山东春季高考数学模拟试题汇编
2024年山东省春季高考济南市第一次模拟考试数学试题(高频考点版)

一、单选题二、多选题1. 若“”是“函数的图像不过第三象限”的必要不充分条件,则实数的取值范围是( )A.B.C.D.2. 一组数据包括47、48、51、54、55,则这组数据的标准差为( )A.B.C .10D .503. 已知复数,则复数的模是( )A .2B.C.D .34. 设、是两条不同的直线,、是两个不同的平面,给出下列命题:①若,,则.②若,,则.③若,,则.④若,,则.其中正确命题的序号是( )A .①③④B .②③④C .①②④D .①②③5. 2017年1月我市某校高三年级1600名学生参加了2017届全市高三期末联考,已知数学考试成绩(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次期末联考中成绩不低于120分的学生人数约为A .120B .160C .200D .2406. 已知函数有唯一的零点,则常数( )A.B .1C.D.7. “且”是“直线过点”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件8. 已知双曲线(,),以点为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为( )A.B.C.D.9. 数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词源于希腊文,它的原意是“旋卷”或“缠卷”.小明对螺旋线有着浓厚的兴趣,连接嵌套的各个正方形的顶点就得到了近似于螺旋线的美丽图案,其具体作法是:在边长为1的正方形中,作它的内接正方形,且使得;再作正方形的内接正方形,且使得;与之类似,依次进行,就形成了阴影部分的图案,如图所示.设第个正方形的边长为(其中第1个正方形的边长为,第2个正方形的边长为,…),第个直角三角形(阴影部分)的面积为(其中第1个直角三角形的面积为,第2个直角三角形的面积为,…),则( )2024年山东省春季高考济南市第一次模拟考试数学试题(高频考点版)2024年山东省春季高考济南市第一次模拟考试数学试题(高频考点版)三、填空题四、解答题A .数列是公比为的等比数列B.C .数列是公比为的等比数列D .数列的前项和10. 如图,已知函数的图象,,则()A.B.C.D.11. 下列命题正确的有( )A .空间中两两相交的三条直线一定共面B .已知不重合的两个平面,,则存在直线,,使得,为异面直线C .过平面外一定点,有且只有一个平面与平行D .已知空间中有两个角,,若直线直线,直线直线,则或12. 已知为坐标原点,椭圆.过点作斜率分别为和的两条直线,,其中与交于两点,与交于两点,且,则( )A.的离心率为B.C.D .四点共圆13. 下列说法中正确的是______.(写出所有正确说法的序号)①两直线无公共点,则两直线平行;②两直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的直线,与平面内的任一直线均构成异面直线;④和两条异面直线都相交的两直线必是异面直线.14. 已知函数在上既有极大值也有极小值,则实数a 的取值范围为___________.15. 在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是______.16. 已知函数,.(1)当时,求曲线在点处的切线方程;(2)已知函数,若在上有两个零点,求实数的取值范围.17.已知函数有两个零点,,且,(1)求的取值范围;(2)证明:18. 已知函数,.(1)当时,求的最小值;(2)当时,不等式恒成立,求的取值范围.19. 如图,在四棱锥中,底面ABCD是矩形,底面ABCD,且,E是PC的中点,平面ABE与线段PD交于点F.(1)证明:F为PD的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线BE与平面PAD所成角的正弦值.条件①:三角形BCF的面积为;条件②:三棱锥的体积为1.注:如果选择条件①和条件②分别解答,按第一个解答计分.20. 为了解某一地区新能源电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电动汽车销量(单位:万台)关于(年份)的线性回归方程,且销量的方差为,年份的方差为.(1)求与的相关系数,并据此判断电动汽车销量与年份的线性相关性的强弱.(2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:性别购买非电动汽车购买电动汽车总计男性39645女性301545总计692190依据小概率值的独立性检验,能否认为购买电动汽车与车主性别有关?(3)在购买电动汽车的车主中按照性别进行分层抽样抽取7人,再从这7人中随机抽取3人,记这3人中男性的人数为,求的分布列和数学期望.①参考数据:.②参考公式:线性回归方程为,其中;相关系数,若,则可判断与线性相关较强;,其中.附表:0.100.050.0100.0012.7063.841 6.63510.82821. 设为数列的前项和,且满足:.(1)设,证明是等比数列;(2)求.。
山东春季数学高考模拟试题

春季高考模拟试题一、选择题(本大题共25个小题,每小题3分,共75分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1、已知全集}4,3,2,1,0{=U ,}3,2,1,0{=A ,}4,2,1,0{=B ,则)(B A C U =( )A. }4,3{B. }4,3,0{C. }4,3,2,1,0{D. },2,1,0{2、设命题}0{:=φp ;37:>q ;则下列命题① p p ∨ ② q p ∧ ③ p ⌝ ④ q ⌝真命题的个数是( )A. 1B. 2C. 3D. 4 3、01=+x 是0322=--x x 的( )A.充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件4、不等式012>--x 的解集是 ( )A .{x x >-1}B .{xx <3} C .{x x >3或x <-1} D .{x -1<x <3} 5、函数)1lg(1++=x xy 的定义域是( ) A. }01|{≠->x x x 且 B. x x |{≥}01≠x 且C. }1|{>x xD. x x |{≥}16、已知)(x f 是偶函数,)(x g 是奇函数,并且)(x f 和)(x g 在),0[+∞上都是增函数,那么在区间]0,(-∞上( )A. )(x f 和)(x g 都是减函数B. )(x f 是增函数,)(x g 是减函数C. )(x f 是减函数,)(x g 是增函数D. )(x f 和)(x g 都是增函数7、若)3sin(2)(π+=x x f ,则)6(π+x f 等于( )A. x sin 2B.x cos 2C.x 2sinD.x 2cos8、下列函数中,在区间)1,0(上是增函数的是( )A. x x y 22-=B. x y 5.0log =C. x y )32(=D. x y )23(= 9、函数①x y a log =②x y b log = ③x c y =的图象如图所示,则下列关系式正确的是()A .c a b <<<<10B .c b a <<<<10C .a b c <<<<10D .b a c <<<<1010、若2tan =α,则ααααcos sin cos sin +-= ( ) A .32 B .3 C .31 D .23. 11、等差数列}{n a 中,21=a ,42=a ,则这个数列的通项公式是( )A.n 22+B. n 22-C. n 2D. n 2-12、等比数列}{n a 前三项的和为7,积为8,则公比q 等于( )A. 2B. 212或C. 21D. 212--或 13、若12|a |=→,5|b |=→,><→→b a ,=60°,则=⋅→→b a ( )A. 30-B. 30C. 330D. 6014、已知AB =(5,-3) ,C(-1,3) ,CD =2AB ,则点D 坐标 ( )A .(11,9)B .(4,0)C .(9,3)D .(9,-3)15、已知直线0623:=-+y x l ,则图中阴影部分表示的不等式是A .0623>-+y xB .0623<-+y xC .623-+y x ≥0D .623-+y x ≤016、已知03sin 2=+x ,]2,0[π∈x ,则x 的值为( ) A.6π B. 3π C. 3π或32π D. 34π或35π 17、函数2)2cos 2(sin x x y +=的最小正周期是( ) A. π4 B. π2 C. π D.2π 18、过点)5,3(-且平行于向量)2,1(--=→v 的直线方程为( )A. 0112=--y xB. 011=-+y xC. 0112=+-y xD. 0112=++y x19、已知过点)2,2(-P 且垂直于向量)4,3(=→n 的直线与圆02222=-+-+a a ax y x 相切,则实数a 的值为( ) A. 4 B. 41 C. 914或 D. 411或- 20、椭圆两焦点为1F (-1,0)、2F (1,0),P 在椭圆上,且|1PF |、|21F F |、|2PF |构成等差数列,则此椭圆方程为 ( )A.191622=+y xB.1121622=+y xC.13422=+y xD.14322=+y x 21、某学校举办元旦晚会,共4个歌舞类节目,3个语言类节目排成节目单,则3个语言类节目不相邻的排法种数为( )A. 77AB. 3344A AC. 3544A AD. 3355A A22、为了解参加一次知识竞赛的1252名学生的成绩,决定采取系统抽样的方法抽取一个容量为50的样本,那么应从总体中随机剔除的个体的数目是( )A. 2B. 3C. 4D. 523、9)1(x -的二项展开式中第4项的系数是( )A. 126B. 126-C. 84D. 84-24、10件产品中有两件次品,从中任取两件,全是正品的概率是( ) A.154 B.31 C.157 D. 4528 25、正方体ABCD —1111D C B A 中,1AC 与DC 夹角的正切值是( ) A. 22 B. 1 C. 2 D. 326、已知二次函数c bx x y ++=2,当1-=x 时,函数2min -=y ,则函数的表达式为______________________.27、已知下列数据:423,421,419,420,417,422,419,423,418,这组数据的标准差是___________(结果精确到0.01)28、在△ABC 中,若36ABC =∆S ,4=c , 60=B ,则b 的值是_______________. 29、一根长3米的圆柱锯成两段圆柱体后,表面积增加4平方米,则原圆柱的体积为______________30、过抛物线x y 42=的焦点的直线交抛物线于A ),(11y x 和B ),(22y x 两点,若21x x +=6,则AB = ..31、(10分)已知定义在R 上的二次函数)(x f 满足)2()2(x f x f -=+,且图象在y 轴上的截距为5,在x 轴上的截得的线段长为6,求函数)(x f 的解析式。
2024年山东省春季高考济南市第三次模拟考试数学试题

2024年山东省春季高考济南市第三次模拟考试数学试题一、单选题1.设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}2.对于命题,p q 、若p q ∨⌝是假命题,则下列说法正确的是( ) A .p q 、都是真命题 B .p q 、都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题3.在ΔABC 中,“π3B =”是“角A ,B ,C 成等差数列”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,函数()f x 图象如图所示,则不等式()0f x ≤的解集为A .[][]5,22,5--UB .[][]2,02,5-UC .[]22-,D .[][]5,20,2--U5.如图中的图象所表示的函数的解析式为( )A .31(02)2y x x =-≤≤ B .331(02)22y x x =--≤≤ C .31(02)2y x x =--≤≤ D .11(02)y x x =--≤≤6.一个水平放置的三角形的斜二测直观图是等腰直角三角形A B O ''',若2O B ''=,那么原ABO V 的面积是( )A.1B C D .7.已知0.150log 2,log 2a b ==,则21a b+=( )A .-2B .-1C .1D .28.若数列{}n a 的前n 项和(1)n S n n =+,则6a 等于( ) A .10B .11C .12D .139.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u vA .3144AB AC -u u u v u u u v B .1344AB AC -u u uv u u u v C .3144+AB AC u u uv u u u vD .1344+AB AC u u uv u u u v10.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石11.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .1012.设()tan π2α-=-,则()()()()sin πcos πsin πcos παααα-+-=+-+( )A .3B .13C .1D .1-13.设π3π44<<α,sin cos αα+=cos2=α( )A .12-B .12CD .14.已知向量(,1),(1,2)a m b == ,且222||||||a b a b +=+r r r r ,则m 的值为( )A .1B .2C .-1D .-215.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是( )A .121B .221C .321D .42116.若直线1:20l x ay +-=与()22:2120l x a y ++-=平行,则两直线之间的距离为( )A B .1 C D .217.圆22(1)(1)4x y -++=上的点到直线34140x y +-=的距离的最大值为( )A .3B .4C .5D .918.如图所示,正方体1111ABCD A B C D -的棱长为1,点,,E F G 分别为11,,BC CC BB 的中点,则下列说法正确的是( )A .直线1D D 与直线AF 垂直B .直线1AG 与平面AEF 平行 C .三棱锥F ABE -的体积为18D .直线BC 与平面AEF 所成的角为45︒19.已知双曲线1C 过点(A ,且与双曲线222:31C x y -=有相同的渐近线,则双曲线1C 的标准方程为( )A .221124x y -=B .221124y x -=C .221155x y -=D .221155y x -=20.函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法错误的是( )A .函数的周期是3π2B .函数()y f x =的图象的过点C .函数()y f x =在5ππ,6⎡⎤--⎢⎥⎣⎦上单调递减 D .当13π3π,62x ⎛⎫∈-- ⎪⎝⎭时,()1f x >二、填空题21.若函数2(1),0,()1,0,x x f x x x x ⎧-≤⎪=⎨+>⎪⎩则((1))f f -=. 22.如图,是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以自豪的发现,在这个伟大发现中,球的体积与圆柱的体积之比为.23.某学校有5个班级的同学一起到某工厂参加社会实践活动,该工厂有5个车间供学生选择,每个班级任选一个车间进行实践学习,则恰有2个班级选择甲车间,1个班级选择乙车间的方案有种.24.已知变量,x y 满足线性约束条件202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则212x yz +⎛⎫= ⎪⎝⎭的最大值为.25.已知12F F 、是椭圆22221(0)x y a b a b+=>>的左,右焦点,点P 为椭圆上一点,O 为坐标原点,2V POF 为正三角形,则该椭圆的离心率为.三、解答题26.已知函数()mf x x x=+,且(1)2f =. (1)求m 的值;(2)判断函数()f x 在(1,)+∞上是增函数还是减函数,并证明. 27.已知等比数列{}n a 的各项皆为正数,且351,100a a ==. (1)求数列{}n a 的通项公式; (2)求()123100lg a a a a ⋅⋅⋅⋅L 的值.28.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,B ,C ,D 三地位于同一水平面上,这种仪器在B 地进行弹射实验,,C D 两地相距100m ,60BCD ∠=︒,在C 地听到弹射声音的时间比D 地晚217秒,在C 地测得该仪器至最高点A 处的仰角为30︒.(已知声音的传播速度为340m/s ),求:(1)B ,C 两地间的距离; (2)这种仪器的垂直弹射高度AB .29.如图所示,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD ,90,BAD ADC ︒∠=∠=AB AD =11,2CD ==PD =(1)若点M 为PA 的中点,证明://AC 平面MDE ; (2)求异面直线PB 与CD 所成角的大小.30.如图所示,抛物线22(0)y px p =>的准线过点(2,3)-,(1)求抛物线的标准方程;(2)若角α为锐角,以角α为倾斜角的直线经过抛物线的焦点F ,且与抛物线交于A 、B 两点,作线段AB 的垂直平分线l 交x 轴于点P ,证明:||||cos 2α-FP FP 为定值,并求此定值.。
2023年山东省春季高考模拟考试数学试题

2023年山东省春季高考第二次模拟考试数学试题一、选择题1.若全集U ={−1,0,1,2},P ={x ∈Z |x 2<2},则集合P 关于全集U 的补集是A.{2}B.{0,2}C.{−1,2}D.{−1,0,2}2.若a,b,c ∈R ,且a >b ,则下列不等式一定成立的是A.a +c >b −cB.(a −b )c 2≥0C.ac >bcD.c 2a−b >03.函数y =√log 0.5(3x −2)的定义域是A.[23,1)B.(23,+∞)C.(0,1]D.(23,1]4.设m ∈R ,命题存在m >0,使方程x 2+x −m =0有实根的否定是A.任意m >0,使方程x 2+x −m =0无实根B. 任意m ≤0,使方程x 2+x −m =0有实根C. 存在m >0,使方程x 2+x −m =0无实根D. 存在m ≤0,使方程x 2+x −m =0有实根5.设函数f (x )=(x +1)(x +a )为偶函数,则a =A.1B.−1C.−2D.26.在长方体ABCD −A 1B 1C 1D 1中,化简AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ +CC 1⃗⃗⃗⃗⃗⃗⃗ =A.BD 1⃗⃗⃗⃗⃗⃗⃗⃗B.DB 1⃗⃗⃗⃗⃗⃗⃗⃗C.AC 1⃗⃗⃗⃗⃗⃗⃗D.CA 1⃗⃗⃗⃗⃗⃗⃗7.南北时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”·其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,夹在两个平行平面之间的两个几何体的体积分别为V1,V2,被平行于这两个平面的任意平面截得的两个截面的面积分别为S1,S2,则S1,S2总相等”是V1,V2相等”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到A.200只B.300只C.400只D.500只9.下列关于(a−b)11的说法中错误的是A.展开式中的二项式系数之和为2048B.展开式各项系数之和为0C.展开式中只有第6项的二项式系数最大D.展开式中第6项的系数最小10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里A.156里B.66里C.42里D.36里⃗⃗⃗⃗⃗ ,则实数λ的值为11.已知点A(1,1),B(4,2)和向量a=(2,λ),若a ‖ABA.−32B.32C.−23D.2312.已知点P(1,2)在角α的终边上,那么sin2α的值是A.−45B.45C.−35D.3513.已知正四棱锥S−ABCD的直观图和正试图,如图所示,则该四棱锥的侧面积为A.√5B.4√5C.√6D.4√614.在北京冬奥会期间,共有1.8万多名赛会志愿者和20余万人次城市志愿者参与服务.据统计某高校共有本科生1600人,硕士生600人,博士生200人申请报名做志愿者,现用分层抽样方法从中抽取博士生30人,则该高校抽取的志愿者总人数为A.300B.320C.340D.36015.我校将对语、数、英、理、化、生六门学科进行期末考试,其中数学不能安排在第一场考,且语文不能安排在最后一场考,那么不同的考试安排方法有()种.A.600B.504C.480D.38416.甲乙两位射击运动员在一次射击中各射靶6次,每次命中的环数如下表:则下列说法正B.乙比甲射击的平均成绩高,乙比甲射击的成绩稳定C.甲比乙射击的平均成绩高,甲比乙射击的成绩稳定D.甲比乙射击的平均成绩高,乙比甲射击的成绩稳定17.已知直线平面,直线平面,给出下列命题,其中正确的是(1)α‖β⇒l⊥m(2)α⊥β⇒l‖m(3)l‖m⇒α⊥β(4)l⊥m⇒α‖βA.(1)(3)B.(2)(3)(4)C.(2)(4)D.(1)(2)(3)18.在ΔABC 中,若cos A cos B =b a =43,则ΔABC 是A.等腰三角形B.直角三角形C.等腰或直角三角形D.钝角三角形19.函数f (x )=A sin (wx +φ)(A >0,w >0,−π<φ<0)的部分图像如图所示,为了得到g (x )=A sin wx 的图像,只需将函数y =f (x )的图像A.向左平移π3个单位长度B. 向左平移π12个单位长度 C. 向右平移π3个单位长度D. 向右平移π12个单位长度20.已知双曲线的一个焦点与抛物线的焦点F 重合,抛物线的准线与双曲线交于A,B 两点,且ΔOAB 的面积为6(O 为原点),则双曲线的方程为A.x 23−y 212=1B.x 236−y 232=1C.x 23−y 2=1D.x 2−y 23=1二、填空题21.已知函数f (x )={x +2,x >0x 2,x ≤0,则f [f (−2)]= 22.已知函数y =f (x )是定义在[−4,4]上的减函数,且f (a +1)>f (2a ),则a 的取值范围是23.已知A (−1,4),B (3,−2),以AB 为直径的圆的标准方程为24.从1,2,3,4,5五个数中任意取出2个不重复的数组成一个两位数,这个两位数是偶数的概率是25.已知x,y满足{x−y≤0 2x+y≥0x+y−1≤0,则目标函数z=−x+y的最大值是三、解答题26.已知二次函数f(x)=ax2+bx+c(a≠0),f(x+1)−f(x)=2x,且f(0)=1(1)求函数f(x)的解析式(2)求函数f(x)在区间[−1,1]上的值域27.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=−1(1)若a3+b3=5,求{b n}的通项公式(2)若T3=21,求S328.已知ΔABC的周长为4(√2+1),且sin B+sin C=√2sin A(1)求边长a的值(2)若SΔABC=3sin A,求cos A的值29.在四棱锥P−ABCD中,AD⊥平面PDC,AD‖BC,PD⊥PB,AD=1,BC=2,E为PB中点(1)求证:AE‖平面PCD(2)求证:PD⊥平面PBC30.已知椭圆c:x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,以点F1为圆心,以3为半径的圆与以点F2为圆心,以1为半径的圆相交,且交点在椭圆C上,设点A(0,b),在ΔAF1F2中,∠F1AF2=2π3(1)求椭圆C的方程(2)设过点P(2,−1)的直线l不经过点A,且与椭圆C相交于M,N两点,若直线AM与AN的斜率分别是k1,k2,求k1+k2的值。
2024年山东省春季高考济南市第一次模拟考试数学试题(1)

一、单选题二、多选题1. 《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,圆锥的底面圆周和顶点都在同一球面上,则该球的体积为( )A.B.C.D.2. 已知,函数在上恰有5个零点,则的取值范围是( )A.B.C.D.3. 中,角A 、B ,C 的对边分别为a ,b ,c ,若,则( )A.B.C.D.4.已知函数在定义域上的值不全为零,若函数的图象关于对称,函数的图象关于直线对称,则下列式子中错误的是( )A.B.C.D.5. 已知向量与的夹角为,且,,则( )A.B.C .4D.6. 已知函数有两个极值点,若,则关于的方程的不同实根个数为( )A .2B .3C .4D .57. 化简( )A .4B .6C .8D .168. 长郡中学体育节中,羽毛球单打12强中有3个种子选手,将这12人任意分成3个组(每组4个人),则3个种子选手恰好被分在同一组的概率为( )A.B.C.D.9.已知正实数满足,则( )A.的最小值为6B.的最小值为3C.的最小值为D.的最小值为810. 已知函数,是的导数,下列说法正确的是( )A .曲线在处的切线方程为B .在上单调递增,在上单调递减C.对于任意的总满足D .直线与在上有一个交点且横坐标取值范围为11. 根据小红家2022年全年用电量(单位:度)和该月的用电量占年总用电量的百分比,绘制出如图所示的双层饼图.根据双层饼图,下列说法正确的是( )2024年山东省春季高考济南市第一次模拟考试数学试题(1)2024年山东省春季高考济南市第一次模拟考试数学试题(1)三、填空题四、解答题A .2022年第二季度的用电量为260度B .2022年下半年的总用电量为500度C .2022年11月的用电量为100度D .2022年12个月的月用电量的中位数为80度12. 关于函数,下列选项错误的有( )A.函数最小正周期为B.表达式可写成C .函数在上单调递增D.的图像关于直线对称13. 已知点O 为坐标原点,,,点P 在线段AB 上,且,则点P 的坐标为______.14.已知幂函数过点,且,则实数的取值范围是________.15.的展开式中,项的系数为____.16. 已知数列的首项,且.(1)求证:数列是等比数列;(2)设,求使不等式成立的最小正整数n .17. 已知函数在处的切线方程为(1)求实数,的值;(2)设函数,当时,的值域为区间的子集,求的最小值.18.已知数列为递增的等差数列,其中,且成等比数列.(1)求的通项公式;(2)设记数列的前n 项和为,求使得成立的m 的最小正整数.19. 如图,正三角形的边长为4,,,分别在边,和上,且为的中点.(1)若,,求;(2)若,,,四点共圆,求四边形的面积.20. 近年来随着科技的发展,药物制剂正朝着三效,即高效、速效、长效;以及三小,即毒性小、副作用小、剂量小的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时达到最高12微克/毫升,并维持这一最高值直至第4小时结束,接着开始衰退,血液中含药量y(微克)与时间x(小时)的函数关系如图,并发现衰退时y与x成反比例函数关系.(1)①当时,求y与x之间的函数表达式;②当时,求y与x之间的函数表达式;(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.21. 已知函数的部分图象如图所示.(1)求的解析式;(2)若函数,求在区间上的最大值和最小值.。
2023年山东省春季高考模拟考试数学试题6

2023年山东省春季高考模拟考试6数学试题一、选择题1.已知全集U ={1,2,3,4,5},集合M ={2,3},N ={3,4},则(C U M )∪N 等于A.{3}B.{4}C. {1,3,4,5}D. {1,5}2.函数y =√1−|2x |的定义域是A.[−1,1]B.(−∞,−12]∪[12,+∞) C.(−12,12) D.[−12,12]3.若不等式x 2−ax +b ≤0的解集是[2,4],则a +b 的值是A.6B.14C.2D.−24.函数f (x )={x −3,x ≥0x +2,x <0,则f [f (−2)]等于 A.−3B.−5C.0D.25.函数y =2|x |的大致图像是6.在等比数列{a n }中,a 1=1,a 2=−2,则a 9等于A.256B.−256C.512D.−5127.若a ⃗=−13b ⃗⃗(b ⃗⃗≠0⃗⃗),则A.a ⃗与b ⃗⃗同向,且|a ⃗|=3|b⃗⃗||b⃗⃗|B.a⃗与b⃗⃗方向相反,且|a⃗|=13C.a⃗与b⃗⃗方向相反,|a⃗|≠3|b⃗⃗||b⃗⃗|D.a⃗与b⃗⃗方向相同,且|a⃗|=138.x>1是x2>x的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知直线l经过点P(−√3,1),且直线l倾斜角的余弦值是1,则直线l的方程是2A.√3x−y+4=0B.√3x−3y+6=0C.x−√3y−3=0D.x+√3y=010.已知向量a⃗,b⃗⃗满足|a⃗|=1,a⃗⋅b⃗⃗=−1,则a⃗⋅(2a⃗−b⃗⃗)A.0B.2C.3D.411.已知sinα−cosα=4,则sin2α等于3A.−79B.−29C.29D.7912.从五名学生中选出四人分别参加语文、数学、英语和专业综合知识竞赛,其中学生甲不参加语文和数学竞赛,则不同的参赛方法共有A.24B.48C.72D.12013.二项式(1−x)n展开式中有9项,则展开式中的第5项的系数为A.70B.−70C.126D.24014.直线l:3x−y+2=0与圆C:x2+(y−1)2=5的位置关系是A.相交B.相切C.相离D.不确定15.将A,B,C,D这4名同学从左到右随机地排成一排,则A与B相邻且A与C之间恰好有1名同学的概率是A.12B.14C.16D.1816.将长方体截去一个四棱锥,得到的几何体,则该几何体的左视图为17.下列命题为真命题的是A.∀x∈R,x2−1>0B.∀x∈N,x3>0C.∃x∈Q,x2=2D.∃x∈Z,x3<118.设实数x,y满足{x+2y−4≤0x−y≥0y≥0,则Z=x−2y的最大值为A.2B.4C.6D.819.设ΔABC的内角A,B,C的对边分别为a,b,c,若a=2,C=2√3,cos A=√32,且b<c,则b=A.√3B.2C.2√2D.320.过双曲线x2−y23=1的右焦点且与x轴垂直的直线交该双曲线于A,B两点,则|AB|等于A.4√33B.2√3C.6D.4√3二、填空题21.设奇函数f(x)的定义域为[−5,5],若当x∈[0,5]时,f(x)的图像如图所示,则不等式f(x)< 0的解集为22.若log2x−log124=0,则实数χ的值是23.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图,则小区内用水量超过15m3的住户的户数为24.若一个圆锥的侧面展开图是面积为8π的半圆面,则该圆锥的体积是25.已知F1,F2是椭圆x29+y225=1的两个焦点,P是椭圆上任意一点,且∠F1PF2=2π3,则ΔF1PF2的面积等于三、解答题26.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x−3(1)求f(x)的解析式(2)求不等式f(x)≥1的解集27.已知公差不为零的等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列(1)求数列{a n}的通项公式(2)求数列{a n}的前10项之和28.已知f(x)=cos2x+√3sin x cos x+a,且f(π6)=2(1)求a的值(2)当x∈[0,π2]时,求使f(x)=32的x的值29.在四棱锥P−ABCD中,底面ABCD是边长为2的正方形,E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=√22AD(1)求证:EF‖平面PAD(2)求PB与平面ABCD所成角的余弦值30.在平面直角坐标系中,椭圆x 2a2+y2b2=1(a>b>0)的离心率为12,过椭圆右焦点F作两条互相垂直的弦AB与CD,当直线AB斜率为0时,|AB|=4(1)求椭圆的方程(2)若弦CD过点(0,−1),求线段AB的长度。
山东省职教高考(春季高考)模拟考试数学试卷

山东省职教高考(春季高考)模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一个选项正确)1. 已知全集U={1,2,3,4},集合A={2,4},B={2,3},则u C A B =( )A.∅B.{1,2,3}C.{1,2}D.{3} 2. 绝对值不等式2|1-x |<的解集为( )A .(-∞,-1)B .(3,+∞)C .(-1,3)D .(-∞,-1)∪(3,+∞) 3. 下列函数中,既是奇函数又是增函数的为( ).A .y =x +1B .y =-x 3C .y =1x D .y =x |x | 4. 向量(AB +MB )+(BO +BC )+OM 化简后等于( )A . BCB . ABC . ACD .AM 5. 圆22(2)(3)2x y -++=的圆心和半径分别是( ).A .(2,3)-,1B .(2,3)-,2C .(2,3)-D .(2,3)-6. 点P (-1,2)到直线8x-6y+15=0的距离为( )A. 2B. 21 C. 1 D.277. 某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A. 15,5,25B. 15,15,15C. 10,5,30D. 15,10,209. 在等差数列{a n }中,a 1+a 9=10,则a 5的值为 ( )A .5B .6C .8D .1010. 给出命题p :1与4的等比中项是2; q :φ={0},则在下列三个复合命题:“p ∧q 、p ∨q 、⌝p ”中,真命题的个数为( )A 、3个B 、2个C 、1个D 、0个11.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则p 的值是( ) A . 4- B .2- C .2 D .412. 从9名学生中任意选出3名参加某项活动,其中甲被选中的概率为( )A .213B .715C .13D .32513. 已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .815. 在△ABC 中,C =60°,AB =3,BC =2,那么A 等于( )A .135°B .105°C .45°D .75°516. 下图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84, 4.84B .84, 1.6C .85, 1.6D .85, 417.自点1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )B. 3C. 10D. 5A. 18.设 =( ,sinα), =(cosα, )且 ∥ ,则锐角α为( )A .30°B .60°C .45°D .75°19. 若l 、m 表示直线,α、β、γ表示平面,则使α∥β的条件是( )A .α⊥γ,β⊥γB .l ∥α,l ∥βC .α∩γ=l ,β∩γ=m 且l ∥mD .l ⊥α,l ⊥β20.若443322102)32(x a x a x a x a a x ++++=+,则()()2202413a a a a a ++-+=( )A. 1B. -1C. 0D. 2二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)22.在△ABC 中,若a =3,b =3,31C cos=∠,则△ABC 的面积等于________. 23. 若命题P:“存在x ∈R ,使得x 2+2x +5=0成立”则P ⌝为 ___________________.,则f(-3)= ________25. 如图,半径为2的半球内有一内接正六棱锥P —ABCDEF 则此正六棱锥的侧面积是________.三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(7分)设数列{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75 (1)求数列{a n }的通项公式; (2)若na n 2b ,证明数列{b n }为等比数列.27.(7分)为落实十九大报告“绿水青山就是金山银山”的理念,我国的沙漠治理工作得到了进一步加强。
2024年山东省春季高考济南市第一次模拟考试数学试题

一、单选题二、多选题1. 若,,则等于( )A.B.C.D.2. 已知某地区中小学生人数如图①所示,为了解该地区中小学生的近视情况,卫生部门根据当地中小学生人数,用分层随机抽样的方法抽取了10%的学生进行调查,调查数据如图②所示,则估计该地区中小学生的平均近视率为()A .50%B .32%C .30%D .27%3. 已知集合,若,使得成立,则实数b 的取值范围是A.B.C.D.4. 若复数,满足,则( )A.B.C.D.5. 已知为等比数列,是它的前项和,若,且与的等差中项为,则A .29B .30C .31D .336. 异面直线,所成的角为,直线,则异面直线与所成角的范围为( )A.B.C.D.7. 已知函数在处的切线方程为,不等式恒成立,则的最大值为( )A .1B.C .2D .e8. 已知函数若存在实数k,使得函数的值域为[-1,1],则实数的取值范围是A.B.C.D.9. 定义在上的函数满足,当时,,则函数满足( )A.B .是奇函数C .在上有最大值D .的解集为10.已知抛物线的焦点为为坐标原点,其准线与轴交于点,经过点的直线与抛物线交于不同两点,则下列说法正确的是( )A.B.存在C.不存在以为直径且经过焦点的圆D .当的面积为时,直线的倾斜角为或2024年山东省春季高考济南市第一次模拟考试数学试题三、填空题四、填空题五、填空题11.如图,已知正四棱台的上、下底面边长分别为,,其顶点都在同一球面上,且该球的表面积为,则侧棱长为()A.B.C.D.12. 已知,则___________.13. 从A ,B 等5处水样监测点中随机选3处进行水样检测,则A ,B 不同时入选的概率为______.14.在的展开式中,若的奇数次幂项的系数之和为64,则______.15. 已知袋中装有大小相同的()个红球和2个白球. 从中任取2个球,记取出的白球个数为,若,则______,______.16. 阅读下面题目及其解答过程..)求证:函数是偶函数;)求函数的定义域是,都有又因为② .所以函数是偶函数.时,,在区间上单调递减.时, 时, 在区间 的单调递增区间是.以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出正确的选项,并填写在相应的横线上(只需填写“A”或“B”).空格序号选项①(A )(B )②(A )(B )③(A )2(B )④(A )(B )⑤(A )(B )六、解答题七、解答题八、解答题九、解答题十、解答题17. 直线与轴交于点,交圆于,两点,过点作圆的切线,轴上方的切点为,则__________;的面积为__________.18.已知函数(Ⅰ)将函数化简成的形式,并指出的周期;(Ⅱ)求函数上的最大值和最小值19. 已知:①函数;②向量,,且,;③函数的图象经过点.请在上述三个条件中任选一个,补充在下面问题中,并解答.已知______,且函数的图象相邻两条对称轴之间的距离为.(1)若,且,求的值;(2)求函数在上的单调递减区间.(3)请用五点作图法作出函数的图象.20. 如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,,,.(1)求证:平面⊥平面;(2)在棱上是否存在点使得二面角大小为?若存在,求出的长;若不存在,请说明理由.21. 某商场对,两类商品实行线上销售(以下称“渠道”)和线下销售(以下称“渠道”)两种销售模式.类商品成本价为120元件,总量中有40%将按照原价200元/件的价格走渠道销售,有50%将按照原价8.5折的价格走渠道销售;类商品成本价为160元/件,总量中有20%将按照原价300元/件的价格走渠道销售,有40%将按照原价7.5折的价格走渠道销售.这两种商品剩余部分促销时按照原价6折的价格销售,并能全部售完.(1)通过计算比较这两类商品中哪类商品单件收益的均值更高(收益=售价-成本);(2)某商场举行让利大用卖活动,全场,两类商品走渠道销售,假设每位线上购买,商品的顾客只选其中一类购买,每位顾客限购1件,且购买商品的顾客中购买类商品的概率为.已知该商场当天这两类商品共售出5件,设为该商场当天所售类商品的件数,为当天销售这两类商品带来的总收益,求的期望,以及当()时,可取的最大值.22.数列的前项和为,且.(1)求的通项公式;(2)若,的前项和为,求的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-----好资料学习2015-2016年普通高校招生(春季)考试9.淄博电视台组织“年货大街”活动中,有5个摊位要展示5个品牌的肉制品,其中有两个品牌是同一工厂的产品,数学模拟试题必须在相邻摊位展示,则安排的方法共()种。
注意事项: (A) 12 (B) 48 (C) 96 (D) 120分钟.考试结束后,1201.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间1x yy xa的图像可能是()时,函数=( =log ) 10.在同一坐标系中,当与>1a a将本试卷和答题卡一并交回.0.01.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到卷第I(选择题,共60分)).分,共60分3一、选择题(本大题共20个小题,每小题(A)(B)(C)(D)1NNMP=M∩ 1={0,1,2, 3, 4},={1,3,.设5},),则P的子集共有(a log的值是(,则) 11.若2=4a2 (D) 8个 (C)6个 (A) 2个 (B) 4个1 1(B) 0(C) 1 (D) (A) -2b?aba?”是“”的(2.“)359xx项的系数是( ))12.(1-展开式中含既不充分也不必要条件 (B) 充分不必要条件必要不充分条件(C) 充要条件(D) (A) (A)-5 (B)10 (C) -10 (D) 5qp,则下列结论正确的是()3.设命题?:=0,?:2 R{a}aaaa)等于(?)?(=13.在等比数列8,则log中,若72621n q?pp?q?q p为真 (D) 为真 (C) (A) 为真(B) 为真8(A) 8 (B) 3 (C) 16 (D) 2 )>是任意实数.若4a,b,且ab,则(xx1x)的值为()=π,那么sin(14.如果sin-·cos b11322ba22lg(a-b)ab)0 C>B ()<1 ()>(D(<)())(A a222882 (C) -(D) (A) ± (B) - 4-x3993) ( 的定义域是.函数5f(x)=lg1x-m/n m n),?9p(1,)(log,3p的值分别为关于原点的对称点为与15.若点则3,+∞),+∞) (A) [4 (B) (10)[4,10)∪(10,+∞(4,10)∪(10,+∞) (D) (C) 11? ,-2 (D)-3,-2 ,2 (B) 3,2 (C) (A) 2ax0aaxax????333)6对一切实数恒成立,则实数.若不等式的取值范围是(13)()???(,4?0()?0[?,?),?,0??4?o)?(?,OPP30OP (C) (B) ( (A)0,) (D)的坐标是(),则.将16旋转得到向量1122b2,?a?2,b)(ab?aa.已知与且与垂直,则夹角为()722221133)(,(?,))(,,)(? (D) (C) (B) (A) 22222222oooo135604530 (C)(B) (A) (D)?P? ( 终边经过点.已知角 8 tan 的值是,则12),--5→→→→→→→→bbaxax baba)的值是( 2 )1), 17.设?R向量=(,,=(1,-,且)⊥,则 (+·)(-512512DBAC (--) () ) ) (( 125512x1-(B) 1 (C) 0 (D) (A)更多精品文档.-----好资料学习三、解答题(本大题共5个小题,共40分.请在答题卡相应的题号处写出解答过程)...)2?(1,?n lM l ,且其中一个方向向量则直线)18.直线经过点的方程是((3,1){a}a?2,a?16,(7分)等比数列中,已知26.n41yxyxyxxy7=0+7=0 (D) 2----5=0 (B) 2-+-5=0(A) 2(C) 2{a}的通项公式;(1)求数列n229?y?(?(x?2)3)03?x?2y?MONONM19.直线,则△)交于,的面积为(两点,圆心为与圆a,a{b}{b}的通项公式和前n项和公式。
的第(2)若3项和第5分别为等差数列项,试求数列53nn27.(7分)光明商店销售某种商品,每件商品的进价是60元,销售过程中发现:当每件商品售价75元时,每天可554254(A)(B) (C) (D)x p(元)假设每天售出的商品件数与每件售价(件)如果每件商品售价90元时,则每天可售出70件.售出85件,2yABABBylFpxpA轴的距,的中点到20.直线两点,若线段过抛物线的长是=2(的焦点>0)8,且与抛物线交于、p?kx?b(每件售价不低于进价,且货源充足)之间的函数关系为.x p),则此抛物线方程是( 2离是之间的函数关系式.与(1)求出y(元),若不考虑其他费用,则每件定价为多少时每天的利润最大,最大利润是多少?)设每天的利润是(2 2222xyyxyyxx =6 (C) ==12 (D) (B) 4=(A) 82x?x2sin?3sin2f(x).8 分)已知函数28.(分)卷(非选择题,共第II60f(x)f(x)f(x)取最小值时x)求函数)求函数(1的集合.的最小值及 2的最小正周期;(相应题号的横线上)分。
请将答案填在答题卡分。
共个小题,每小题二、填空题(本大题共5420... _________的方差是5,7,7,8,10,1121.数据P?ABCD PA?面ABCDEPDPB∥).(8分)如图,在底面为菱形的四棱锥(是中,1的中点. 求证:,点29?324 .22的球,其内接正四棱柱的高14,.表面积为则这个正四棱柱的体积2x3AEC面PDB?面PAC)(平面2;2?e1?y?m .的值为的离心率.椭圆23,则2m辆,按照说明书把电池都充.某公交公司新进了24206辆电动公交车,为了观察这批车的性能,随机抽取了其中的公里。
那公里,220公里,215公里,218230210225满了电,试验发现它们的最大行驶里程分别为:公里,公里, .么,本次试验抽取的样本容量是yx0≤5+-??yx?0-≥4yx,,.变量25满足的约束条件表示的y :l??2?2?34,FFx?y?.,且过点在坐标轴上,渐近线为10.30(分)已知双曲线0-x4y=3的中心在原点,焦点、5?y0≥2144 1)求双曲线的标准方程.(yzx . -可行域如图所示,则目标函数=的最大值是3 ??8,3M ABBMA是弦2()过点的中点,求直线的一般式方程.的直线与双曲线交于、两点,且l:0+x=5-y2 1 1xO1 5 32 4第题25更多精品文档.好资料学习-----分2500元…………7所以每件售价110元时,取得的利润最大,为年春季高考数学模拟试题参考答案2015解:28.一.选择题2CDABD6-10. 1-5. BABDDx?2sinx)?3sin2(1)f(x………………………1分)x?cos2?3sin2x?(111-15. ACBAA 16-20. ACDAB二.填空题?3sin2x?cos2x?1………………………3分?1)?2sin(2x?1?或4 24.6 25. 521. 4 22. 896 23. 34?2??T?所以,函数的最小正周期是………………4分解答题三.2?的公比为设数列26.解:(1){a}q,n)?1sin(2x??1?,(2)3?3 2分由已知得16=2q,得q=2 ……………………………………)?-1时,函数f(x)有最小值为sin(2x?-2-1=-3?当……………………6分3?5nn-1 a 所以=aq=2分…………………………………………………31n?}Z,k|x?k??{x分……………………x此时,的集合为:812,?32,?a8a?,b8,?b32分,则由(1)得,………………4(2)5353EO ,连接交于点O)设AC与BD(29.证明:1}b{的公差为,则有设d DBP?在中,n DB的中点O分别是DP、∵点E、8d?2?b16?b???11………………………,解得:分5??32?b?4d12?d??..2分//PB…………………………………………………………∴EO1AEC面,PB?EO?面AEC分………………………………∵..328)1?(???b16125n??12n…………………………,所以:6分n AEC PB分………………………………………………∴..4∥平面n)?1216(??n282}{bn?S226??n………项和n所以数列的前7分(注:没有说明直线在平面内、平面外的,剩下步骤不得分)nn2是菱形)∵四边形ABCD (28575?b?k?…………………………………………2)由题意得:(解:27.1分?7090?bk??BD?AC∴..5分…………………………………………………………1??k ABCD?面BD?ABCD?面PA,∵……………………………………………………3解得:分?160?b???x60p?160x??x?p………之间的函数关系式为所以与4分BD?PA分∴…………………………………………………………..6????160?yxx60???( 25……………………………)由题意得:分AAC??PAPAC面AC面PAC?PA?∵,,又29600220x??x??2??2500?110???x 6 ……………………………分PAC?面BD 分………………………………………………………∴..72500y?110x?当时,;max PDB?BD面∵更多精品文档.学习-----好资料y?y3PAC面面PDB?分………………………………………………∴..812??k………………………………..8整理得:分x?x2123(x?8?3?)y………………………………..9分所以,所求直线方程为:22yx2???)设双曲线的方程为1..1,…………………………………分 30.解:(9163x?2y?18?0………………………………10分即???2?34,1??把点..2分………………………………代入方程,得:22xy??1………………………………………..4分∴双曲线的标准方程为916(注:用其它方法也可得分)????yxBA,x,y,、( 2)设直线与双曲线交于2211??8,3MAB的中点是弦∵点x?xy?y2121x?x?16y?y?63?8?(*),…..5,分即∴211222 ????yxxyBA,,又∵点、在双曲线上212122?xy11??1①??169……………………………………………………..6分∴?22xy?22②1???169? ????????xx?xx?yy?yy?22212111?0? -②①得:169??y2?y??12?0??xx……………………7分将(*)式代入,化简得:213 ??yy?212?x?x即123更多精品文档.。