-2019山东省春季高考数学模拟试题
2019年山东省春季高考数学精彩试题及问题详解

省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。
考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。
卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合M={0,1},N={1,2},则M∪N等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数a,b满足ab>0,a+b>0,则下列选项正确的是()A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<0y3. 已知指数函数y=a x,对数函数y=log b x的图像如图所示,则下列关系式正确的是()A. 0<a<b<1B. 0<a<1<bC. 0<b<1<aD. a<0<1<b4. 已知函数f(x)=x3+x,若f(a)=2,则f(-a)的值是()A. -2B. 2C. -10D. 105. 若等差数列{a n}的前7项和为70,则a1+a7等于()A. 5B. 10C. 15D. 206. 如图所示,已知菱形ABCD 的边长是2,且∠DAB =60°,则AB AC ⋅ 的值是( )A. 4B. 4+C. 6D. 4-7. 对于任意角α,β,“α=β”是“sin α=sin β”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 如图所示,直线l ⊥OP ,则直线l 的方程是( )A. 3x -2y=0B. 3x+2y -12=0C. 2x -3y+5=0D. 2x+3y -13=09. 在(1+x )n 的二项展开式中,若所有项的系数之和为64,则第3项是( )A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在Rt ABC 中,∠ABC =90°,AB=3,BC=4,M 是线段AC 上的动点. 设点M 到BC 的距离为x , MBC 的面积为y ,则y 关于x 的函数是( )A. y=4x ,x∈(0,4]B. y=2x ,x∈(0,3]C. y=4x ,x∈(0,)+∞D. y=2x ,x∈(0,)+∞11. 现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是( )A. 360B. 336C. 312D. 24012. 设集合M={-2,0,2,4},则下列命题为真命题的是( )A. ,a M ∀∈ a 是正数B. ,b M ∀∈ b 是自然数C. ,c M ∃∈ c 是奇数D. ,d M ∃∈ d 是有理数13. 已知sinα=12,则cos2α的值是( ) A. 89 B. 89- C. 79 D. 79- 14. 已知y=f(x)在R 上是减函数,若f(|a |+1)<f(2),则实数a 的取值围是( )A. (-∞,1)B. (-∞,1)∪(1,+∞)C. (-1,1)D.(-∞,-1)∪(1,+∞)15. 已知O 为坐标原点,点M 在x 轴的正半轴上,若直线MA 与圆x 2+y 2=2相切于点A ,且|AO|=|AM|,则点M 的横坐标是( )A. 2B. C.D. 416. 如图所示,点E 、F 、G 、H 分别是正方体四条棱的中点,则直线EF 与GH 的位置关系是( )A. 平行B. 相交C. 异面D. 重合第16题 图17. 如图所示,若x,y满足线性约束条件2 01x yxy-+⎧⎪⎨⎪⎩≥≤≥,则线性目标函数z=2x-y取得最小值时的最优解是()A. (0,1)B. (0,2)C. (-1,1) D . (-1,2)18. 箱子中放有6黑色卡片和4白色卡片,从中任取一,恰好取得黑色卡片的概率是()A. 16B. 13C. 25D. 3519. 已知抛物线的顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M(-2,4),则其标准方程是()A. y2=-8xB. y2=-8x 或x2=yC. x2=yD. y2=8x 或x2=-y20. 已知ABC的角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC,向量m =(,3)a b, 向量n=(-cosA,sinB),且m∥n,则ABC的面积是()A. 183B. 93C. 33D. 3卷二(非选择题共60分)二、填空题(本大题5个小题,每小题4分,共20分。
(完整版)山东省春季高考数学试题及答案

山东省 2019 年一般高校招生(春天)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。
考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。
2.本次考试同意使用函数型计算器,凡使用计算器的题目,除题目有详细要求外,最后结果精准到。
卷一(选择题共60 分)一、选择题(本大题 20 个小题,每题 3 分,共 60 分。
在每题列出的四个选项中,只有一项切合题目要求,请将切合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知会合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 知足 ab>0 , a+b>0 ,则以下选项正确的选项是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如下图,则以下关系式正确的选项是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如下图,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于随意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充足不用要条件B. 必需不充足条件C. 充要条件D. 既不充足也不用要条件8. l⊥ OP ,则直线 l 的方程是(y如下图,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项睁开式中,若全部项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y对于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不可以排在前两位,且乙同学一定排在甲同学前方(相邻或不相邻均可),则不一样排法的种树是()A. 360B. 336C. 312D. 24012. 设会合 M={-2 , 0 , 2 , 4} ,则以下命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416.如下图,点E、F、 G、 H 分别是正方体四条棱的中点,则直线EF 与 GH 的地点关系是()A. 平行B. 订交C.异面D. 重合FGHE第16 题图x y 2 ≥017.如下图,若x,y知足线性拘束条件x ≤0,y≥1则线性目标函数z=2x-y获得最小值时的最优解是()A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰巧获得黑色卡片的概率是()A. 1B. 1C. 2D. 36 3 5 519. 已知抛物线的极点在座标原点,对称轴为坐标轴,若该抛物线经过点 M( -2 ,4 ),则其标准方程是()A. y 2=-8xB. y 2= - 8x 或 x2=yC. x 2=yD. y 2=8x 或 x2 = - y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC ,向量 m = ( a, 3b) , 向量 n =( - cosA , sinB) ,且 m ∥ n ,则V ABC 的面积是()A. 18 3B. 9 3C. 3 3D. 3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每题 4 分,共 20 分。
山东省2019年普通高校招生(春季)考试 数学试题-答案

山东省2019年普通高校招生(春季)考试数学试题答案及评分标准卷一(选择题 共60分)一㊁选择题(本大题20个小题,每小题3分,共60分)1.C2.A3.B4.A5.D6.C7.A8.D9.C 10.B 11.B 12.D 13.C 14.D15.A 16.B 17.C 18.D 19.B 20.C 卷二(非选择题 共60分)二㊁填空题(本大题5个小题,每小题4分,共20分)21.36ʎ 22.-4 23.54 24.2ʌ填1.41亦可ɔ 25.y =ʃ62x 三㊁解答题(本大题5个小题,共40分)26.(本小题7分)解:因为f (1)=-1,f (3)=-1,所以二次函数f (x )的对称轴为x =1+32=2,2分 又因为函数f (x )图像的顶点在直线y =2x -1上,则联立方程组x =2,y =2x -1,{解得x =2,y =3,{1分 故函数f (x )图像的顶点坐标为(2,3).1分 可设二次函数的解析式为f (x )=a (x -2)2+3,1分因为f (1)=-1,则a (1-2)2+3=-1,解得a =-4,1分 所以f (x )=-4(x -2)2+3,即f (x )=-4x 2+16x -13.1分 (第27题图)27.(本小题8分)解:(1)由图像可知,函数f (x )的最大值是2,最小值是-2,A >0,所以A =2.1分因为5π12-π6=π4,π4是最小正周期的14,所以函数f (x )的最小正周期T =π4ˑ4=π,故2πω=π,解得ω=2,1分 东博文化传媒可得函数f (x )=2s i n (2x +φ),又因为函数f (x )图像经过点π6,0æèçöø÷,所以2s i n 2ˑπ6+φæèçöø÷=0,即s i n π3+φæèçöø÷=0,1分 因此π3+φ=2k π,k ɪZ ,解得φ=2k π-π3,k ɪZ ,又因为|φ|<π2,所以φ=-π3,1分 所以该函数的解析式为f (x )=2s i n 2x -π3æèçöø÷.1分 (2)因为f (x )ȡ1,所以2s i n 2x -π3æèçöø÷ȡ1,即s i n 2x -π3æèçöø÷ȡ12,1分 所以π6+2k πɤ2x -π3ɤ5π6+2k π,k ɪZ ,1分 即π4+k πɤx ɤ7π12+k π,k ɪZ ,故当f (x )ȡ1时,实数x 的取值范围是x π4+k πɤx ɤ7π12+k π,k ɪZ {}.1分 注:x 的取值范围写为 π4+k π,7π12+k πéëêêùûúú,k ɪZ ,亦可.(第28题图)28.(本小题8分)(1)证明:因为平面S A C ʅ平面A B C ,平面S A C ɘ平面A B C =A C ,且S A ʅA C ,所以S A ʅ平面A B C ,2分又因为B C ⊂平面A B C ,所以S A ʅB C ,1分又因为A B ʅB C ,S A ɘA B =A ,所以B C ʅ平面S A B .1分 (2)解:由(1)知,S A ʅ平面A B C ,所以点S 到平面A B C 的距离即为线段S A 的长度.1分 并且可知,S B 在平面A B C 内的射影为A B ,1分所以øS B A 即为S B 与平面A B C 所成角,即øS B A =30ʎ,1分 在R t әS A B 中,øS A B =90ʎ,øS B A =30ʎ,S B =2,所以S A =12S B =1,所以点S 到平面A B C 的距离是1.1分东博文化传媒(第29题图)29.(本小题8分)解:(1)因为四边形F 1B 2F 2B 1为正方形,所以|F 1F 2|=|B 1B 2|.因为|F 1F 2|=2c ,|B 1B 2|=2b ,所以c =b ,1分 因为a 2=b 2+c 2,所以a =2b ,1分因此椭圆的方程可化为x 22b 2+y 2b2=1,因为椭圆经过点P 1,22æèçöø÷,所以12b 2+22æèçöø÷2b 2=1,解得b =1,故a =2b =2,1分所以椭圆的标准方程是x 22+y 2=1.1分 (2)由(1)可知c =1,1分 设双曲线的实半轴长为a ',因为e =322,且双曲线与椭圆有公共的焦点,故c a '=322,即1a '=322,解得a '=23.1分 由椭圆和双曲线的定义可知|M F 1|+|M F 2|=2a ,|M F 1|-|M F 2|=2a ',{即|M F 1|+|M F 2|=22,|M F 1|-|M F 2|=223,ìîíïïïï1分 解得|M F 1|=423,|M F 2|=223,ìîíïïïïï所以线段M F 1,M F 2的长度分别是423,223.1分 注:线段M F 1,M F 2的长度分别写为 1.89,0.94,亦可.30.(本小题9分)解:(1)由题意知,自2018年起,每年的人口总数构成等差数列{a n },其中首项a 1=50,公差d =1.5,1分通项公式为a n =a 1+(n -1)d =50+(n -1)ˑ1.5,2分 设第n 项a n =60,即50+(n -1)ˑ1.5=60,解得n =7.7,1分 因为n ɪN +,所以n =8,2018+8-1=2025.答:到2025年年底,该城市人口总数达到60万.1分 (2)由题意知,自2018年起,每年的绿化面积数构成数列{b 1},其中b 1是2018年年底的绿化面积数,b 1=35,b 2是2019年年底的绿化面积数,b 2=35ˑ(1+5%)-0.1=35ˑ1.05-0.1,东博文化传媒b 3是2020年年底的绿化面积数,b 3=(35ˑ1.05-0.1)ˑ1.05-0.1=35ˑ1.052-0.1ˑ1.05-0.1, b k 是(2018+k -1)年年底的绿化面积数,b k =35ˑ1.05k -1-0.1ˑ1.05k -2-0.1ˑ1.05k -3- -0.1ˑ1.05-0.1,1分 =35ˑ1.05k -1-0.1ˑ(1-1.05k -1)1-1.05.1分 设b k =60ˑ0.9,即35ˑ1.05k -1-0.1ˑ(1-1.05k -1)1-1.05=60ˑ0.9,解得k ʈ10.3,1分 因为k ɪN +,所以k =11,2018+11-1=2028.答:到2028年年底,该城市人均绿化面积达到0.9平方米.1分 东博文化传媒。
(2021年整理)2019年山东省春季高考数学试题及答案word版

2019年山东省春季高考数学试题及答案word版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年山东省春季高考数学试题及答案word版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年山东省春季高考数学试题及答案word版的全部内容。
山东省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。
考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0。
01。
卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合M={0,1},N={1,2},则M ∪N 等于( )A 。
{1} B. {0,2} C 。
{0,1,2} D 。
2. 若实数a ,b 满足ab 〉0,a+b 〉0,则下列选项正确的是( )A. a>0,b>0B. a>0,b 〈0C. a 〈0,b>0 D 。
a<0,b 〈03。
已知指数函数y=a x,对数函数y=log b x 的图像如图所示,则下列关系式正确的是( )A 。
0〈a 〈b<1B 。
0〈a<1<bC 。
0<b<1〈a D. a 〈0<1〈b4。
已知函数f (x )=x 3+x ,若f (a )=2,则f (—a)的值是( )A 。
2019年山东省高考理科数学模拟试题与答案(一)

2019年山东省高考理科数学模拟试题与答案(一)2019年山东省高考理科数学模拟试题与答案(一)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z满足(1+i)z=i,则在复平面内,复数z所对应的点位于:A。
第一象限。
B。
第二象限。
C。
第三象限。
D。
第四象限2.设集合A=N,B={x|0≤x<3},则A∩B=A。
{0,1,2}。
B。
{1,2}。
C。
{0,1,2,3}。
D。
{0,1,2,3}3.若某多面体的三视图(单位:cm)如右图所示,则此多面体的体积是:A。
7 cm³。
B。
2 cm³。
C。
5 cm³。
D。
1 cm³4.设x,y满足约束条件{x≤4,y≤4,x+y≥4},则z=2x+y的最大值为:A。
4.B。
8.C。
12.D。
165.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,XXX 齐声朗诵,别有韵味。
若《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,且《将进酒》与《望岳》相邻且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场开场诗词的排法有:A。
144种。
B。
48种。
C。
36种。
D。
72种6.已知cos(π/4-α)=4/5,则sin2α=A。
-7/25.B。
-5/7.C。
1/5.D。
7/257.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为:A。
/3π。
B。
6π。
C。
8π/3.D。
4π8.当0<x<1时,f(x)=ln(x/2)/2x,则下列大小关系正确的是:A。
f(1/3)<f(1/4)<f(1/5)。
2019年山东省春季高考数学试题及答案

山东省 2019 年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。
考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到 0.01。
卷一(选择题共60 分)一、选择题(本大题 20 个小题,每小题 3 分,共 60 分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1.已知集合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B.{0,2}C.{0,1,2}D.2.若实数 a, b满足 ab>0, a+b>0 ,则下列选项正确的是()A.a>0 , b>0B.a>0 , b<0yC.a<0 , b>0D. a<0 , b<03.已知指数函数y=a x,对数函数 y=log b x的图像如图所示,则下列关系式正确的是(y)y=log b y=a xA.0<a<b<1B.0<a<1<bO x C.0<b<1<a D. a<0<1<b4.已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3题图A. -2B. 2C.-10D. 105.若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A.5B.10C. 15D. 206.如图所示,已知菱形ABCD的边长是 2 ,且∠ DAB =60 °,则AB AC的值是()A.4B.423C. 6D. 4 2 3DA CB第6题图7. 对于任意角 α , β ,“ α = β ” 是 “ sin α =sin β” 的( )A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.l ⊥ OP ,则直线 l 的方程是(y如图所示,直线 )A. 3x - 2y=0B. 3x+2y - 12=03PC.2x - 3y+5=0D. 2x+3y - 13=0O2x在( 1+x ) n的二项展开式中,若所有项的系数之和为64 ,则第 3 项是( 第8题图9. ) A.15x 3B. 20x 3C. 15x 2D. 20x 210. 在 Rt ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,MBC 的面积为 y ,则 y 关于 x 的函数是()A. y=4x , x ∈ (0, 4]B. y=2x , x ∈ (0,3]C. y=4x , x ∈ (0, )D. y=2x , x ∈ (0,)11. 现把甲、乙等 6 位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是()A. 360B. 336C. 312D. 24012. 设集合 M={-2 , 0 , 2 , 4} ,则下列命题为真命题的是()A. a M , a 是正数B. b M , b 是自然数C.c M , c 是奇数D.d M , d 是有理数13. 已知 sin α=1,则 cos2 α 的值是()2A. 8B.8 C.7 D.7999914. 已知 y=f(x) 在 R 上是减函数,若 f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (- ∞,1)B. (- ∞,1)∪( 1 ,+∞ )C. (- 1,1)D.(- ∞,- 1)∪( 1, +∞ )15. 已知 O 为坐标原点,点 M 在 x 轴的正半轴上, 若直线 MA 与圆 x 2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C. 22D.416. 如图所示,点 E 、F 、 G 、 H 分别是正方体四条棱的中点,则直线 EF 与 GH 的位置关系是()A. 平行B. 相交C.异面D. 重合FGHE第 16题图x y 2 ≥017. 如图所示,若 x ,y 满足线性约束条件x ≤0,y ≥1则线性目标函数 z=2x-y 取得最小值时的最优解是 ()A. (0,1)B. (0,2)C. (-1 ,1)D. (-1,2)18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰好取得黑色卡片的概率是()A.1 B.1 C.2D.3635519. 已知抛物线的顶点在坐标原点, 对称轴为坐标轴, 若该抛物线经过点 M ( -2 ,4 ),则其标准方程是 ( )A. y 2=-8xB. y 2= - 8x 或 x 2=yC. x 2=yD. y 2=8x 或 x 2 = - y20. 已知ABC 的内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a=6 ,sinA=2cosBsinC,向量 m = ( a, 3b) ,向量 n =( - cosA , sinB) ,且 m ∥ n ,则 ABC 的面积是()A.18 3B. 93C. 3 3D.3卷二(非选择题共 60分)二、填空题(本大题 5 个小题,每小题 4 分,共 20 分。
2019届山东省春季高考数学试卷
2018-2019学年山东省春季高考数学试卷一、选择题温馨提示:多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。
高考保持心平气和,不要紧张,像对待平时考试一样去做题,做完检查一下题目,不要直接交卷,检查下有没有错的地方,然后耐心等待考试结束。
1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+35.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣326.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.69.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=011.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.28812.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bc C.a2<b2D.13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k的值是()A.1 B.2 C.﹣1 D.﹣214.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.1815.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y﹣5)2=4 18.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣1519.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁平均成绩96968585标准差s4242A.甲B.乙C.丙D.丁20.已知A1,A2为双曲线(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为,则该双曲线的离心率是()A.B.C.D.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*a x,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是.三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l 与椭圆的另一个交点为B,求线段AB的长.2017年山东省春季高考数学试卷参考答案与试题解析一、选择题1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}【考点】1F:补集及其运算.【分析】根据补集的定义求出M补集即可.【解答】解:全集U={1,2},集合M={1},则∁U M={2}.故选:C.2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数,∴|x|﹣2>0,即|x|>2,解得x<﹣2或x>2,∴函数y的定义域是(﹣∞,﹣2)∪(2,+∞).故选:D.3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|【考点】3E:函数单调性的判断与证明.【分析】根据基本初等函数的单调性,判断选项中的函数是否满足条件即可.【解答】解:对于A,函数y=x,在区间(﹣∞,0)上是增函数,满足题意;对于B,函数y=1,在区间(﹣∞,0)上不是单调函数,不满足题意;对于C,函数y=,在区间(﹣∞,0)上是减函数,不满足题意;对于C,函数y=|x|,在区间(﹣∞,0)上是减函数,不满足题意.故选:A.4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+3【考点】3W:二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f(x)=a(x﹣1)2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f(x)的图象经过两点(0,3),(2,3),则对称轴x=1,最大值是5,可设f(x)=a(x﹣1)2+5,于是3=a+5,解得a=﹣2,故f(x)=﹣2(x﹣1)2+5=﹣2x2+4x+3,故选:D.5.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣32【考点】8F:等差数列的性质;84:等差数列的通项公式.【分析】根据题意,由等比数列的性质可得(a3)2=4×49,结合解a3<0可得a3的值,进而由等差数列的性质a5=2a3﹣a1,计算即可得答案.【解答】解:根据题意,a3是4与49的等比中项,则(a3)2=4×49,解可得a3=±14,又由a3<0,则a3=﹣14,又由a1=﹣5,则a5=2a3﹣a1=﹣23,故选:B.6.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.【考点】95:单位向量.【分析】先求出=(﹣1,1),由此能求出向量的单位向量的坐标.【解答】解:∵A(3,0),B(2,1),∴=(﹣1,1),∴||=,∴向量的单位向量的坐标为(,),即(﹣,).故选:C.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“p∨q为真命题”则p或q为真命题,故由充要条件定义知p∨q为真”是“p为真”必要不充分条件【解答】解:“p∨q为真命题”则p或q为真命题,所以“p∨q为真”推不出“p为真”,但“p为真”一定能推出“p∨q为真”,故“p∨q为真”是“p为真”的必要不充分条件,故选:B.8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.6【考点】HW:三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y的最小值.【解答】解:∵函数y=cos2x﹣4cosx+1=(cox﹣2)2﹣3,且cosx∈[﹣1,1],故当cosx=1时,函数y取得最小值为﹣2,故选:B.9.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直【考点】LJ:平面的基本性质及推论.【分析】在A中,经过共线的三点有无数个平面;在B中,两条异面直线不能确定一个平面;在C中,经过平面外一点无数个平面与已知平面垂直;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直.【解答】在A中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故A错误;在B中,两条相交线能确定一个平面,两条平行线能确定一个平面,两条异面直线不能确定一个平面,故B错误;在C中,经过平面外一点无数个平面与已知平面垂直,故C错误;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直,故D正确.故选:D.10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=0【考点】IB:直线的点斜式方程.【分析】求出交点坐标,代入点斜式方程整理即可.【解答】解:由,解得:,由方向向量得:直线的斜率k=﹣3,故直线方程是:y+2=﹣3(x﹣1),整理得:3x+y﹣1=0,故选:A.11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.288【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的4个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21C43=8种取法,将4个节目全排列,有A44=24种可能,则以排出8×24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有C22C42=6种取法,将2个歌舞类节目全排列,有A22=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A32=6种情况,此时有6×2×6=72种可能,就可以排出72个不同节目单,则一共可以排出24+192+72=288个不同节目单,故选:D.12.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bc C.a2<b2D.【考点】R3:不等式的基本性质.【分析】A,由a<b<0,可得a+c<b+c;B,c的符号不定,则ac,bc大小关系不定;C,由a<b<0,可得a2>b2;D,由a<b<0,可得﹣a>﹣b⇒;【解答】解:对于A,由a<b<0,可得a+c<b+c,故正确;对于B,c的符号不定,则ac,bc大小关系不定,故错;对于C,由a<b<0,可得a2>b2,故错;对于D,由a<b<0,可得﹣a>﹣b⇒,故错;故选:A13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k的值是()A.1 B.2 C.﹣1 D.﹣2【考点】4H:对数的运算性质.【分析】由g(9)=log39=2=f(﹣1)=2﹣k,解得即可.【解答】解:g(9)=log39=2=f(﹣1)=2﹣k,解得k=﹣1,故选:C14.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.18【考点】9R:平面向量数量积的运算.【分析】由已知求出及与的夹角,代入数量积公式得答案.【解答】解:∵,,∴,且<>=π.则==3×6×(﹣1)=﹣18.故选:A.15.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】由直线方程,设出直线上点的坐标,可求cosα,利用诱导公式,二倍角的余弦函数公式可求cos(π+2α)的值.【解答】解:若角α的终边落在直线y=﹣3x上,(1)当角α的终边在第二象限时,不妨取x=﹣1,则y=3,r==,所以cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=;(2)当角α的终边在第四象限时,不妨取x=1,则y=﹣3,r==,所以sinα=,cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=,故选:B.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.【考点】7B:二元一次不等式(组)与平面区域.【分析】利用二元一次不等式(组)与平面区域的关系,通过特殊点判断即可.【解答】解:因为(1,0)点满足2x﹣y>0,所以二元一次不等式2x﹣y>0表示的区域(阴影部分)是:C.故选:C.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y﹣5)2=4【考点】J1:圆的标准方程.【分析】由已知圆的方程求出圆心坐标和半径,求出圆C1的圆心关于y=﹣x的对称点,再由圆的标准方程得答案.【解答】解:由圆C1的方程是(x+5)2+y2=4,得圆心坐标为(﹣5,0),半径为2,设点(﹣5,0)关于y=﹣x的对称点为(x0,y0),则,解得.∴圆C2的圆心坐标为(0,5),则圆C2的方程是x2+(y﹣5)2=4.故选:D.18.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣15【考点】DB:二项式系数的性质.【分析】先求出n的值,可得二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:∵二项式的展开式中只有第4项的二项式系数最大,∴n=6,=C6r•(﹣1)r•x.则展开式中的通项公式为T r+1令6﹣3r=0,求得r=2,故展开式中的常数项为C62•(﹣1)2=15,故选:C.19.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁平均成绩96968585标准差s4242A.甲B.乙C.丙D.丁【考点】BC:极差、方差与标准差.【分析】根据平均成绩高且标准差小,两项指标选择即可.【解答】解:根据表中数据知,平均成绩较高的是甲和乙,标准差较小的是乙和丙,由此知乙同学成绩较高,且发挥稳定,应选乙参加.故选:B.20.已知A1,A2为双曲线(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为,则该双曲线的离心率是()A.B.C.D.【考点】KC:双曲线的简单性质.【分析】由题意求得双曲线的渐近线方程,利用点到直线的距离公式求得A1(﹣a,0)到直线渐近线的距离d,根据三角形的面积公式,即可求得△A1MN的面积,即可求得a和b的关系,利用双曲线的离心率公式,即可求得双曲线的离心率.【解答】解:由双曲线的渐近线方程y=±x,设以A1A2为直径的圆与双曲线的渐近线y=x交于M,N两点,则A1(﹣a,0)到直线y=x的距离d==,△A1MN的面积S=×2a×==,整理得:b=c,则a2=b2﹣c2=c2,即a=c,双曲线的离心率e==,故选B.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于3π.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】圆锥侧面展开图是一个扇形,半径为l,弧长为2π,则圆锥侧面积S=πrl,由此能求出结果.【解答】解:圆锥侧面展开图是一个扇形,半径为l,弧长为2πr∴圆锥侧面积:S==πrl=π×1×3=3π.故答案为:3π.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.【考点】HR:余弦定理.【分析】由二倍角的正弦函数公式,正弦定理即可计算得解.【解答】解:∵∠B=2∠A,∴sin∠B=2sin∠Acos∠A,又∵a=2,b=3,∴由正弦定理可得:,∵sin∠A≠0,∴cos∠A=.故答案为:.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于24.【考点】K4:椭圆的简单性质.【分析】利用椭圆的定义|PF1|+|PF2|=2a=12,|QF1|+|QF2|=2a=12即可求得△PQF2的周长.【解答】解:椭圆+=1的焦点在y轴上,则a=6,b=4,设△PQF2的周长为l,则l=|PF2|+|QF2|+|PQ|,=(|PF1|+|PF2|)+(|QF1|+|QF2|)=2a+2a,=4a=24.∴△PQF2的周长24,故答案为:24.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,由此能求出甲、乙两名志愿者恰好同时被选中的概率.【解答】解:某博物馆需要志愿者协助工作,从6名志愿者中任选3名,基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,∴其中甲、乙两名志愿者恰好同时被选中的概率是:p===.故答案为:.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*a x,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是(﹣,2] .【考点】5B:分段函数的应用.【分析】求出f(x)的解析式,得出f(x)的单调性,根据单调性得出t﹣1和4t的大小关系,从而可得t的范围.【解答】解:∵0<a<1,∴当x≤1时,a x≥a,当x>1时,a>a x,∴f(x)=.∴f(x)在(﹣∞,1]上单调递减,在(1,+∞)上为常数函数,∵f(t﹣1)>f(4t),∴t﹣1<4t≤1或t﹣1≤1<4t,解得﹣<t≤或.∴﹣.故答案为:(﹣,2].三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.【考点】4N:对数函数的图象与性质.【分析】(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3即可,由f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),可判断函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.即sinα=1,可求得α.【解答】解:(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3,∴函数f(x)的定义域为(﹣3,3);∵f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),∴函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.∴sinα=1,∴α=2k,(k∈Z).27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.【考点】5D:函数模型的选择与应用.【分析】分别计算两种方案的缴纳额,即可得出结论.【解答】解:若按方案①缴费,需缴费50×0.9=45万元;若按方案②缴费,则每天的缴费额组成等比数列,其中a1=,q=2,n=20,∴共需缴费S20===219﹣=524288﹣≈52.4万元,∴方案①缴纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1)取AC的中点F,连结EF,DF,则EF∥CC1,DF∥BC,故平面DEF∥平面BCC1B1,于是DE∥平面BCC1B1.(2)在Rt△DEF中求出tan∠EDF.【解答】(1)证明:取AC的中点F,连结EF,DF,∵D,E,F分别是AB,A1C1,AC的中点,∴EF∥CC1,DF∥BC,又DF∩EF=F,AC∩CC1=C,∴平面DEF∥平面BCC1B1,又DE⊂平面DEF,∴DE∥平面BCC1B1.(2)解:∵EF∥CC1,CC1⊥平面BCC1B1.∴EF⊥平面BCC1B1,∴∠EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,则DF=,EF=1,∴tan∠EDF=.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.【考点】HI:五点法作函数y=Asin(ωx+φ)的图象;H2:正弦函数的图象.【分析】(1)由已知利用两角差的正弦函数公式可得y=3sin(2x﹣),利用周期公式即可得解.(2)令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,可得函数的单调递减区间.(3)根据五点法作图的方法先取值,然后描点即可得到图象.【解答】解:(1)∵=3sin (2x ﹣),∴函数的最小正周期T==π.(2)∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k ∈Z,∴函数的单调递减区间为:[kπ+,kπ+],k∈Z,(3)列表:x2x﹣0π2πy030﹣30描点、连线如图所示:30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l 与椭圆的另一个交点为B,求线段AB的长.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据题意得F(1,0),即c=1,再通过e=及c2=a2﹣b2计算可得椭圆的方程;(2)将准线方程代入椭圆方程,求得A点坐标,求得抛物线的切线方程,由△=0,求得k的值,分别代入椭圆方程,求得B点坐标,利用两点之间的距离公式,即可求得线段AB的长.【解答】解:(1)根据题意,得F(1,0),∴c=1,又e=,∴a=2,∴b2=a2﹣c2=3,故椭圆的标准方程为:(2)抛物线的准线方程为x=﹣1由,解得,,由A位于第二象限,则A(﹣1,),过点A作抛物线的切线l的方程为:即直线l:4x﹣3y﹣4=0由整理得整理得:ky2﹣4y+4k+6=0,当k=0,解得:y=,不符合题意,当k≠0,由直线与抛物线相切,则△=0,∴(﹣4)2﹣4k(4k+6)=0,解得:k=或k=﹣2,当k=时,直线l的方程y﹣=(x+1),则,整理得:(x+1)2=0,直线与椭圆只有一个交点,不符合题意,当k=﹣2时,直线l的方程为y﹣=﹣2(x+1),由,整理得:19x2+8x﹣11=0,解得:x1=﹣1,x2=,则y1=,y2=﹣,由以上可知点A(﹣1,),B(,﹣),∴丨AB丨==,综上可知:线段AB长度为2017年7月12日。
2019年山东省春季高考数学试题及答案word版
山东省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)与卷二(非选择题)两部分,满分120分,考试时间120分钟。
考生清在答题卡上答题,考试结束后,请将本试卷与答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器得题目,除题目有具体要求外,最后结果精确到0、01。
卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出得四个选项中,只有一项符合题目要求,请将符合题目要求得选项字母代号选出.并填涂在答题卡上)1、 已知集合M={0,1},N={1,2},则M ∪N 等于( )A 、 {1}B 、 {0,2}C 、 {0,1,2}D 、2、 若实数a,b 满足ab>0,a+b>0,则下列选项正确得就是( )A 、 a>0,b>0B 、 a>0,b<0C 、 a<0,b>0D 、 a<0,b<0 3、 已知指数函数y=a x ,对数函数y=log b x 得图像如图所示,则下列关系式正确得就是( )A 、 0<a<b<1B 、 0<a<1<bC 、 0<b<1<aD 、 a<0<1<b4、 已知函数f(x)=x 3+x,若f(a)=2,则f(a)得值就是( )A 、 2B 、 2C 、 10D 、 105、 若等差数列{a n }得前7项与为70,则a 1+a 7等于( )A 、 5B 、 10C 、 15D 、 206、 如图所示,已知菱形ABCD 得边长就是2,且∠DAB =60°,则 得值就是( )A 、 4B 、C 、 6D 、7、 对于任意角α,β,“α) A 、充分不必要条件 充要条件 D 、 既不充分也不必要条件 8、 如图所示,直线l ⊥OP ,A 、 3x -2y=0 B 、 3x+2y -12=0 y第3题 图 B第6题 图C、2x-3y+5=0D、2x+3y-13=09、在(1+x)n得二项展开式中,若所有项得系数之与为64,则第3项就是( )A、15x3B、20x3C、15x2D、20x210、在RtABC中,∠ABC=90°,AB=3,BC=4,M就是线段AC上得动点、设点M到BC得距离为x, MBC得面积为y,则y关于x得函数就是( )A、y=4x,x∈B、y=2x,x∈C、y=4x,x∈D、y=2x,x∈11、现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法得种树就是( )A、360B、336C、312D、24012、设集合M={2,0,2,4},则下列命题为真命题得就是( )A、a就是正数B、b就是自然数C、c就是奇数D、d就是有理数13、已知sinα= ,则cos2α得值就是( )A、B、C、D、14、已知y=f(x)在R上就是减函数,若f(|a|+1)<f(2),则实数a得取值范围就是( )A、(-∞,1)B、(-∞,1)∪(1,+∞)C、(-1,1)D、(-∞,-1)∪(1,+∞)15、已知O为坐标原点,点M在x轴得正半轴上,若直线MA与圆x2+y2=2相切于点A,且|AO|=|AM|,则点M得横坐标就是( )A、 2B、C、 2D、416、如图所示,点E、F、G、H分别就是正方体四条棱得中点,则直线EF与GH得位置关系就是( )A、平行B、相交C、异面D、重合EFGH 第16题图17、 如图所示,若x,y 满足线性约束条件 ,则线性目标函数z=2xy 取得最小值时得最优解就是( )A 、 (0,1)B 、 (0,2)C 、 (1,1)D 、 (1,2)18、 箱子中放有6张黑色卡片与4张白色卡片,从中任取一张,恰好取得黑色卡片得概率就是( )A 、B 、C 、D 、19、 已知抛物线得顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M(2,4),则其标准方程就是( )A 、 y 2=8xB 、 y 2=-8x 或x 2=yC 、 x 2=yD 、 y 2=8x 或x 2=-y20、 已知ABC 得内角A,B,C 得对边分别就是a ,b,c,若a =6,sinA=2cosBsinC,向量m = ,向量n =(-cosA,sinB),且m ∥n,则ABC 得面积就是( )A 、 18B 、 9C 、 3D 、卷二(非选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分。
山东省职教高考(春季高考)模拟考试数学试卷
山东省职教高考(春季高考)模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一个选项正确)1. 已知全集U={1,2,3,4},集合A={2,4},B={2,3},则u C A B =( )A.∅B.{1,2,3}C.{1,2}D.{3} 2. 绝对值不等式2|1-x |<的解集为( )A .(-∞,-1)B .(3,+∞)C .(-1,3)D .(-∞,-1)∪(3,+∞) 3. 下列函数中,既是奇函数又是增函数的为( ).A .y =x +1B .y =-x 3C .y =1x D .y =x |x | 4. 向量(AB +MB )+(BO +BC )+OM 化简后等于( )A . BCB . ABC . ACD .AM 5. 圆22(2)(3)2x y -++=的圆心和半径分别是( ).A .(2,3)-,1B .(2,3)-,2C .(2,3)-D .(2,3)-6. 点P (-1,2)到直线8x-6y+15=0的距离为( )A. 2B. 21 C. 1 D.277. 某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A. 15,5,25B. 15,15,15C. 10,5,30D. 15,10,209. 在等差数列{a n }中,a 1+a 9=10,则a 5的值为 ( )A .5B .6C .8D .1010. 给出命题p :1与4的等比中项是2; q :φ={0},则在下列三个复合命题:“p ∧q 、p ∨q 、⌝p ”中,真命题的个数为( )A 、3个B 、2个C 、1个D 、0个11.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则p 的值是( ) A . 4- B .2- C .2 D .412. 从9名学生中任意选出3名参加某项活动,其中甲被选中的概率为( )A .213B .715C .13D .32513. 已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .815. 在△ABC 中,C =60°,AB =3,BC =2,那么A 等于( )A .135°B .105°C .45°D .75°516. 下图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84, 4.84B .84, 1.6C .85, 1.6D .85, 417.自点1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )B. 3C. 10D. 5A. 18.设 =( ,sinα), =(cosα, )且 ∥ ,则锐角α为( )A .30°B .60°C .45°D .75°19. 若l 、m 表示直线,α、β、γ表示平面,则使α∥β的条件是( )A .α⊥γ,β⊥γB .l ∥α,l ∥βC .α∩γ=l ,β∩γ=m 且l ∥mD .l ⊥α,l ⊥β20.若443322102)32(x a x a x a x a a x ++++=+,则()()2202413a a a a a ++-+=( )A. 1B. -1C. 0D. 2二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)22.在△ABC 中,若a =3,b =3,31C cos=∠,则△ABC 的面积等于________. 23. 若命题P:“存在x ∈R ,使得x 2+2x +5=0成立”则P ⌝为 ___________________.,则f(-3)= ________25. 如图,半径为2的半球内有一内接正六棱锥P —ABCDEF 则此正六棱锥的侧面积是________.三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(7分)设数列{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75 (1)求数列{a n }的通项公式; (2)若na n 2b ,证明数列{b n }为等比数列.27.(7分)为落实十九大报告“绿水青山就是金山银山”的理念,我国的沙漠治理工作得到了进一步加强。
(完整)2019年山东省春季高考数学试题及答案版,推荐文档
D. 既不充分也不必要条件 y
A. 3x-2y=0
B. 3x+2y-12=0
3P
C. 2x-3y+5=0 D. 2x+3y-13=0
O2
x
9. 在(1+x)n 的二项展开式中,若所有项的系数之和为 64,则第 3 项是( )第 8 题 图
A. 15x3
B. 20x3
C. 15x2
D. 20x2
10. 在 Rt ABC 中,∠ABC=90°,AB=3,BC=4,M 是线段 AC 上的动点. 设点 M 到 BC 的距离为
卷一(选择题共 60 分) 一、选择题(本大题 20 个小题,每小题 3 分,共 60 分。在每小题列出的四个选项中,只有 一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)
1. 已知集合 M={0,1},N={1,2},则 M∪N 等于( )
A. {1}
B. {0,2}
C. {0,1,2}
A. 8
B. 8
C. 7
9
9
9
D. 7 9
14. 已知 y=f(x)在 R 上是减函数,若 f(|a|+1)<f(2),则实数 a 的取值范围是( )
A. (-∞,1) B. (-∞,1)∪(1,+∞) C. (-1,1) D.(-∞,-1)∪(1,+∞)
15.
已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2+y2=2 相切于点 A,且
|AO|=|AM|,则点 M 的横坐标是( )
A. 2
B. 2
C. 2 2
D. 4
16. 如图所示,点 E、F、G、H 分别是正方体四条棱的中点,则直线 EF 与 GH 的位置关系是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 2
2018-2019年山东省春季高考数学模拟试题2
一、选择题(本大题共20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合A={1,3}, B={1,2}, C={2,3,4}, 则C B A ⋂⋃)(=() A.{1,2,3} B.{2,4} C.{2,3}D.{2,3,4}
2.若p 是假命题,q 是真命题,在下列命题中真命题共有()
①p ⌝②q p ∨③q p ∧④q ⌝
A .1个
B .2个
C .3个
D .4个 3.已知代数式242-+a a 的值是3,则代数式1-a 的值是( ) A.6- B.0C.06或- D.2
4.函数)1)(3ln(+-=x x y 的定义域是( )
A.)3,1(-
B.]3,1[-
C.),3()1,(+∞⋃--∞
D.),3[]1,(+∞⋃--∞
5.设函数)(x f 是定义在R 上的偶函数,且在),0[+∞上单调递增,则)4(),3(-f f 的大小关系是( )
A.)4()3(->f f
B.)4()3(-<f f
C.)4()3(-=f f
D.无法比较 6.等差数列
{}n a 中,若58215a a a -=+,则5a 等于()
A.3
B.4
C.5
D.6
7.若0<a<b,下列不等式成立的是( ) A.b
a
11< B.b a 22< C.b a 2
12
1log log < D.22b a >
8.式子++++)()(化简结果是( ) A.AB B. C. D.AM
9.函数()()33142
≤≤- +--=x x x x f 的值域为( )
A.(]5,∞-
B.[)+∞,5
C.[]5,20-
D.[]5,4
10.已知△ABC 的三个顶点为A(1,1),B(4,1),C(4,5),则cosC 等于( ) A.5
3B.5
3- C.5
4- D.5
4
11.已知2
2
cos -=x ,且)2,0[π∈x 那么x 的值是( ) A.
4
πB.43π
C.45π
D.4543ππ或 12.直线l 经过点M (3,1)且其中一个方向向量)2,1(--=n ,则直线l 的方程是( ) A.2x-y-5=0 B. x+2y-5=0C.2x-y-7=0 D.x+2y-1=0 13.二项式153)2(x
x -
的展开式中,常数项是()
A.第6项
B.第7项
C.第8项
D.第9项
14.有8个座位供四个人坐,一人坐一个座位,共有不同坐法的种数是( )
A.40320
B.4096
C.65536
D.1680 15.设角α的终边经过点)1,3(-P ,则)90sin(0α+等于( )
A.
2
3 B.2
1-
C.23-
D .4
3- 16.直线y-2x+5=0与圆x 2+y 2-4x+2y+2=0的位置关系是( )
A.相离
B.相切
C.相交且直线过圆心
D.相交且直线不过圆心 17.已知
x,y 满足,
1020
12⎪⎩
⎪⎨⎧≤≥+≥+-x y x y x 则y x z 3+=的最小值是( )
A.7-
B.3
5
C.5-
D.5
18.若抛物线2
2y px =的焦点与椭圆22
162
x y +
=的右焦点重合,则p 的值为( ) A.2- B.2C.4- D.4
19.在△ABC 中,a=2,∠A=300,∠C=450,则△ABC 的面积等于( )
A.2
B.22
C.13+
D.2
13+
20.设O 为坐标原点,抛物线y 2
=2x 与过焦点的直线交于A 、B 两点,则⋅等于
2 / 2
( )
A.43
B.4
3
- C.3 D.3- 二、填空题(本大题共5个小题,每题4分,共20分.)
21.设函数,1
,21
,1)(22
⎪⎩⎪⎨⎧>-+≤-=x x x x x x f 则))2(1(
f f 的值是。
22. 若函数f (x)是定义在R 上的偶函数,且图像经过点(-1,2),则f(-1)+f(1)= 23.已知圆锥的母线长为8,底面周长为6π,则它的体积是. 24.已知02
,32cos <<-=
απ
α,则=α2sin . 25.设中心在原点的双曲线与椭圆
112
162
2=+y x 有公共的焦点,且它们的离心率互为倒数,则该双曲线的渐近线的方程为.
三、解答题(本大题共5个小题,共40分,解答应写出文字说明,证明过程或演算步骤) 26.等比数列{n a }中,已知16,241==a a
(1)求等比数列{n a }的通项公式;
(2)若53a a ,分别是等差数列{n b }的第三项和第五项,试求数列{n b }的通项公式及前n 项和S n
27.二次函数c bx ax y ++=2满足:)1()1(x f x f -=+;)(x f 的最大值为15;)(x f 的图像于y 轴交点的纵坐标是9.求)(x f 的表达式. 28.已知函数
3cos 32sin cos 2)(2-+=x x x x f .
⑴求函数
)(x f 的最小正周期;
⑵求函数)(x f 的最大值和最小值及相应的x 的值; ⑶求函数)(x f 的单调增区间.
29.如图所示,空间四边形ABCD 中,AB=BC=CD=DA=a ,
对角线a AC 2
6
=
,a BD 2=, (1)求证:BD AC ⊥
(2)求:二面角A-BD-C 的大小.
30.双曲线 C 与椭圆 x28+y2
4=1有相同的焦点,直线 y =3x 为C 的一条渐近线. (1)求双曲线 C 的标准方程;
(2)过点 P (0,4)和右焦点的直线 l ,交双曲线 C 于 A ,B 两点,求线段 AB 中点 Q 的坐标.
A
D
B。