最小二乘法曲线拟合原理及matlab实现

合集下载

最小二乘法的基本原理和多项式拟合matlab实现_0

最小二乘法的基本原理和多项式拟合matlab实现_0

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法的基本原理和多项式拟合matlab实现最小二乘法的基本原理和多项式拟合 matlab 实现最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数 p(x) 同所给数据点(xi, yi) (i=0, 1, , m) 误差 ri p(xi) yi(i=0, 1, , m) 的大小,常用的方法有以下三种:一是误差 riri p(xi) yi(i=0, 1, , m) 绝对值的最大值max0 i m,即误差向量 r (r0, r1, rm) T 的范数;二是误差绝对值的和i 0mri,即误差向量 r 的 1范数;三是误差平方和 i 0 rm2i 的算术平方根,即误差向量 r 的 2范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2范数的平方,因此在曲线拟合中常采用误差平方和 i 0 体大小。

rm2i 来度量误差 ri(i=0, 1,, m) 的整数据拟合的具体作法是:对给定数据 (xi, yi) (i=0, 1, , m) ,在取定的函数类中,求 p(x) , 使误差 ri p(xi) yi(i=0, 1, , m)的平方和最小,即 i 0 rm2i i 0 p(x) y iim2 min 从几何意义上讲,就是寻求与给定点(xi, yi) (i=0, 1, , m) 的距离平方和为最小的曲线y p(x) (图 6-1)。

函数 p(x) 称为拟合函数或最小二乘解,求拟合函数 p(x) 的1 / 15方法称为曲线拟合的最小二乘法。

在曲线拟合中,函数类可有不同的选取方法 .61 二多项式拟合为所有次数不超过 n(n m) 的多项式构假设给定数据点(xi, yi) (i=0, 1, , m) , pn(x) akxkk 0n 成的函数类,现求一 m , 使得 2 I pn(xi) yi i 0 2 n akxik yi mini 0 k0 (1) m 当拟合函数为多项式时,称为多项式拟合,满足式(1)的 pn(x) 称为最小二乘拟合多项式。

最小二乘法matlab程序

最小二乘法matlab程序

最小二乘法(Least Squares Method,LSM)是一种数值计算方法,用于拟合曲线,求解未知参数的值。

它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。

本文将介绍最小二乘法在Matlab中的实现原理及程序编写。

一、最小二乘法的原理最小二乘法是一种数值计算方法,它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。

最小二乘法的基本原理是:给定一组数据点,用直线拟合这组数据点,使得拟合直线与这组数据点的误差的平方和最小。

具体地说,假设有一组数据点,其中每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。

拟合这组数据点的直线通常用一元线性函数表示,即y=ax+b,其中a和b是未知参数。

最小二乘法的思想是:求出使误差的平方和最小的a和b,即求出最优解。

二、Matlab程序编写1. 准备工作首先,我们需要准备一组数据点,每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。

例如,我们可以准备一组数据点:x=[1,2,3,4,5];y=[2,4,6,8,10];2. 程序编写接下来,我们就可以开始编写Matlab程序了。

首先,我们需要定义一个一元线性函数,用于拟合这组数据点。

函数的形式为:y=ax+b,其中a和b是未知参数。

%定义函数f=@(a,b,x)a*x+b;然后,我们需要定义一个误差函数,用于计算拟合直线与这组数据点的误差的平方和。

%定义误差函数error=@(a,b)sum((y-f(a,b,x)).^2);最后,我们就可以使用Matlab提供的fminsearch函数,求解最小二乘误差的最优解,即求出最优a和b的值。

%求解最优解[a,b]=fminsearch(error,[1,1]);经过上面的程序编写,我们就可以求得未知参数a和b的最优值。

最小二乘曲线拟合及Matlab 实现

最小二乘曲线拟合及Matlab 实现

图3
测量数据散点图与拟合曲线图
5
结束语
通过 Matlab 实现对磁偶极子辐射场测量数据 的曲线拟合 可在有限的测量数据条件下精确描述 导电介质中电磁波的传播特性 为实验研究与工程 应用提供依据 基于最小二乘曲线拟合及 Matlab 实现方法简明 适用 可应用于类似的测量数据处 理和实验研究
参考文献
[1] 周陪森 , 刘震涛 , 吴淑荣 . 自动检测与仪表 [M]. 北京 : 清华大学出版社 , 1987. [2] 何汉林 , 魏汝祥 , 李卫军 . 数值分析 [M]. 武汉 : 湖北科 学技术出版社 , 1999. [3] 何仁斌 . MATLAB6 工程计算及应用 [M]. 重庆 : 重庆大 学出版社 , 2001. [4] 牛中奇 , 朱满座 , 卢志远 , 等 . 电磁场理论基础 [M]. 北 京 : 电子工业出版社 , 2001. [5] 易芳 . 采用 MATLAB 的线性回归分析 [J]. 兵工自动化 , 2004, 23 (2): 68 - 69.
polynomialfitting1引言由于磁偶极子在导电介质中的传播衰减大并具有强非线性测量数据与被测物理量的真值不完全一致求被测物理量的变化规律法是对测量数据进行曲线拟合1曲线拟合用matlab实现对导电介质中磁偶极子辐需对数据进行必要的数学加工和处理寻解决此类问题的常用方故基于最小二乘射场的传播特性的曲线拟合与仿真2最小二乘曲线拟合给定一组测量数据xiyii求得变量x和y之间的函数关系fxa使它最佳地逼近或拟合已知数据2aa0a1012m基于最小二乘原理fxa称为拟合模型做法是选择参数a使得拟合模型与实际观测值在各点的残差ekykfxka的加权平方和最小m2iiiyxfxan是一些待定参数即求fx使??m0i2iii0iyxfxminxi0称为权应用此法拟合的曲线称为最小二乘拟它反映数据xiyi在实验中所占数据的比重合曲线用最小二乘法求拟合曲线首先要确定拟合模型fx一般来说根据各门科的知识可以大致确定函数的所属类若不具备这些知识则通常从问题的运动规律及给定数据的散点图来确定拟合曲线的形式21多项式拟合若拟合模型fxa多项式拟合假设各数据点的权为1mm2iaaea0a1xanxn则称其为an由最小二乘法确定系数a0a1令a0a12最小ani0inini100iyxax?则有0yxaxaax2am0iinini10jij????j012man即ii得方程组m0iji0jninj1i1ji0yxxaxax??????????????????????????????????????????????????mmmm0iini0iiim0iin10m0in2im0i1nim0ini0i1ni0i2im0iim0inim0iiyxyxyaaaxxxxxxxx1m此方程称为多项式拟合的法方程令????????????????iiiiiimmm0n2im01nim0ni01ni02im0im0inim0iixxxxxxxx1mx????????????????????iimm0ini0iim0iiyxyxyy??????????????n10aaaa则得xay从而ax1y收稿日期作者简介20041209修回日期男20041231陈光1980吉林人在读硕士1999年毕业于海军工程大学从事水下目标探测与制导研究107万方数据兵工自动化软件技术o

matlab最小二乘法曲线拟合

matlab最小二乘法曲线拟合

matlab最小二乘法曲线拟合最小二乘法是一种常用的曲线拟合方法,它通过最小化实际观测值与拟合曲线之间的平方误差来确定最佳拟合曲线的参数。

给定一组实际观测数据点(xi, yi),我们希望找到一个拟合曲线y=f(x;θ),其中θ表示曲线的参数。

最小二乘法的目标是使误差的平方和最小化,即使得下述损失函数最小化:L(θ) = ∑(yi - f(xi;θ))^2其中,∑表示求和运算,L(θ)是损失函数,yi是第i个观测数据点的输出值,f(xi;θ)是根据参数θ计算得到的拟合曲线在第i个观测点的预测值。

为了找到最佳的参数θ,我们通过最小化损失函数来求解优化问题:minimize L(θ)这个问题可以通过求解等式∂L/∂θ = 0 来得到最优参数θ的闭式解。

具体的求解方法,可以通过矩阵和向量的运算来实现。

在Matlab中,可以使用“polyfit”函数进行最小二乘法的曲线拟合。

该函数可以拟合出一条多项式曲线,通过指定最佳拟合的次数,即多项式的阶数。

拟合结果包括最佳参数和拟合误差等信息。

使用方法如下:```% 输入观测数据x = [x1, x2, x3, ...]';y = [y1, y2, y3, ...]';% 拟合曲线order = 1; % 最佳拟合的次数(如一次线性拟合)p = polyfit(x, y, order);% 最佳参数coefficients = p;% 拟合曲线curve = polyval(p, x);% 绘制拟合曲线和观测数据plot(x, y, 'o', x, curve)```这样,就可以使用Matlab的最小二乘法曲线拟合方法来得到最佳的拟合曲线。

最小二乘法曲线拟合-原理及matlab实现

最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

x 必须是单调的。

矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

最小二乘法的基本原理和多项式拟合matlab实现

最小二乘法的基本原理和多项式拟合matlab实现

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法的基本原理和多项式拟合matlab实现最小二乘法的基本原理和多项式拟合 matlab 实现最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数 p(x) 同所给数据点(xi, yi) (i=0, 1, , m) 误差 ri p(xi) yi(i=0, 1, , m) 的大小,常用的方法有以下三种:一是误差 riri p(xi) yi(i=0, 1, , m) 绝对值的最大值max0 i m,即误差向量 r (r0, r1, rm) T 的范数;二是误差绝对值的和i 0mri,即误差向量 r 的 1范数;三是误差平方和 i 0 rm2i 的算术平方根,即误差向量 r 的 2范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2范数的平方,因此在曲线拟合中常采用误差平方和 i 0 体大小。

rm2i 来度量误差 ri(i=0, 1,, m) 的整数据拟合的具体作法是:对给定数据 (xi, yi) (i=0, 1, , m) ,在取定的函数类中,求 p(x) , 使误差 ri p(xi) yi(i=0, 1, , m)的平方和最小,即 i 0 rm2i i 0 p(x) y iim2 min 从几何意义上讲,就是寻求与给定点(xi, yi) (i=0, 1, , m) 的距离平方和为最小的曲线y p(x) (图 6-1)。

函数 p(x) 称为拟合函数或最小二乘解,求拟合函数 p(x) 的1/ 15方法称为曲线拟合的最小二乘法。

在曲线拟合中,函数类可有不同的选取方法 .61 二多项式拟合为所有次数不超过 n(n m) 的多项式构假设给定数据点(xi, yi) (i=0, 1, , m) , pn(x) akxkk 0n 成的函数类,现求一 m , 使得 2 I pn(xi) yi i 0 2 n akxik yi mini 0 k0 (1) m 当拟合函数为多项式时,称为多项式拟合,满足式(1)的 pn(x) 称为最小二乘拟合多项式。

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合一、本文概述在数据分析和科学计算中,曲线拟合是一种常见且重要的技术。

通过拟合,我们可以根据已知数据建立数学模型,预测未知数据,以及深入理解数据背后的规律。

最小二乘法是曲线拟合中最常用的一种方法,其原理是通过最小化预测值与实际值之间的平方误差来寻找最佳拟合曲线。

本文旨在介绍如何使用Matlab这一强大的数学计算软件,实现最小二乘曲线拟合,包括其理论基础、实现步骤以及实际应用案例。

通过本文的学习,读者将能够掌握在Matlab环境中进行最小二乘曲线拟合的基本方法,提高数据处理和分析能力。

二、最小二乘曲线拟合原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。

在曲线拟合中,最小二乘法被广泛应用于通过一组离散的数据点来估计一个连续函数的形状。

这种方法的基本思想是通过选择一个模型函数(通常是多项式、指数函数、对数函数等),使得该模型函数与实际数据点之间的差距(即残差)的平方和最小。

假设我们有一组数据点 ((x_1, y_1), (x_2, y_2), \ldots,(x_n, y_n)),我们希望通过一个模型函数 (y = f(x, \mathbf{p})) 来拟合这些数据点,其中 (\mathbf{p}) 是模型的参数向量。

最小二乘法的目标就是找到最优的参数向量 (\mathbf{p}^*),使得残差平方和 (S(\mathbf{p})) 最小:S(\mathbf{p}) = \sum_{i=1}^{n} [y_i - f(x_i,\mathbf{p})]^2]为了使 (S(\mathbf{p})) 达到最小,我们需要对(S(\mathbf{p})) 求偏导数,并令其等于零。

这样,我们就得到了一个关于 (\mathbf{p}) 的方程组。

解这个方程组,就可以得到最优的参数向量 (\mathbf{p}^*)。

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序最小二乘法是一种常用的数学优化技术,它通过最小化误差的平方和来找到最佳函数匹配。

在曲线拟合中,最小二乘法被广泛使用来找到最佳拟合曲线。

下面的Matlab程序演示了如何使用最小二乘法进行曲线拟合。

% 输入数据x = [1, 2, 3, 4, 5];y = [2.2, 2.8, 3.6, 4.5, 5.1];% 构建矩阵A = [x(:), ones(size(x))]; % 使用x向量和单位矩阵构建矩阵A% 使用最小二乘法求解theta = (A' * A) \ (A' * y); % 利用最小二乘法的公式求解% 显示拟合曲线plot(x, theta(1) * x + theta(2), '-', 'LineWidth', 2); % 画出拟合曲线hold on; % 保持当前图像plot(x, y, 'o', 'MarkerSize', 10, 'MarkerFaceColor','b'); % 在图像上画出原始数据点xlabel('x'); % 设置x轴标签ylabel('y'); % 设置y轴标签legend('拟合曲线', '原始数据点'); % 设置图例这个程序首先定义了一组输入数据x和y。

然后,它构建了一个矩阵A,这个矩阵由输入数据x和单位矩阵构成。

然后,程序使用最小二乘法的公式来求解最佳拟合曲线的参数。

最后,程序画出拟合曲线和原始数据点。

这个程序使用的是线性最小二乘法,适用于一次曲线拟合。

如果你的数据更适合非线性模型,例如二次曲线或指数曲线,那么你需要使用非线性最小二乘法。

Matlab提供了lsqcurvefit函数,可以用于非线性曲线拟合。

例如:% 非线性模型 y = a * x^2 + b * x + cfun = @(theta, x) theta(1) * x.^2 + theta(2) * x +theta(3);guess = [1, 1, 1]; % 初始猜测值% 使用lsqcurvefit函数求解theta = lsqcurvefit(fun, guess, x, y);% 显示拟合曲线plot(x, fun(theta, x), '-', 'LineWidth', 2); % 画出拟合曲线hold on; % 保持当前图像plot(x, y, 'o', 'MarkerSize', 10, 'MarkerFaceColor','b'); % 在图像上画出原始数据点xlabel('x'); % 设置x轴标签ylabel('y'); % 设置y轴标签legend('拟合曲线', '原始数据点'); % 设置图例这个程序定义了一个非线性函数fun,然后使用lsqcurvefit函数来求解最佳拟合曲线的参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法曲线拟合原理及m a t l a b实现Modified by JEEP on December 26th, 2020.曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

x必须是单调的。

矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

[p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。

polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x)[y,DELTA]=polyval(p,x,s)y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。

它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。

则Y DELTA将至少包含50%的预测值。

如下给定数据的拟合曲线:x=[,,,,,],y=[,,,,,]。

解:MATLAB程序如下:x=[,,,,,];y=[,,,,,];p=polyfit(x,y,2)x1=::;y1=polyval(p,x1);plot(x,y,'*r',x1,y1,'-b')运行结果如图1计算结果为:p =即所得多项式为y=^2++图1 最小二乘法曲线拟合示例对比检验拟合的有效性:例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。

在MATLAB中输入如下代码:clearx=0::pi;y=sin(x);[p,mu]=polyfit(x,y,9)x1=0::2*pi;y1=sin(x1);%实际曲线y2=polyval(p,x1);%根据由区间0到pi上进行拟合得到的多项式计算0到2pi上的函数值,%需要注意的是polyval()返回的函数值在pi到2pi上并没有进行拟合plot(x1,y2,'k*',x1,y1,'k-')运行结果:p =mu =R: [10x10 double]df: 22normr:MATLAB的最优化工具箱还提供了lsqcurvefit()函数命令进行最小二乘曲线拟合(Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense)。

调用格式:x = lsqcurvefit(fun,x0,xdata,ydata)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)x = lsqcurvefit(problem)[x,resnorm] = lsqcurvefit(...)[x,resnorm,residual] = lsqcurvefit(...)[x,resnorm,residual,exitflag] = lsqcurvefit(...)[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)[x,resnorm,residual,exitflag,output,lambda,jacobian] =x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据; lb、ub为解向量的下界和上界,若没有指定界,则lb=[ ],ub=[ ]; options为指定的优化参数;fun为拟合函数,其定义方式为:x = lsqcurvefit(@myfun,x0,xdata,ydata),其中myfun已定义为 function F = myfun(x,xdata)F = … % 计算x处拟合函数值fun的用法与前面相同;resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和; residual=fun(x,xdata)-ydata,即在x处的残差;exitflag为终止迭代的条件;output为输出的优化信息;lambda为解x处的Lagrange乘子;jacobian为解x处拟合函数fun的jacobian矩阵。

例:lsqcurvefit()优化程序Data = ...[];t = Data(:,1);y = Data(:,2);% axis([0 2 6])plot(t,y,'ro')title('Data points')%We would like to fit the function y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t) to the data %The lsqcurvefit function solves this type of problem easily.%To begin, define the parameters in terms of one variable x:%x(1) = c(1)%x(2) = lam(1)%x(3) = c(2)%x(4) = lam(2)%Then define the curve as a function of the parameters x and the data t:F = @(x,xdata)x(1)*exp(-x(2)*xdata) + x(3)*exp(-x(4)*xdata);x0 = [1 1 1 0];[x,resnorm,~,exitflag,output] = lsqcurvefit(F,x0,t,y)hold onplot(t,F(x,t))hold offFsumsquares = @(x)sum((F(x,t) - y).^2);opts = optimset('LargeScale','off');[xunc,ressquared,eflag,outputu] = ...fminunc(Fsumsquares,x0,opts)fprintf(['There were %d iterations using fminunc,' ...' and %d using lsqcurvefit.\n'], ...,fprintf(['There were %d function evaluations using fminunc,' ...' and %d using lsqcurvefit.'], ...,type fitvectorx02 = [1 0];F2 = @(x,t) fitvector(x,t,y);[x2,resnorm2,~,exitflag2,output2] = lsqcurvefit(F2,x02,t,y)fprintf(['There were %d function evaluations using the 2-d ' ...'formulation, and %d using the 4-d formulation.'], ...,x0bad = [5 1 1 0];[xbad,resnormbad,~,exitflagbad,outputbad] = ...lsqcurvefit(F,x0bad,t,y)hold onplot(t,F(xbad,t),'g')legend('Data','Global fit','Bad local fit','Location','NE')hold offfprintf(['The residual norm at the good ending point is %f,' ...' and the residual norm at the bad ending point is %f.'], ...resnorm,resnormbad)displayEndOfDemoMessage(mfilename)拟合效果如下:直线的最小二乘拟合:y=a+bx式中有两个待定参数,a代表截距,b代表斜率。

对于等精度测量所得到的N组数据(xi,yi),i=1,2……,N,xi值被认为是准确的,所有的误差只联系着yi。

相关文档
最新文档