 = ?解题思路根据题目中的给定信息,我们可以直接利用代数式计算的方法来求解。
根据公式 (a + b)(a - b) = a^2 - b^2 ,将已知的a和b代入,我们可以得到:(3 + 4)(3 - 4) = 7 * -1 = -7所以a^2 - b^2的值为-7。
参考答案和解析答案:-7解析:根据代数式计算的方法,将已知的a和b代入公式(a + b)(a - b) = a^2 - b^2 ,我们可以得到a^2 - b^2 = -7。
题目2:几何图形与计算题目描述如下图所示,ABCD为一个平行四边形,AD=BC,M为AB 的中点。
那么,AM的长度等于?B _______ C|\\ /|| \\ / || \\ / |A|___X___|D解题思路根据题目中的给定信息,我们需要利用几何图形的性质来求解AM的长度。
首先,根据平行四边形的性质,我们知道AD与BC平行且等长,所以△ABM 与△CDM 是全等三角形。
由于M是AB的中点,所以AM与MB的长度是相等的。
根据全等三角形的性质,△ABM和△CDM的对应边长也是相等的,所以AM与MD的长度也是相等的。
所以,AM的长度等于MD的长度。
参考答案和解析答案:MD解析:根据几何图形的性质,我们可以得出结论:AM的长度等于MD的长度。
题目3:函数与方程题目描述若函数 f(x) = 2x + 1,求使得 f(x) = 5 的解 x 的值。
解题思路根据题目中的给定函数,我们需要求出满足f(x) = 5的解x 的值。
将给定函数的表达式 f(x) = 2x + 1 代入方程 f(x) = 5 ,可以得到:2x + 1 = 5解这个一元一次方程,我们可以得到:2x = 4x = 2所以,使得 f(x) = 5 的解 x 的值为2。
2010年中考数学复习综合测试卷(1)

2010年中考数学复习综合测试卷(1)一、填空题(本大题有5小题,每小题4分,共20分)1、当21-=x 时,代数式()()2212232++++x x 的值为_________2、如图,在Rt △ABC 中,∠C =Rt ∠,CD ⊥AB 于D ,若AD=2cm ,CD =32cm ,则BC=_________ cm 。
3、如果二次函数的图像与x 轴交点的横坐标分别为x 1=–1和x 2=3,且图像通过点(0,–2),那么这个二次函数的解析式为_________4、要使方程()()04132=-+++m x m x 有一个正数根和一个负数根,那么m 的取值范围是_________5、如图,⊙O 1与⊙O 2相交于A ,B 两点,如果531=A O ,54cos ,5212=∠=O AO A O ,那么=∠2sin BAO _________ 二、解答题(本大题有4小题,共40分)1、(8分)如图,D 是AC 上的一点,AD= 2DC ,△ABC 有中线AM 与BD 相交于E ,(1)求BE :ED 的值;(2)求AE :EM 的值。
2、(10分)如图,在△ABC 的外接圆上,D 是弧BC 的中点,AD 交BC 于E ,F 在AE 上,CE =CF ,(1)求证:△ABE ∽△ACF ;(2)已知BC =14cm ,AF =3EF ,求BE 的长。
3、(10分)已知二次函数()42122-+-+=a x a x y 。
(1)求证:无论实数a 为何值,函数的图像与x 轴都有两个交点;(2)设函数图像与x 轴交点的横坐标分别为x 1,x 2,32||21=x x ,若a <2,求a 的值。
4、(i2分)如图,正方形ABCD 中,E ,F 分别在AD ,AC 上,CA CF DA DE 2= (1)求证:△BEF 是等腰直角三角形;(2)设AF =x ,四边形ABEF 的面积为S ,2:1:=∆∆BFE ABE S S ,求S 与x 的函数关系式;(3)已知正方形的边长为2,,求AF 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八:数学方法孙法光一、考点综述 考点内容:配方法、因式分解法、换元法、待定系数法、面积法 考纲要求:配方法、因式分解法、换元法、待定系数法、面积法等解题方法是随着对数学对象的研究的深入而发展起来的。
要求学生钻研习题、精通解题方法,可以促进学生进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高考试答题的应变能力。
考查方式及分值:配方法、因式分解法、换元法、待定系数法、面积法等解题方法在中考中选择、填空、解答题都有出现,常常在综合题目中出现,分值在20分左右。
备考策略:分析解题思路,总结解题方法,重在培养学生的创新意识和实践能力;分析中考对知识的考查方式和未来中考命题的趋势,使学生全面了解和掌握各个题型的命题特点与命题趋势,做到有的放矢。
二、例题解析 1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
例1:用配方法解方程:2210x x --=. 解题思路:(1)此方程的二次项系数不为1,要先化成1;(2)在配方时,当二次项系数为1时,方程两边都加上一次项系数绝对值的一半的平方就得到完全平方式。
解析:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-.规律总结:用配方法解一元二次方程的一般步骤: (1) 化二次项系数为1(2)移项:使方程的左边为二次项和一次项,右边为常数项(3)配方:方程两边都加上一次项系数绝对值的一半的平方就得到完全平方式 (4)用直接开平方法解方2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
例2.已知4x 2+4xy+y 2-4x-2y+1=0,求证:2x 2+3xy+y 2-x-y=0解题思路:要证明一个多项式的值为零,通常是将此多项式分解因式.若分解后的因式中有一个值为零,则原多项式的值为零.经过分组分解,可知2x 2+3xy+y 2-x-y=(x+y)(2x+y-1),若x+y 或2x+y-1为零,则原多项式的值为零.为达此目的,就要从条件入手. 证明:因为4x 2+4xy+y 2-4x-2y+1=0,所以 (2x+y)2-2(2x+y)+1=0, (2x+y-1)2=0. 所以 2x+y-1=0. 又因为2x 2+3xy+y 2-x-y=(x+y)(2x+y-1). 而2x+y-1=0, 所以2x 2+3xy+y 2-x-y=0.规律总结:要证明一个多项式的值为零,通常是将此多项式分解因式.若分解后的因式中有一个值为零,则原多项式的值为零。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
例3.解方程:3124122=---x xx x 解题思路:此题初看似乎应先去分母,但去分母会使方程两边次数太高,仔细观察可发现x x x x 12122-=-,所以应设xx y 122-=,用换元法解。
解:2611+=x ,2612-=x ,213=x ,14-=x规律总结:用新的变元去代替原式的一部分或改造原来的式子,要注意观察方程的特点。
4、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
例4直线l 与直线的交点的横坐标为2,与直线的交点的纵坐标为1,求直线l 对应的函数解析式。
解题思路:设直线l 对应的函数解析式为,需找出y 与x 的两对对应值才能求出待定系数k ,b 的值,由于l 与直线交点的横坐标为2,可求出l 上一点(2,5),l 与的交点的纵坐标为1,可求得l 上另一点(1,1)于是问题得以解决。
解析:在中,当x=2时,所以l 与直线交点为(2,5)在中,y=1时,所以直线l 与直线的交点为(1,1)设直线l 与,则解得所以l 的解析式为规律总结:根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系。
5、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
例5.如图,已知在ΔABC 中,AB=AC ,D 为BC 上任意一点,DE ⊥AB 、DF ⊥AC ,垂足分别为E 、F ,BG 是AC 边上的高。
求证:DE+DF=BC 解题思路:连接AD ,由得到BG ×AC=DE ×AB+DF ×AC ,因为AB=AC ,所以BG=DE+DF.规律总结:运用面积关系来证明或计算平面几何题的方法,它是几何中的一种常用方法。
三、综合训练 一、选择题1、用换元法解方程71)1(61)1(222=+++++x x x x 时,下列换元方法中最适宜的是设( )2y x =xyOP 1 P 2 P 3 P 4 1234A 、12+=x y B 、1+=x y C 、112++=x x y D 、112+=x y2、用换元法解方程41122=+++x x x x ,通常会设y ( ) A 、2x x + B 、x x 1+ C 、211xx + D 、2+x3、用配方法解下列方程时,配方有错误的是 ( )A.x 2-2x -99=0化为(x -1)2=100 B. x 2+8x +9=0化为(x +4)2=25C. 2x 2-7x -4=0化为D. 3x 2-4x -2=0化为 4、反比例函数xky =(k >0)在第一象限内的图象如图1所示,P 为该图象上任一点,PQ ⊥x 轴,设△POQ 的面积为S ,则S 与k 之间的关系是( ) A .4k S =B .2kS = C .S =k D .S >k 5、多项式①2x 2-x ②(x -1)2-4(x -1)+4 ③(x +1)2-4x(x +1)+4④-4x 2-1+4x 分解因式后,结果含有相同因式的是( )A 、①②B 、③④C 、①④D 、②③ 二、填空题1、某市2008年自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A 级标准,因此,市政府决定加快绿化建设,力争2004年底自然保护区覆盖率达到8%,则该市自然保护区面积的年平均增长率_________(结果保留三位有效数字)2、若4x 2+bx +9是完全平方式,则b = 3、在反比例函数2y x=(0x >)的图象上,有点 1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成 的阴影部分的面积从左到右依次为123S S S ,,, 则123S S S ++= .4、由右边图象写出二次函数的解析式______________5、分解因式a2(x -y)-b2(x -y)______________1681)47(2=-x 910)32(2=-x6、已知如图,4个圆的半径都为a ,用代数式表示其中阴影部分 的面积,并求当a=10,π取3.14时,阴影部分的面积________三、解答题1.用换元法解下列方程061512=++-⎪⎭⎫⎝⎛+x x x x2.心理学家发现,学生对概念的接受能力与提出概念所用的时间x (单位:分)之间满足式子()20.1 2.643030x x x -++≤≤。
如果使学生的接受能力达到59,用多长时间?你知道学生的最大接受能力是多少吗?3.三角形两边的长分别为8和6,第三边的长是方程x 2-16x +60=0的根,求该三角形的最长边上的高。
4. 已知抛物线与x 轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式.5. 把下列各式分解因式(1)a 4-16(2)81x 4-72x 2y 2+16y 46.若2264130x x y y ++-+= 求yx答 案一、选择题1.C2.B3.B4.B5.C 二、填空题1.0.3122.12或-123. 324. y=-2x2-4x .5. (x -y)(a +b)(a -b)6. 86 三、解答题 1. 12x =-,232x =-2. 解(1).20.1 2.64359x x -++=整理得226160xx -=-配方,得()2139x -=121016x x ==(2).()()2220.1 2.6430.1264300.113169430x x x x x ⎡⎤++=---=----⎣⎦ ()20.11359.9x =--+答:学生的最大接受能力为59.9 3.4.84. 解: ∵抛物线与x 轴交于A(-1,0)、B(1,0) ∴设抛物线的解析式为 y =a(x +1)(x-1)又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1 ∴函数解析式为y=-x2+1.5. 解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a +2)(a -2)(2)81x 4-72x 2y 2+16y 4=(9x 2)2-2·9x 2·4y 2+(4y 2)2(先化成完全平方的形式,认准谁是公式的a ,谁是b ) =(9x 2-4y 2)2=[(3x +2y)2(3x -2y)]2(注意这不是结果) =(3x +2y)2(3x -2y)26. 解:2264130x x y y ++-+=2269440x x y y +++-+=22(3)(2)0x y ++-=因为2(3)x +≥0,2(2)y -≥0所以x+3=0,y-2=0即x=-3,y=2则yx =9。