计算流体力学课件完整版共223页文档

合集下载

计算流体力学基础ppt课件

计算流体力学基础ppt课件
s x ds y ds
如果该曲线G满足:
dx ds
a
dy
ds
b
特征线
x
特征线简化了 方程,在空气 动力学领域应
用广泛
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 5
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 9
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
第四章 偏微分方程的性质 Behavior of Partial Differential Equations
Slide 1
超音速钝体绕流问题的解决
Slide 2
偏微方程的分类及特征
1. 一阶偏微分方程
➢ (常用)特例:常系数线性单波方程
u cu 0 t x
初值: u(x,0)(x)
方程的精确解: u(x,t)(xc)t
Slide 31
1.特征线为虚数,故与特征线有关 的解法不适用;
2.无有限影响区域和依赖区域,流 场参数信息可以向任何方向传播;
3.图中P点参数影响整个区域的信息, 同时区域内任意点的参数也影响P 点的参数。

计算流体力学CFD课件

计算流体力学CFD课件

V
dV
0
空间位置固定的无穷小微团模型 V 0 t
随流体运动的无穷小微团模型
方程不同形式之间的转换
空间位置固定的有限控制体模型 tV dVSVdS0
空间位置固定的无穷小微团模型 V 0 t
方程不同形式之间的转换
空间位置固定的无穷小微团模型 V 0 t
随流体运动的无穷小微团模型
流动控制方程经常用物质导数来表达。
物质导数(运动流体微团的时间变化率)
采用流体微团模型来理解物质导数的概念:
沿流线运动的无穷小 流体微团,其速度等 于流线上每一点的当
物质导数(运动流体微团的时间变化率)
流体微团在流场中的运动-物质导数的示意图
物质导数(运动流体微团的时间变化率)
考虑非定常流动:
随流体运动的无穷小微团模型
动量方程
作用在流体微团上的体 积力的X方向分量=
fxdxdydz
随流体运动的无穷小微团模型
动量方程
作用在流体微 团上的X方向的 压力=
动量方程
作用在流体微 团上的X方向的 正应力=
动量方程
作用在流体微 团上的X方向的 切应力=
动量方程
作用在流体微 团上的X方向总 的表面力=
t

txuyv zw0
空间位置固定的无穷 小微团模型
空间位置固定的无穷小微团模型
连续性方程:
txuyv zw0

V0
t
空间位置固定的无穷 小微团模型
随流体运动的无穷小微团模型
随流体运动的无穷小微团模型
连续性方程 流体微团的质量:
质量守恒定律
随流体运动的无穷小 微团模型
随流体运动的无穷小微团模型
流体微团在流场中的 运动-物质导数的示 意图

流体力学ppt课件-流体动力学

流体力学ppt课件-流体动力学

g
g
2g
水头

z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.

计算流体力学课件-part1

计算流体力学课件-part1
➢模型方程:具有原控制方程的基本特征,但是往往可以 得到精确解,依次来揭示原控制方程的一些数学特征
2024/2/28
19
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的概念
➢完整方程
连续方程
动量方程
能量方程
2024/2/28
20
❖Computational Fluid Dynamics
沿特征线,扰动波的幅值不变,传播速度为c
则在t>0时,传播过程如下图:
2024/2/28
27
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征
➢单波方程
➢c>0时,传播沿x正向 ➢C<0时,传播沿x负向 ❖扰动波以有限速度传播是双曲型方程的重要 特征(波形和波幅可能会变化,此处为什么不 变?)
如何表达初始形状三角形
如何存储数据 如何积分
数值积分,HOW?
如何显示结果
TECPLOT
尝试改变几个常数,看看结果有何变化,常数反映了什么?
2024/2/28
22Biblioteka ❖Computational Fluid Dynamics
回顾
控制方程
模型方程
➢NS ➢EULER ➢Impressible NS ➢RANS
➢单波方程可以模拟EULER方程的一些特征
2024/2/28
28
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征

计算流体力学完整

计算流体力学完整
3
计算流体力学(CFD):通过数值方法求解流体力学控制 方程,得到流场的离散的定量描述,并以此预测流体运 动规律的学科。
在CFD中, 首先,把控制方程中的积分、微分项近似地表示为离散的代数形 式,把积分、微分形式的控制方程转化为一组代数方程,这个过 程称为控制方程的离散化(discretization);所采用的离散化方法 称为数值方法或数值格式。
The Elements of Computational Fluid Dynamics
1
第一章 绪论
§1.1 计算流体力学的概念与意义 §1.2 流体力学的基本方程 §1.3 流体力学方程组的类型判别
2
§1.1 计算流体力学的概念与意义
1、流体运动遵循3个基本定律: 1) 质量守恒定律;2) 动量守恒定律;3) 能量守恒定律
6
第六,数值解的显示和评估
计算感兴趣的力、力矩等; 应用流场可视化软件对流场进行显示、分析; 对数值方法和物理模型的误差进行评估等。
7
计算流体力学典型流程




















验 证 与 确 认
离 散 方 法 选 择
时、空离散
解 代 边界条件离散 数 方 程 组
8
举例:自然循环回路内的流动与传热特性
优点:原则上可以研究流体在任何条件下的运动,使得我们研究流体运动的范围和 能力都有本质的扩大和提高。费用低,周期短。
16
§1.2 流体力学基本方程
守恒型积分方程
t

d


Ò V

计算流体力学第4章课件

计算流体力学第4章课件


u
n j

a
un j 1

u
n j 1
t
2x
u n1 j

u
n j

a
u
n j

u
n j 1
t
x
根据von Neumann稳定性分析理论可以得到,FTFS格式与FTCS格式为不稳定 的,FTBS格式也称为迎风格式,它在a∆t/∆x≤1的条件下是稳定的,在时间和空 间上都具有一阶精度。

bx 2

U x
2
14
Steger-Warming矢通量分裂方法
利用Jacobian矩阵分裂方法可以构造分裂后的通量矢量,Steger和Warming经 过推导,给出了一维气体动力学方程组分裂后的具体表达式


F
U

2

a1 a1
a3
u

c
2 a3
1 a2
uc


2



1 2
a1
u

c2

1 2
a3
u

c
2
1 a2u 1 a2u2

w
其中
w

2
3
1
c2
a1 a3
ai

1 2
ai ai
a1
1u 2c2
2 2 1

f1


c

Ma

1
2

2
16
4.4 Roe格式
对于Euler方程,其数值解的难度主要是因为非线性引起的间断分解的复杂性, 而其中的关键又在于Jacobian矩阵的非线性。

计算流体力学第7章课件

计算流体力学第7章课件


w z

xy

yx



u y

v x

xz
zx



u z

w x

yz
zy



v z

w
y

7.2 Navier-Stokes方程组的几种通用形式
7.2.2 任意曲线坐标系下守恒型基本方程组 Q f g h 0
a3 u zx v zy w zz qz
xx

2
u x

2 3


u x

v y

w z

yy

2
v y

2 3


u x

v y

w z

zz
2Biblioteka w z2 3


u x

v y
ui x j

u j xi

2 3

uk xk
ij
7.2 Navier-Stokes方程组的几种通用形式
在笛卡尔直角坐标系下式守恒型微分形式又可以写为:
W f g h 0 t x y z
其中,
W , u, v, w, eT
第7章 三维粘性流动的有限体积解法
《计算流体力学:典型算法与算例》课程 (全书共235张幻灯片)
7.1有限体积法概述
有限体积法是将求解域划分成一系列控制体,对守恒型的控制方程进行 积分离散,获得相应的代数方程组进行求解的方法。

计算流体力学课件

计算流体力学课件
计算流体力学课件
• 引言 • 基本概念与原理 • 数值模拟方法 • 计算流体力学软件介绍 • 计算流体力学在工程中的应用 • 计算流体力学的未来发展与挑战
目录
Part
01
引言
流体力学的重要性
流体力学是物理学的一个重要分支,它研究流体(液体和气体)的运动规律、热力 学性质以及流体与其他物质的相互作用。
Part
04
计算流体力学软件介绍
Fluent软件介绍
1
商业化的计算流体动力学 软件
4
提供丰富的物理模型和材 料库,方便用户进行模拟 和分析
2
支持多种求解器和网格生
成技术
3
广泛应用于流体动力学模
拟、燃烧模拟等领域
CFX软件介绍
英国AEA公司开发的计算流体动 力学软件
提供丰富的物理模型和材料库, 方便用户进行模拟和分析
迭代法
通过迭代的方式求解离散 化的方程组,得到数值解 。
有限差分法
有限差分法的基本思想
将偏微分方程转化为差分方程,通过 求解差分方程得到数值解。
有限差分法的步骤
建立差分方程、求解差分方程、误差 估计等。
有限元法
有限元法的基本思想
将连续的物理量离散为有限个单元,通过求解每个单元的近似解得到整个问题 的数值解。
规模的流动模拟。
大涡模拟
总结词
大涡模拟是一种针对湍流中大尺度涡旋进行模拟的方法,通过过滤掉小尺度涡旋 的影响,降低计算量。
详细描述
大涡模拟只关注大尺度涡旋的运动规律,忽略小尺度涡旋的影响。这种方法能够 显著减少计算量,适用于较大尺度的流动模拟。然而,由于忽略了小尺度涡旋的 影响,大涡模拟的精度和适用范围有限。
水流模拟
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算流体力学课件完整版
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜ห้องสมุดไป่ตู้制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
相关文档
最新文档