九年级数学学科期末练习卷(2014年1月)

合集下载

版2014年学年度第一学期期末考试九年级数学试卷

版2014年学年度第一学期期末考试九年级数学试卷

2013~2014学年度第一学期期末抽测九年级数学试题本试卷分卷Ⅰ( 1至2页)和卷Ⅱ( 3至8页)两部分.全卷满分 120分,考试时间 90分钟. 卷Ⅰ一、选择题(本大题共有 8小题,每题 3分,共24分.请将正确选项前的字母代号填 写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.两圆的半径分别为 3和4,圆心距为 7,则这两圆的地点关系为A .订交B .内含C .内切D .外切2.如图,OA 、OB 是⊙O 的两条半径,且 OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为A .45°B .35°C .25°D .20°ABBOO EDCCA (第2题) (第3 题)3.如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为E ,假如AB =20,CD =16.那么线段OE 的长为A .4B .5C .6D .8 4.假如将抛物线yx 2 向上平移1个单位,那么所得抛物线对应的函数关系式是 22 A .yx1B .yx1C .y(x1)2D .y(x1)25.菱形拥有而矩形不必定拥有的性质是A .对角线相等B .对角线相互垂直C .对角线相互均分D .对角互补 6.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥.正圆锥侧面睁开图的圆心角是A .90°B .120°C .150°D .180°7.依据以下表格的对应值:xx 2 5x 3可得方程x 2 5x 3 0一个解x 的范围是A .0<x <B .<x <C .<x <D .<x <18.若对于x 的一元二次方程(a 1)x22x10有两个不相等的实数根,则A .a2B .a2且a1C .a2D .a2且a1二、填空题(本大题共有 8小题,每题3分,共24分.请将答案填写在第 3页相应的答题处,在卷Ⅰ上答题无效)29.化简: 2014▲.=10.使a2存心义的a 的取值范围为▲.211.化去根号内的分母:5▲.12.假如2是一元二次方程x 2 bx2 0 的一个根,那么常数b=▲.13.方程x 24x 0 的解是 ▲.14.某公司五月份的收益是 25万元,估计七月份的收益将达到36万元.设均匀月增加率为x ,依据题意,可列方程:▲ .15.如图,正六边形ABCDEF 中,若四边形ACDF 的面积是20cm2,则正六边形ABCDEF的面积为▲ cm 2.AFDFCBEECDAB(第15 题)(第16 题)16.如图,四边形ABCD 是菱形,∠A60°,AB 2,扇形BEF 的半径为 2,圆心角为60°,则图中暗影部分的面积是▲ .2013~2014学年度第一学期期末抽测九年级数学试题卷Ⅱ题号一二三总分合分人20~2122~232417~1925得分一、选择题答题栏(每题3分,共24分)题号12345678选项二、填空题答题处(每题3分,共24分)9.10.11.12.13.14.15.16.三、解答题(本大题共有9小题,共72分)17.(此题8分)(1)计算:12323;(2)解方程:x4x20.218.(此题7分)甲、乙两人进行射击训练,在同样条件下各射靶5次,成绩统计以下:命中环数/环78910甲命中的频数/次2201乙命中的频数/次1310(1)甲、乙两人射击成绩的极差、方差分别是多少?2)谁的射击成绩更加稳固?19.(此题7分)在一幅长8分米,宽6分米的矩形景色画(如图①)的周围镶宽度同样的金色纸边,制成一幅矩形挂图(如图②).若要使整个挂图的面积是80平方分米,则金色纸边的宽应为多少?图②①(第AD BC M N AD BC E20.(此题8分)已知:如图,在等腰梯形ABCD中∥、分别为、的中点,、,,F分别是BM、CM的中点.AM D求证:(1)△ABM≌△DCM;(2)四边形MENF是菱形.E FB N C(第20题)21.(此题8分)为了说明各样三角形之间的关系,小明画了以下构造图:三角形等腰三角形直角三角形等边三角形(第21题)请你采纳近似的方式说明下述几个观点之间的关系:正方形、四边形、梯形、菱形、平行四边形、矩形.22.(此题8分)实践操作:如图,△ABC是直角三角形,ABC 90,利用直尺和圆规按以下要求作图,并在图中注明相应的字母(保存印迹,不写作法).A(1)作∠BCA的均分线,交AB于点O;(2)以O为圆心,OB为半径作圆.综合运用:在你所作的图中,(1)AC与⊙O的地点关系是(直接写出答案);(2)若BC=6,AB=8,求⊙O的半径.B C(第22题)24与直线y 2x1的一个交点的横坐标为2.23.(此题8分)已知抛物线y 1a(x1)(1)求a 的值;(2)请在所给坐标系中,画出函数y 1a(x 1)2 4与y 2x 1的图象,并依据图象,直接写出y1≥y2时x 的取值范围.24.(此题8分)某商场购进一批单价为 100元的商品,在商场试销发现:每日销售量 y(件)与销售单价 x(元/件)之间知足以下图的函数关系:1)求y 与x 之间的函数关系式;2)写出每日的收益w 与销售单价x 之间的函数关系式;售价定为多少时,才能使每日的收益 w 最大?每日的最大收益是多少?(第23题)y(件)30O130 150(元/件)x(第24题)25.(此题10分)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”,此中BC .(1)在图1所示的“准等腰梯形”ABCD 中,选择一个适合的极点引一条直线将四边形ABCD 切割成一个等腰梯形和一个三角形或切割成一个等腰三角形和一个梯形 (画出一种表示图即可);(2)如图2,在“准等腰梯形”ABCD 中,B C ,E 为边BC 上一点,若AB ∥DE ,ABBEAE ∥DC ,求证:DCEC ;(3)如图3,在由不平行于BC 的直线截△PBC 所得的四边形ABCD 中,∠BAD 与∠ ADC 的均分线交于点E ,若EBEC ,则四边形ABCD 能否为“准等腰梯形”?请说明原因.图1 图2 图3(第25题)。

2014年1月九年级数学期末试卷

2014年1月九年级数学期末试卷

2014年1月九年级数学期末试卷2013学年第一学期学业水平调研测试九年级数学试卷注意:1.考试时间为120分钟.满分150分.2.试卷分为第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分.3.可以使用规定型号的计算器.4.所有试题答案必须写在答题卷相应的位置上,否则不给分.第Ⅰ卷选择题(共30分)一、选择题(本题共有10小题,每小题3分,共30分)1.二次根式2x+6在实数范围内有意义,则x的取值范围是()A.x≥3B.x≥-3C.x≤3D.x≤-32.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列根式中,不是最简二次根式的是()A.2B.6C.8D.104.若x1、x2是一元二次方程x2-5x+6=0的两个根,则x1+x2+x1x2的值是()A.1B.11C.-11D.-15.已知长度为2cm,3cm,4cm,5cm的四条线段,从中任取一条线段,与4cm及6cm两条线段能组成等腰三角形的概率是()A.14B.12C.34D.136.用配方法解方程x2-2x-5=0时,原方程可变形为()A.(x+1)2=6B.C.(x+2)2=9D.(x-1)2=67.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12B.9C.4D.38.如图1所示,⊙O1、⊙O2的圆心O1、O2在直线l上,⊙O1的半径为2,⊙O2的半径为3,O1O2=8。

以每秒1个单位的速度沿直线l向右平移运动,7秒后停止运动,此时与的位置关系是()A.外切B.相交C.内切D.内含图1图29.如图2所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则圆锥的侧面积是()A.4πcm2B.6πcm2C.9πcm2D.12πcm210.抛物线y=ax2+bx+c(a>0)和直线y=(m≠0)相交于两点P(-1,2)、Q(3,5),则不等式-ax2+mx+n>bx+c的解集是()A.x3C.-1-1或x>3第Ⅱ卷非选择题(共120分)二、填空题(本题共有6小题,每小题3分,共18分)11.已知|a+1|+8-b=0,则a-b=。

2014学年第一学期期末试题卷(九年级数学)

2014学年第一学期期末试题卷(九年级数学)

2014学年第一学期九年级数学期末试卷同学们请注意:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间120分钟.2.试题卷中所有试题的答案书写在答题卷的相应位置,写在试题卷上无效. 一.选择题 (每小题3分,共30分)1.抛物线y =2 (x +1)2 -3的顶点坐标是( ▲ )A .(1,-3)B .(-1,-3)C .(-1, 3)D .(1,3) 2.将抛物线22x y =向左平移2个单位后,得到的抛物线是( ▲ )A .222+=x yB .()222+=x y C .()222-=x y D .222-=x y3.下列事件是必然事件的是( ▲ )A .通常加热到100℃水沸腾B .抛一枚硬币,正面朝上C .明天会下雨D .经过城市中某一交通信号灯的路中,恰好遇到红灯 4.已知一商场自动扶梯的长l 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则sin θ的值等于( ▲ ) A .43 B .34 C .53 D .545.已知1,3两数,则它们的比例中项是( ▲ )A .2B .±2C .3D .3± 6.如图,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E , 若AC =8,BC =6,DE =3,则AD 的长为( ▲ ) A . 3 B .4 C .5 D .6 7.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠C 等于( ▲ )A .30°B .32°C .38°D .58°8.将图1围成图2的正方体,则图1中的“★”标志所在的正方形是正方体中的( ▲ ) A .面CDHE B .面BCEF C .面ABFG D .面ADHGB图1 图2H GF★EDBAC ED CBAθlh9.在一个不透明盒子里装有5个乒乓球,分别写有数字-2,-1,0,1,2,从中随机摸出一个,将该球上数字记为x ,则点P (x ,x 2)落在抛物线522++-=x x y 与x 轴所围成区域(不含边界)的概率是( ▲ ) A .51 B .52 C .53 D .5410.将半径为4cm 的半圆围成一个圆锥,在圆锥中内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是( ▲ )A . 1B .22 C .2 D .3二.填空题(本题有6小题,每小题4分,共24分)11.从1~9这九个自然数中任取一个,是2的倍数的概率是 . 12.如图,在△ABC 中,D ,E 分别在边AB ,AC 上,且DE //BC ,若AD ∶DB =1∶2,则S △ADE ∶S △ABC = .13.如图,边长为6的正△ABC ,点O 在△ABC 内部,且OA =3, 若⊙O 过点B ,C ,则的半径为 .14.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米, 母线AB 与底面半径OB 的夹角为α,tan α=34,则圆锥的底面积是 平方米.15.已知函数162+-=x mx y (m 是常数)的图像与x 轴只有一个交点,则m 的值为 .16.已知点P (2,a ),⊙P 与y 轴相切,直线y =x 被⊙P 截得的弦AB =23,则a = . 三.解答题(本题有8小题,共66分,请务必写出解答过程) 17.( 6分)计算:sin30°+cos60°-tan45°.BEDCA18.( 6分)左下图是由五个相同的小立方块搭成的几何体,请画出这个几何体的三视图.正面19.( 6分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC 为10m ,测角仪的高度CD 为1.5m ,测得树顶A 的仰角为33°,求树的高度AB . (参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)20.( 8分)如图,在正方形ABCD 中,点E ,F 分别在边CD ,DA 上,且CE =DF ,AE 交 BF 于点M . (1)证明:△ABF ≌△DAE ;(2)在图中找出一个与△ABM 相似的三角形,并予以证明.21.( 8分)某班毕业联欢会设计了即兴表演节目的摸球游戏.游戏采用一个不透明的盒子,里面装有五个分别标有数学1,2,3,4,5的乒乓球,全班共50名同学,每人从中随机地一次摸索出两个球(每位同学必须且只能摸一次),若两个球上的数字之和为偶数,就给大家即兴表演一个节目,否则,下一个同学接着做摸球游戏,依次进行. (1)用列表法或树状图法求某位同学即兴表演的概率; (2)估计本次联欢会上有多少名同学即兴表演节目?D CMF E D C B A22.( 8分)在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点P . (1)若AB =2,∠C =40°,求弧AP 的长;(2)若作PD ⊥AC 于D ,求证PD 是⊙O 的切线.23.( 12分)如图,∠A =∠D =90°,CD 平分∠ACB ,AB 与CD 相交于点E . (1)证明:BD 2=DC ²DE ;(2)当21AB AC 时,①证明:BD =CE ;②求tan ∠DBE 的值.24.( 12分)已知关于x 的二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于A ,B 两点.与直线y =1交于C ,D 两点,且点A (1,0),C (0,1). (1)c = ; (2)求a 的取值范围;(3)设A ,B ,C ,D 四点构成的四边形的对角线相交于点P ,记△PCD 的面积为S 1,△P AB 的面积为S 2,求 S 1-S 2为的值(可以用a 表示).2014学年第一学期九年级数学参考答案及评分标准B E DB AC一.选择题(本大题共有10小题,每小题3分,共30分) 二.填空题(本题有6小题,每小题4分,共24分)11.94 12.9113.21 14.36π 15.m =0或m =9 16.22±三.解答题(本题有8小题,共66分)17.sin30°+cos60°-tan45°=012121=-+ ----------------- 6分18.---------------- 6分19.作DE ⊥AB 于E ,在ADE 中,DE=BC=10,∴AE=DE ²tan ∠ADE=10³tan33°=10³0.65=6.5, --- 4分∴AB=AE+BE=AE+CD=6.5+1.5=8(m ),答:树的高度AB 约为8m . ------ --- 2分 20.(1)∵CE=DF ,∴DE=AF ,又AB=AC ,∠BAF=∠D=90°,∴△ABF ≌△DAE ; ----------- 4分(2)△FBA 与△ABM 相似.∵AB//DC ,∴∠2=∠1, 由△ABF ≌△DAE 得∠3=∠1, ∴∠2=∠3,∴△FBA ∽△ABM . ----------- 4分21.从表中可以看出,一次游戏共有20种等可能结果,其中两数和为偶数的共有8种.D321F E M DC B A将参加联欢会的某位心理学即兴表演节目记为事件A ,∴P (A )=52208=; ----------- 5分 (2)∵205250=⨯(人), ----------- 3分 ∴估计本次联欢会是有20位同学即兴表演节目. 22.(1)连结OP ,∠AOP=2∠B=2∠C=80°,∴弧AP 的长=πππ94180180180=⨯=r n . ----------- 3分 (2)法一:∵AB=AC ,∴∠BAC=180°-2∠C=100°, ∴∠BAC+∠AOP=180°, ∴OP//AC ,又PD ⊥AC ,∴PD ⊥OP ,即PD 是⊙O 的切线. ----------- 5分 法二:连结AP , 由AB 是直径,得AP ⊥BC ,又∵AB=AC ,∴P 是BC 中点, ∴OP//AC 又PD ⊥AC ,∴PD ⊥OP ,即PD 是⊙O 的切线. 23.(1)∵CD 平分∠ACB ,∴∠1=∠2,又∵∠1+∠2+∠3=∠1+∠4+∠3=90°,∴∠1=∠4, ----------- 2分 ∴△BDC ∽△EDB ,∴BD ∶ED=DC ∶DB ,即BD 2=DC ²DE .----------- 2分 (2)①分别延长CA ,BD ,交于点F ,∵∠4=∠1=∠2,∠BAF=CAE=90°,∴△BAF ∽△CAE , ----------- 2分 ∴BF ∶CE=AB ∶AC=2∶1, 又∵∠1=∠2,CD ⊥BF ,CB4321FEDBAC∴BD=DF ,∴BD=CE ; ----------- 2分 ②法一:∵BD 2=DC ²DE=(DE+CE )²DE=(DE+BD )²DE∴ DE 2+ BD ²DE- BD 2=0, ----------- 2分∴ 215012-=⇒=-+⎪⎭⎫ ⎝⎛BD DE BD DE BD DE (负值舍去), ∴tan ∠DBE=215-=BD DE. ----------- 2分 法二:设AC=k ,则AB=2k ,∴FC=BC=k 5, ----------- 2分 ∴AF=FC-AC=()k k k 155-=-,∴tan ∠DBE=()215215-=-=kkABAF。

2014届九年级上学期期末考试数学试题(带答案)

2014届九年级上学期期末考试数学试题(带答案)

2014届九年级上学期期末考试数学试题(带答案)天津市五区县2014届九年级(上)期末数学试卷一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将每小题的答案填在下表中.1.化简的值是()A.﹣3B.3C.±3D.92.下列运算正确的是()3.下列图案中,既是轴对称图形又是中心对称图形的是()4.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对5.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月6.若m为不等于零的实数,则关于x的方程x2+mx﹣m2=0的根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.有两个实数根D.无实数根7.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球8.如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A.是正方形B.是长方形C.是菱形D.以上答案都不对9.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°10.已知⊙O的直径AB与弦AC的夹角为30°,过点C的切线PC与AB 的延长线交于P.PC=5,则⊙O的半径为()A.B.C.5D.10二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上.11.式子中x的取值范围是_________.12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是_________.13.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于_________.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b=_________.15.在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,5这5个数字.小芳从袋中任意摸出一个小球,球面数字的平方根是无理数的概率是_________.16.一只蚂蚁在如图所示的树枝上寻觅食物,蚂蚁从点A出发,在每个岔路口都会随机地选择一条路径,则它获得食物的概率是_________.17.如图,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,以边AC所在的直线为轴旋转一周得到一个圆锥,则这个圆锥的面积是_________cm2.18.在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是_________cm.三、解答题:本大题共8小题,共66分.解答应写出文字说明,演算步骤或证明过程.19.(8分)计算(1)﹣×(2)(6﹣2x)÷3.20.(8分)解下列方程:(1)x2﹣4x﹣7=0(2)(2x﹣1)2=(3﹣x)2.21.(8分)如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC 逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.22.(8分)袋中有大小相同的红球和白球共5个,任意摸出一红球的概率是.求:(1)袋中红球、白球各有几个?(2)任意摸出两个球(不放回)均为红球的概率是多少?23.(8分)如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.求证:CD是⊙O的切线.24.(8分)某商场销售一批名牌服装,平均每天可售出20件,每件盈利40元,为了增加盈利,商场决定采取适当的降价措施,经调查发现.如果每件服装每降低1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,问每件服装应降价多少元?25.(8分)从一副扑克牌中取出两组牌,分别是黑桃2、3、4、5和方块2、3、4、5,再分别将它们洗牌,然后从两组牌中各任意抽取一张.请用画树状图或列表的方法求抽出的两张牌的牌面数字之和等于6的概率是多少?26.(10分)(2004•南京)如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形;(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.天津市五区县2013~2014学年度第一学期期末考试九年级数学试卷参考答案一、选择题(每小题3分,共30分)题号12345678910答案BBCACBBCDA二、填空题(每小题3分,共24分)11.且≠1;12.十;13.2;14.-1;15.;16.;17.;18.48.三、解答题19.计算(每小题4分,共8分)(1)原式=……………1分=……………2分=3-2……………3分=1……………4分(2)原式==……………1分=……………2分=……………3分==……………4分20.解下列方程.(每小题4分,共8分)解:(1)……………1分………………2分……………3分,……………4分(2)解:……………1分……………2分……………3分,……………4分21.(8分)解:(1)旋转中心为点A.∵∠B=10°,∠ACB=20°∴∠BAC=180°-10°-20°=150°……………2分∵△ABC与△ADE重合∴∠BAC为旋转角,即旋转角为150°……………4分(2)∵△ABC与△ADE重合∴∠EAD=∠BAC=150°,AE=AC,AB=AD∴∠BAE=360°-∠EAD-∠BAC=60°……………6分又∵C为AD的中点,AB=4∴∴AE=AC=2……………8分∴∠BAE为60°,AE的长为2.22.(本题8分)解:(1)……………2分5-2=3……………4分(2)……………8分答:袋中有红球为2个,白球为3个;任意摸出两个球均为红球的概率是.23.(本题8分)证明:连接OC……………1分∵AB是⊙O的直径∴∠ACB=90°……………2分∴∠A+∠ABC=90°……………3分又∵OB=OC∴∠OBC=∠OCB……………4分又∵∠DCB=∠A∴∠A+∠ABC=∠DCB+∠OCB=90°……………6分∴OC⊥DC∴CD是⊙O的切线……………8分24.(本题8分)解:设每件服装应降价元根据题意可得:……………4分整理得:……………5分解得,……………7分根据实际应取x=10……………8分答:每件服装应降价10元.25.(本题8分)解:由列表得如下结果第二次第一次23452(2,2)(2,3)(2,4)(2,5)3(3,2)(3,3)(3,4)(3,5)4(4,2)(4,3)(4,4)(4,5)5(5,2)(5,3)(5,4)(5,5)由画树状图得如下结果和为4,5,6,7,5,6,7,8,6,7,8,9,7,8,9,10.从列表或树状图可以看出,所有出现的结果相同,共有16种,其中和为6的有3种.所以,……………8分26.(本题10分)解:(1)根据题意可得……………1分解得:所以,当时,四边形APQD为矩形.……………2分(2)①当⊙P与⊙R上下外切时有PQ⊥AB,即四边形APQD为矩形∴此时,由(1)得t=4(s)……………3分②当⊙P在BC上时,不相切.③当⊙P与⊙Q都在CD上时,,(Ⅰ)经过ts,⊙P与⊙Q相切,则有……………5分解得:故经过,⊙P与⊙Q在CD上外切,且⊙P在⊙Q的右侧. ……………6分(Ⅱ)经过ts,⊙P与⊙Q相切,则有,……………8分解得:.故经过,⊙P与⊙Q在CD上外切,且⊙P在⊙Q的左侧. ……………9分所以,当为或或时,⊙P与⊙Q外切.……10分。

九年级数学期末考试卷20141

九年级数学期末考试卷20141

九年级数学期末考试卷2014.1一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项选出来.)1.|﹣2|的值等于()A.2 B.﹣2 C.±2D.2.函数y=+3中自变量x的取值范围是()A.x>1 B.x≥1C.x≤1 D.x≠13.方程的解为()A. x=2 B. x= -2 C. x=3 D.x= -34.下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy65.在半径为1的⊙O中,120°的圆心角所对的弧长是()A.3πB.23πC.π D.32π6.如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4 B.3 C.2 D.17.如图,点A、B、C在圆O上,∠A BO=32°,∠A CO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°8.下列说法正确的是()A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差2S甲=0.1,2S乙=0.2,则甲组数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件9.定义:(,)(,)f a b b a=,(,)(,)g m n m n=--,例如(2,3)(3,2)f=,(1,4)(1,4)g--=,则((5,6))g f-等于()A.(6,5)-B.(5,6)--C.(6,5)-D.(5,6)-10.如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0. 下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或 .其中正确的是 ( )A. ①②B.①④C.②③D.③④21-22(第10题)(第7题)(第15题)二、填空题(本大题共8小题,每空 2分,共16分. 不需写出解答过程,只需把答案直接填写在相应的位置.....) 11.﹣3的相反数是 .12.分解因式:2x 2﹣4x= .13.第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为 .14..若正比例函数y=kx (k 为常数,且k ≠0)的函数值y 随着x 的增大而减小,则k 的值可以是 .(写出一个即可)15.如图,在梯形ABCD 中,AD//BC , ∠B=70°,∠C=40°,DE//AB 交BC 于点E .若AD=3 cm ,BC=10 cm ,则CD 的长是 cm.16.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A ′B ′C ′D ′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .17. 设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是 .(填写所有正确结论的序号)①[0)=0 ②[x )-x 的最小值是0 ③[x )-x 的最大值是0 ④存在实数x ,使[x )-x =0.5成立. 18.如图,已知线段AB=10,AC=BD=2,点P 是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是_____ .三、解答题(本大题共10小题,共计84分.解答时应写出文字说明、证明过程或演算步骤)19.(本题满分4分)计算:20.(本题满分 14分)解方程:① ②③ 先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值.2410x x +-=|4|2145cos 2)3(10--⎪⎭⎫⎝⎛+---οπ(第16题)(第18题)A D CB E O21.(本题满分6分)如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:BD=EC ;(2)若∠E =50°,求∠BAO 的大小.22.(本题满分6分)为迎接中招体育加试,需进一步了解九年级学生的身体素质,体育老师随机抽取九年级一个班共50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下图所示:请根据图表信息完成下列问题: (1)直接写出表中a 的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该班学生进行一分钟跳绳不合格的概率是多少?23.(本题满分6分)现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为. (1)求乙盒中红球的个数;(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.24.(本题满分8分)如图1,某超市从一楼到二楼的电梯AB 的长为16.50米,坡角∠BAC组别 次数 频数(人数)第1组 80≤x <100 6 第2组 100≤x <120 8 第3组 120≤x <140 12 第4组 140≤x <160 a 第5组 160≤x <1806为32°.(1)求一楼与二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米?(精确到0.01米)(备用数据:sin32°=0.5299,con32°=0.8480,tan32°=0.6249。

2014年初三数学上册期末检测试题(含答案)

2014年初三数学上册期末检测试题(含答案)

2014年初三数学上册期末检测试题(含答案)期末检测题本检测题满分:120分,时间:90分钟一、选择题(每小题3分,共36分) 1. 已知二次函数y=2(x�3 )2+1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=�3;③其图象顶点坐标为(3,�1);④当x<3时,y随x的增大而减小.则其中说法正确的有() A.1个B.2个C.3个D.4个 2.对于函数,使得随的增大而增大的的取值范围是() A. B.C. D. 3.如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是() A. B.且 C. D.且 4.定义:如果关于x的一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. B. C. D. 5.如图所示,将正方形图案绕中心旋转180°后,得到的图案是()6. “a是实数,|a|≥0”这一事件是() A.必然事件 B.不确定事件 C.不可能事件 D.随机事件 7. 随机掷两枚硬币,落地后全部正面朝上的概率是() A. B. C. D. 8.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个 B.不足3个 C.4个 D.5个或5个以上 9.在△ 中,∠ °,,以为圆心作和相切,则的半径长为() A.8 B.4 C.9.6 D.4.8 10. 如图所示,⊙O1,⊙O2的圆心O1,O2在直线l上,⊙O1的半径为2 cm,⊙O2的半径为3 cm,O1O2= 8 cm.⊙O1以1 cm/s的速度沿直线l向右运动,7 s后停止运动.在此过程中,⊙O1与⊙O2没有出现的位置关系是( ) A.外切 B.相交 C.内切 D.内含 11.如图所示,为的内接三角形,则的内接正方形的面积为() A.2 B.4 C.8 D.16 12.如图所示,已知扇形的半径为,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为() A. B. C. D.二、填空题(每小题3分,共24分) 13. (苏州中考)已知点A(x1,y1)、B(x2,y2)在二次函数y=( x 1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“=”或“<”). 14.如果,那么的数量关系是________. 15.已知点关于原点对称的点在第一象限,那么的取值范围是________. 16.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为(偶数),指针指向标有奇数所在区域的概率为(奇数),则(偶数)_______ (奇数)(填“ ”“ ”或“ ”).17.已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________. 18.如图所示,内接于 , ,,则 ______. 19.如图所示,小方格都是边长为1的正方形,则以格点为圆心,半径为1和 2的两种弧围成的“叶状”阴影图案的面积为 . 20.如图所示,已知在中,,,分别以,为直径作半圆,面积分别记为,,则 + 的值等于__________. 三、解答题(共60分) 21.(8分)把抛物线向左平移2个单位,同时向下平移1个单位后,恰好与抛物线重合.请求出的值,并画出函数的示意图. 22.(8分)如图所示,正方形中,点在边上,点在边的延长线上. (1)若△ 按顺时针方向旋转后恰好与△ 重合,则旋转中心是点________ ,最少旋转了_______度;(2)在(1)的条件下,若求四边形的面积. 23.(8分)已知关于的方程的一个根是另一个根的2倍,求的值. 24.(8分)(2012•武汉模拟)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量年为万只,预计年将达到万只.求该地区年到年高效节能灯年销售量的平均增长率. 25.(8分)(2012•武汉中考)如图所示,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系. (1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h= 9)2+8(0≤t≤40 ),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明在这一时段内,需多少小时禁止船只通行? 26.(10分)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A.与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB. (1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC,AD,BC之间的数量关系,并说明理由; 27.(10分) 某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其他均相同)打乱顺序重新排列,从中任意抽取1张卡片. (1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率. (2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由. (3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的. 期末检测题参考答案 1.A 解析:①∵ 2>0,∴ 图象的开口向上,故①错误;②图象的对称轴为直线 =3,故②错误;③其图象顶点坐标为(3,1),故③错误;④当<3时,随的增大而减小,故④正确. 综上所述,说法正确的有1个. 2.D 解析:由于函数图象开口向下,所以在对称轴左侧随的增大而增大,由对称轴为直线,知的取值范围是 . 3.B 解析:依题意得, 解得且 .故选B. 4.A 解析:依题意得, 代入得 , ∴ ,∴ .故选A. 5.D 解析:图中的两个阴影三角形关于中心对称;阴影圆绕中心旋转180°后,位置在右下角,所以选D. 6.A 解析:因为任何一个实数的绝对值都是一个非负数,所以a是实数,|a|≥0是必然事件. 7. D 解析:随机掷两枚硬币,有四种可能:(正,正),(正,反),(反,正),(反,反),落地后全部正面朝上的情况只有(正,正),所以落地后全部正面朝上的概率是 . 8.D 解析:当袋中只有红、白两种颜色的球时,若随机取一个球,可能性大的数量就多,故白球的个数大于4个.故选D. 9.D 解析:在△ 中,∠ °,,所以过点则的半径长为 . 10.D 解析:∵ O1O2=8 cm,⊙O1以1 cm/s的速度沿直线l向右运动,7 s后停止运动,∴ 7 s后两圆的圆心距为1 cm,两圆的半径的差为3-2=1(cm),∴此时两圆内切,∴ 移动过程中没有内含这种位置关系,故选D. 11.A 解析:过点因为所以的直径为,所以的内接正方形的边长为 12.D 解析: . 13. >解析:∵ a=1>0,对称轴为直线x=1,∴ 当x>1时,y随x的增大而增大.故由x1>x2>1可得y1>y2. 14. 解析:原方程可化为,∴ . 15. 解析:点关于原点对称的点的坐标为,且在第一象限,所以所以 . 16. 解析:因为,,所以 . 17. 解析:从长度为的四条线段中任取三条有四种情况: .其中不能组成三角形,所以从中任取三条线段能组成三角形的概率是 . 18. 解析:,所以∠ ∠ =60°. 19.2π 4 解析:如图所示,连接AB,则根据轴对称和旋转对称的性质,从图中可知:阴影图案的面积=2(S扇形AOB-S△ABO) = 2 ×2×2 20. 解析:由勾股定理知所以 + = ππ21.解:将整理得 . 因为抛物线向左平移2个单位,再向下平移1个单位得,所以将向右平移2个单位,再向上平移1个单位即得,函数示意图如图所示. 22.解:(1);90. (2)∵ △ 旋转后恰好与△ 重合,∴ △ ≌△ ∴ 又∴ ∴ 23.解:设方程的两根分别为,,且不妨设 . 则由一元二次方程根与系数的关系可得代入 ,得∴ 24.解:设该地区年到年高效节能灯年销售量的平均增长率为 . 依据题意,列出方程化简整理,得解这个方程,得∴ . ∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴ 舍去,∴ . 答:该地区年到年高效节能灯年销售量的平均增长率为 25. 分析:(1)设抛物线的表达式为y=ax2+b(a≠0),将(0,11)和(8,8)代入即可求出a,b; (2)令h=6,解方程(t 19)2+8=6得t1,t2,所以当h≥6时,禁止船只通行的时间为|t2-t1|. 解:(1)依题意可得顶点C的坐标为(0,11),设抛物线表达式为y=ax2+11. 由抛物线的对称性可得B(8,8), ∴ 8=64a+11,解得a= ,抛物线表达式为y= x2+11. (2)画出h= (t-19)2+8(0≤t≤40)的图象如图所示. 当水面到顶点C的距离不大于5米时,h≥6,当h=6时,解得t1=3,t2=35. 由图象的变化趋势得,禁止船只通行的时间为|t2-t1|=32(小时). 答:禁止船只通行的时间为32小时. 点拨:(2)中求出符合题意的h的取值范围是解题的关键,本题考查了二次函数在实际问题中的应用. 26.解:( 1)所在直线与小圆相切.理由如下:如图,过圆心作,垂足为点. ∵ 是小圆的切线,经过圆心,∴ . 又∵ 平分, ∴ . ∴ 所在直线是小圆的切线. (2)AC+AD=BC.理由如下:如图,连接.∵ 切小圆于点,切小圆于点,∴ . ∵ 在与中,,∴ ,∴ . ∵ ,∴ . 27.分析:本题考查了概率的求法和游戏的公平性. (1)根据概率的计算公式计算即可;(2)可通过举反例判断游戏是否公平;(3)要想公平地选出10位学生参加某项活动,即设计的规定要使每一位学生被选到的概率相同. 解:(1)设取到的卡片上序号是20的倍数或能整除20为事件A,在序号中,是20的倍数或者能整除20的数有7个,则P(A)= . (2)不公平. 无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为P=1, 而很明显其他序号的学生被抽中的概率不为1. (3)将学生按序号每5人一组进行分组,如第一组序号为1~5,第二组序号为6~10等,共分成10组. 再从编有学生序号的打乱的卡片中任意抽取1张卡片,取到的卡片上的序号是k(k是50张卡片中的任意一张的序号),看此序号在分组的第几位,如抽中6,则在分组的第一位,则每一组的第一位同学参加活动.如此规定,能公平抽出10位学生参加活动. 点拨:(1)概率的计算公式为:P(E)=;(2)“规定”的公平性问题经常和概率结合在一起考查,通常通过比较各个成员被选中的概率是否相等来确定“规定”是否公平.。

2014年人教版九年级(上册)数学期末考试卷(含答案)

2014年人教版九年级(上册)数学期末考试卷(含答案)

九年级上册期末考试数学模拟试卷1一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D2、下列方程是一元二次方程的是( )A 、20ax bx c ++=B 、2221x x x +=-C 、(1)(3)0x x --=D 、212x x -=3、用配方法解一元二次方程2x +8x+7=0,则方程可变形为( )A 、 2(4)x -=9B 、2(4)x +=9C 、2(8)x -=16D 、2(8)x +=574、抛物线223y x =-的顶点在( )A 、第一象限B 、 第二象限C 、 x 轴上D 、 y 轴上 5、一元二次方程0332=+-x x 的根的情况是 ( ).A 、有两个相等的实数根B 、有两个不相等的实数根C 、只有一个相等的实数根D 、没有实数根6、把抛物线2y x =-向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为( )A 、2(1)3y x =--+B 、2(1)3y x =-+C 、2(1)3y x =-++D 、2(1)3y x =++7.圆心在原点O ,半径为5的⊙O 。

点P (-3,4)与⊙O 的位置关系是( ).A. 在OO 内B. 在OO 上C. 在OO 外D. 不能确定 8.下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 9.一元二次方程x 2﹣x ﹣2=0的解是( )A 、x 1=1,x 2=2B 、x 1=1,x 2=﹣2C 、x 1=﹣1,x 2=﹣2D 、x 1=﹣1,x 2=210.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率。

设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A 、 100)1(1442=-xB 、 144)1(1002=-xC 、100)1(1442=+xD 、 144)1(1002=+x二、填空题11.一元二次方程22(1)3x x --=+化成一般形式20ax bx c ++=后,若a=2 ,则b+c 的值是 12.抛物线y =2(x+1)2-3,的顶点坐标为__ ___。

2014—度第一学期海口市九年级数学科期末检测题

2014—度第一学期海口市九年级数学科期末检测题

2014—2015学年度第一学期海口市九年级数学科期末检测题时间:100分钟 满分:120分 得分:一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.计算2)4(-的结果是A .16B . 4C . 2D . -42. 当x =2-1时,代数式x 2-1的值是A .1B .2C .2-22D .22-2 3.下列根式中, 与23是同类二次根式的是A . 6B . 18C . 30D .344. 若二次根式62-x 在实数范围内有意义,则x 的取值范围是A .x ≤3B .x >3C .x >-3D .x ≥3 5.方程4x 2=8x 的解是A . x =2B . x =0C . x 1=0,x 2=2D . x 1=-2,x 2=2 6.将一元二次方程x 2-4x +3=0化成(x+m )2=n 的形式,则n 等于 A .-3 B .1 C .4 D .7 7.用20cm 长的铁丝,折成一个面积为24cm 2的矩形,则矩形的宽为A .8cmB .6cmC .5cmD .4cm8.关于x 的一元二次方程x 2+bx+c =0的两个实数根分别为 -2和3,则A .b =1,c =-6B .b =-1,c =-6C .b =5,c =-6D .b =-1,c =6 9. 如图1,在△ABC 中,∠A =90°,AB =3,BC =5,则cos B 等于A .53B .54C .34D .4310.如图2,AB 、CD 相交于点O ,AD ∥CB ,若AO =2,BO =3,CD =6,则CO 等于A .2.4B .3C .3.6D .411. 如图3,在△ABC 中,DE ∥BC ,EF ∥AB .若AD =2BD ,则CF :BF 的值为A .1:2B .1:3C .1:4D .2:312.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是A .61B .51C .52D .5313. 如图4,某地入口处原有三级台阶,每级台阶高为20cm ,深为30c m ,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡的坡度i =1:5,则AC 的长度是A . 200cmB . 210 cmC . 240 cmD . 300 cm14.直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3 的距离为3.把一块含有45°角的直角三角板如图5放置,顶点A 、B 、C 恰好分别落在三条直线上,AC 与直线l 2交于点D ,则线段BD 的长度为图5A DBl 1l 2 l 3C30 20B图4A ABC图1A BDC图2OABDC图3E FA .425 B .325 C .320 D .415 二、填空题(每小题4分,共16分) 15. 当x 时,2)1(-x =1-x .16.若关于x 的方程x 2-kx+9=0(k 为常数)有两个相等的实数根,则k = . 17.如图6,在△ABC 中,∠BAC =90°,∠B =60°,AD ⊥BC 于点D ,则△ABD 与△ADC的面积比为 .18.如图7,在边长为2的正方形ABCD 中,对角线AC 、BD 交于点O ,E 是BC 的中点,DE 交AC 于点F ,则EF 的长为_______. 三、解答题(共62分)19.计算(第(1)、(2)小题每题4分,第(3)小题5分,共13分)(1)2726⨯ ; (2)2025545+-;(3) (1-cos30°)2+︒60tan 1.BADC 图7E FO图6BAD C20. (8分) 某果园2011年水果产量为100吨,2013年水果产量为144吨,求这两年该果园水果产量的年平均增长率.21.(8分)如图8,管中放置着三根同样的绳子AA1、BB1、CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,请用列表或画树状图的方法,求这三根绳子能连结成一根长绳的概率.图8B1 A1 122.(9分)某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.在活动中,某小组为了测量校园内①号楼AB的高度(如图9),站在②号楼的C处,测得①号楼顶部A的仰角α=30°,底部B的俯角β=45°.已知两幢楼的水平距离BD为18米,求①号楼AB的高度.(结果保留根号)图923.(11分)如图10,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,3).(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1点的坐标及sin∠B1A1C1的值;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标;(3)若点D(a,b)在线段AB上,直接写出经过(2)的变化后点D的对应点D2的坐标.24.(13分)如图11.1,DC ∥AB ,∠D =90°,AC ⊥BC ,AB =10cm ,BC =6cm . 点P 以1cm /s的速度从点A 出发,沿AB 方向向点B 运动,同时点Q 以2cm /s 的速度从点B 出发,沿B →C →A 方向向点A 运动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t (s ).(1)① 求证:△ACD ∽△BAC ;② 求DC 的长;(2)当点Q 在边BC 上运动,求t 为何值时,△PBQ 的面积为564cm 2; (3)如图11.2,当点Q 在边CA 上运动,求t 为何值时,PQ ∥BC .图11.1图11.22014—2015学年度第一学期海口市九年级数学科期末检测题参考答案及评分标准一、BCDDC BDBAC ADCA二、15.≤1 16. ±6 17.1:3 18. 35三、19.(1)原式=2726⨯…(2分) (2)原式=5453+- …(3分) =32…(4分) =533+ …(4分) (3)原式=(1-23)2+31…(2分) =334331++- …(4分) =33247- …(5分) 20.设这两年该果园水果产量的年平均增长率为x , …(1分)根据题意,得 100(1+x )2=144. …(5分) 解这个方程,得x 1=0.2 ,x 2=-2.2. …(7分) 经检验x 2=-2.2不符合题意,舍去.答:这两年该果园水果产量的年平均增长率为20%. …(8分)21.(1)恰好选中绳子AA 1的概率是31; …(4分)(2)分别在两端随机任选两个绳头打结,总共有三类9种情况,列表如下,每种发生的可能性相等.能连结成为一根长绳的情况有6种(表中阴影部分): ① 左端连AB ,右端连B 1C 1或A 1C 1; ② 左端连BC ,右端连A 1B 1或A 1C 1; ③ 左端连AB ,右端连A 1B 1或B 1C 1.所以这三根绳子能连结成一根长绳的概率P =3296 …(8分)22. ∵ AB ⊥BD ,CD ⊥BD ,CE ⊥AB ,∴ 四边形CDBE 是矩形, ∴ CE =BD =18. 在Rt △BEC 中,∠ECB =45°,∴ EB =CE =18.…(4分)在Rt △AEC 中, ∵ tan ∠ACE =CEAE, ∴ AE =CE •tan ∠ACE =18×tan30°=63, ∴ AB =AE +EB =18+63.答:①号楼AB 的高为(18+63)米. …(9分)23.(1)如图2,△A 1B 1C 1,即为所求,2分)A 1(2,1),3分)sin ∠B 1A 1C 1= sin45°=22; 5分) (2)如图2,△A 2B 2C 2,即为所求,…(7分)A 2(-4,2); …(9分) (3)D 2(2a ,2b ). …(11分)图2 C 图124.(1)① ∵ DC ∥AB ,∴ ∠ACD =∠BAC . 又∵ ∠D =90°,AC ⊥BC , ∴ ∠D =∠ACB =90°,∴ △ACD ∽△BAC . …(4分) ② 在Rt △ABC 中, 由勾股定理,得AC =2222610-=-BC AB =8(cm ).∵ △ACD ∽△BAC ,∴AB ACAC DC =, 即 1088=DC .解得DC =6.4(cm ). …(6分)(2)如图3.1,点Q 在边BC 上运动,此时,0<t ≤3. 过点Q 作QE ⊥AB 于E ,∴ sin B =ABACQB QE =,即 1082=t QE . 解得 QE =58t . ∴21BP ·QE =21(10-t )·58t =564. 整理,得 t 2-10t +16=0.解这个方程,得t 1=2,t 2=8 (不合题意,舍去).∴ 当点Q 在边BC 上运动,t =2s 时,△PBQ 的面积为564cm 2.…(10分)图3.1图3.2(3)如图3.2,当点Q 在边CA 上运动,ABAPAC AQ =时,PQ ∥BC . ∴ 即108214tt =-. 解得 t =5.∴ 当点Q 在边CA 上运动,t =5s 时,PQ ∥BC …(13分)(注:用其它方法求解参照以上标准给分.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1
F G
E
D C B
A 九年级数学学科期末练习卷(2014年1月)
(考试时间:100分钟,满分:150分)
考生注意:
1、本试卷含三个大题,共25题;
2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、 选择题(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】
1.对一个图形进行放缩时,下列说法中正确的是………………………………………( ▲ )
A .图形中线段的长度与角的大小都会改变;
B .图形中线段的长度与角的大小都保持不变;
C .图形中线段的长度保持不变、角的大小可以改变;
D .图形中线段的长度可以改变、角的大小保持不变.
2.已知点C 是线段AB 上的一个点,且满足2
AC BC AB =⋅,则下列式子成立的是……( ▲

A .
AC BC
=; B .AC AB
=; C .BC AB =
; D .CB AC =
3.下列关于抛物线213y x =
和21
3
y x =-的关系说法中,正确的是 ……………………( ▲ ) A .它们的形状相同,开口也相同; B .它们都关于y 轴对称;
C .它们的顶点不相同;
D .点(3-,3)既在抛物线213y x =
上也在21
3
y x =-上. 4.下列关于向量的说法中,不正确...
的是 …………………………………………………( ▲ ) A .2()22a b a b +=+
; B .22a a = ;
C .若2a b = ,则2a b = 或2a b =- ;
D .()()m na mn =
a .
5.已知α、β都是锐角,如果sin cos αβ=,那么α与β之间满足的关系是 ……( ▲ )
A .αβ= ;
B . 90αβ+=°;
C .90αβ-=°;
D .90βα-=°. 6.如图1,平行四边形ABCD 中,F 是CD 上一点,BF 交AD 的 延长线于G ,则图中的相似三角形对数共有………………( ▲ )
图2
l 2
l 1
F E
D C B
A
图3
D C
P
图5
图4
G
D
E
F
C
B
A
A .8对;
B . 6对;
C .4对;
D .2对. 二、填空题(本大题共12题,每题4分,满分48分)
7.已知:3:2a b =,则():a b a -= ▲ .
8.如图2,已知AD ∥BE ∥CF ,它们依次交直线1l 、2l 于 点A 、B 、C 和点D 、E 、F ,如果DE :EF =3:5,AC=24, 则BC = ▲ .
9.在Rt △ABC 和Rt △DEF 中,∠ C =∠ F =90°,当AC =3,AB =5,DE =10,EF =8时, Rt △ABC 和Rt △DEF 是 ▲ 的.(填“相似”或者“不相似”)
10.如果两个相似三角形的对应边上的高之比是2:3,则它们的周长比是 ▲ .
11.化简:CD AB BC ++=
▲ .
12.如图3,某人在塔顶的P 处观测地平面上点C 处,经测量∠ P =35°, 则他从P 处观察C 处的俯角是 ▲ 度.
13.将二次函数22y x x m =-+的图像向下平移1个单位后,它的顶点 恰好落在x 轴上,则m = ▲ .
14.在Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,若AD =9,BD =4,则AC = ▲ . 15.一个边长为3厘米的正方形,若它的边长增加x 厘米,面积随之增加
y 平方厘米,则y 关于x 的函数解析式是 ▲ .(不写定义域)
16.如图4,在平行四边形ABCD 中,AB =12,AD =18, ∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,
BG ⊥AE
,垂足为G ,BG =,则△CEF 的周长是 ▲ . 17.如图5,点G 是Rt △AB C 的重心,过点G 作矩形GECF , 当GF :GE =1:2时,则∠ B 的正切值为 ▲ . 18.如图6,已知等腰△ABC ,AD 是底边BC 上的高, AD :DC =1:3,将△ADC 绕着点D 旋转,得△DEF , 点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合, 设AC 与DF 相交于点O ,则:AOF DOC S S ∆∆= ▲ .
三、解答题(本大题共7题,满分78分)
19.(本题满分10分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分2分) 已知:抛物线2y x b x c =-++经过A (1-,0)、B (5,0)两点,顶点为P .
图6
D
C
B
A
图10
C B
A
求:(1)求b ,c 的值; (2)求△ABP 的面积;
(3)若点C (1x ,1y )和点D (2x ,2y )在该抛物线上,则当1201x x <<<时, 请写出1y 与2y 的大小关系.
20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)
已知:如图7, EF 是△ABC 的中位线,设AF a = ,BC b = .
(1)求向量EF 、EA (用向量a 、b
表示);
(2)在图中求作向量EF 在AB 、AC
方向上的分向量.
(不要求写作法,但要指出所作图中表示结论的向量)
21.(本题满分10分)
如图8,在夕阳西下的傍晚,某人看见高压电线的铁 塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡 上,为了测得铁塔的高度,他测得铁塔底部B 到小山坡脚 D 的距离为2米,铁塔在小山斜坡上的影长DC 为3.4米, 斜坡的坡度11.875i =:,同时他测得自己的影长NH ﹦336cm , 而他的身长MN 为168cm ,求铁塔的高度.
22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)
已知:如图9,在△ABC 中,已知点D 在BC 上,联结AD , 使得CAD B ∠=∠,DC =3且ACD ADB S S ∆∆: ﹦1﹕2. (1)求AC 的值;
(2)若将△ADC 沿着直线AD 翻折,使点C 落点E 处,
AE 交边BC 于点F ,且AB ∥DE ,求EFD
ADC
S S ∆∆的值.
23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)
小华同学学习了第二十五章《锐角三角比》后,对求三角形 的面积方法进行了研究,得到了新的结论:
图7
图8
F
E
D
C
B
A
图9
(1)如图10,已知锐角△ABC .求证:1
sin 2
ABC S AB AC A ∆=
; (2)根据题(1)得到的信息,请完成下题:如图11,在等腰 △ABC 中,AB=AC =12厘米,点P 从A 点出发,沿着边AB 移动, 点Q 从C 点出发沿着边CA 移动,点Q 的速度是1厘米/秒,点P 的速度是点Q 速度的2倍,若它们同时出发,设移动时间为t 秒,
问:当t 为何值时,38
APQ ABC
S S ∆∆=?
24.(本题满分12分,第(1)小题满分6分,第(2)小题满分
已知:如图12,抛物线2
445
y x mx =-
++与y 轴交于点C 与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足OC =4OA . 设抛物线的对称轴与x 轴交于点M : (1)求抛物线的解析式及点M 的坐标;
(2)联接CM ,点Q 是射线CM 上的一个动点,当 △QMB 与△COM 相似时,求直线AQ 的解析式.
25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分)
已知:如图13,在等腰直角△ABC 中, AC = BC ,斜边AB 的长为4,过点C 作射线CP //AB ,D 为射线CP 上一点,E 在边BC 上(不与B 、C 重合),且∠DAE =45°,AC 与DE 交于点O . (1)求证:△ADE ∽△ACB ;
(2)设CD =x ,tan ∠BAE = y ,求y 关于x 的函数 解析式,并写出它的定义域;
(3)如果△COD 与△BEA 相似,求CD 的值.
C
B
A
图11
图13
P
D O E
C
B
A。

相关文档
最新文档