2018山东春季高考数学试题(卷)

合集下载

2018年春季高考数学真题

2018年春季高考数学真题

2018春季高考真题一、选择题1、已知集合M={a,b},N={b,c},则M∩N等于A、∅B、{b}C、{a,c}D、{a,b,c}2、函数f(x)=√x+1+xx−1的定义域是A、(−1,+∞)B、(−1,1)∪(1,+∞)C、[ −1,+∞)D、 [ −1,1)∪(1,+∞)3、奇函数y=f(x)的布局如图所示,则A、f(2)>0>f(4)B、f(2)<0<f(4)C、f(2)> f(4)>0D、f(2)<f(4)<04、已知不等式1+lg|x|<0的解集是A、(−110,0)∪(0,110)B、(−110,110)C、(−10,0)∪(0,10)D、(−10,10)5、在数列{a n}中,a1=-1 , a2=0,a n+2=a n+1+a n,则a5等于A、0B、−1C、−2D、−36、在如图所示的平面直角坐标系中,向量AB⃗⃗⃗⃗⃗ 的坐标是A、(2,2)B、(−2,−2)C、(1,1)D、(−1,−1)7、圆(x+1)2+(y−1)2=1的圆心在A、第一象限B、第二象限C、第三象限D、第四象限8、已知a、b∈R,则“a>b”是“2a>2b”的A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件9、关于直线l:x−√3y+2=0,下列说法正确的是A、直线l的倾斜角为60。

B、向量v=(√3,1)是直线l的一个方向向量C、直线l经过点(1,√3)D、向量n=(1,√3)是直线l的一个法向量10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是A、6B、10C、12D、2011、在平面直角坐标系中,关于x,y的不等式Ax+By+AB>0(AB≠0)表示的区域(阴影部分)可能是12、已知两个非零向量a与b 的夹角为锐角,则A、a∙b>0B、a∙b<0C、a∙b≥0D、a∙b≤013、若坐标原点(0,0)到直线x−y+sin2θ=0的距离等于√22,则角θ的取值集合是A、{θ|θ=kπ±π4,k∈Z} B、{θ|θ=kπ±π2,k∈Z}C、{θ|θ=2kπ±π4,k∈Z} D、{θ|θ=2kπ±π2,k∈Z}14、关于x,y的方程x2+ay2=a2(a≠0),表示的图形不可能是15、在(x−2y)2的展开式中,所有项的系数之和等于A、32B、-32C、1D、-116、设命题p:5≥3,命题q:{1}⊑{0,1,2},则下列命题中为真命题的是A、p∧qB、¬p∧qC、p∧¬qD、¬p∨¬q17、已知抛物线x2=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF|=7,则焦点F到准线l距离是A、2B、3C、4D、518、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A、514B、1528C、914D、6719、已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所围成集合体的侧面积分别记为S1、S2 ,则S1、S2的比值等于A、12B、1C、2D、420、若由函数y=sin(2x+π2)图像变换得到y=sin(x2+π3)的图像,则可以通过以下两个步骤完成:第一步,把y=sin(2x+π2)上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x轴A、向右平移π3个单位B、向右平移5π12个单位C、向左平移π3个单位D、向左平移5π12个单位二、填空题21、已知函数f(x)={x 2+1,x>0−5,x≤0,则f[f(0)]的值等于。

2018年山东省春季高考数学真题

2018年山东省春季高考数学真题

山东省 2018 年普通高校招生(春季)考试 数学试题参考答案
卷一(选择题,共 60 分)
一、选择题(本大题 20 个小题,每小题 3 分,共 60 分)
1 2 3 4 5 6 7 8 9 10 BDAACDBCBC 11 12 13 14 15 16 17 18 19 20 BAADDACCBA
(1)若函数 f(x)在区间( ,0)上单调递减,求实数 m 的取值范围;
(2)若 xR,都有 f(x)>0,求实数 m 的取值范围
27.(本小题
8
分)已知在等比数列
an
中,a2=
1 4
,a5=
1 32

(1)求数列an 的通项公式;
(2)若数列bn 满足 bn an n ,求bn 的前 n 项和 Sn.
30.(本小题 10 分)双曲线 x2 y2 =1(a>0,b>0)的左、右焦点分别是
a2 b2
F1,F2,抛物线 y2=2px(p>0)的焦点与点 F2 重合,点 M(2, 2 6 )是抛 物线与双曲线的一个交点,如图所示。 (1)求双曲线及抛物线的标准方程; (2)设直线 l 与双曲线的过一、三象限的渐近线平行,且交抛物线于 A,B 两点,交双曲线于点 C,若点 C 是线段 AB 的中点,求直线 l 的 方程.
其中,正确结论的序号是
.
(第 23 题图)
24.已知椭圆 C 的中心在坐标原点,一个焦点的坐标是(0,3),若点(4,0)在椭圆 C 上,则椭圆 C
的离心率等于

25.在一批棉花中随机抽测了 500 根棉花纤维的长度(精确到 1mm)作为样本,并绘制了如图所示的 频率分布直方图,由图可知,样本中棉花纤维长度大于 225mm 的频数是

2018年春季高考数学真题

2018年春季高考数学真题

2018春季高考真题一、选择题1、已知集合M={a,b},N={b,c},则M∩N等于A、∅B、{b}C、{a,c}D、{a,b,c}2、函数f(x)=√x+1+xx−1的定义域是A、(−1,+∞)B、(−1,1)∪(1,+∞)C、[ −1,+∞)D、 [ −1,1)∪(1,+∞)3、奇函数y=f(x)的布局如图所示,则A、f(2)>0>f(4)B、f(2)<0<f(4)C、f(2)> f(4)>0D、f(2)<f(4)<04、已知不等式1+lg|x|<0的解集是A、(−110,0)∪(0,110)B、(−110,110)C、(−10,0)∪(0,10)D、(−10,10)5、在数列{a n}中,a1=—1 , a2=0,a n+2=a n+1+a n,则a5等于A、0B、−1C、−2D、−36、在如图所示的平面直角坐标系中,向量AB⃗⃗⃗⃗⃗ 的坐标是A、(2,2)B、(−2,−2)C、(1,1)D、(−1,−1)7、圆(x+1)2+(y−1)2=1的圆心在A、第一象限B、第二象限C、第三象限D、第四象限8、已知a、b∈R,则“a>b”是“2a>2b”的A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件9、关于直线l:x−√3y+2=0,下列说法正确的是A、直线l的倾斜角为60。

B、向量v=(√3,1)是直线l的一个方向向量C、直线l经过点(1,√3)D、向量n=(1,√3)是直线l的一个法向量10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是A、6B、10C、12D、2011、在平面直角坐标系中,关于x,y的不等式Ax+By+AB>0(AB≠0)表示的区域(阴影部分)可能是12、已知两个非零向量a与b 的夹角为锐角,则A、a∙b>0B、a∙b<0C、a∙b≥0D、a∙b≤013、若坐标原点(0,0)到直线x−y+sin2θ=0的距离等于√22,则角θ的取值集合是A、{θ|θ=kπ±π4,k∈Z}B、{θ|θ=kπ±π2,k∈Z}C、{θ|θ=2kπ±π4,k∈Z}D、{θ|θ=2kπ±π2,k∈Z}14、关于x,y的方程x2+ay2=a2(a≠0),表示的图形不可能是15、在(x−2y)2的展开式中,所有项的系数之和等于A、32B、—32C、1D、—116、设命题p:5≥3,命题q:{1}⊑{0,1,2},则下列命题中为真命题的是A、p∧qB、¬p∧qC、p∧¬qD、¬p∨¬q17、已知抛物线x2=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF|=7,则焦点F到准线l距离是A、2B、3C、4D、518、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A、514B、1528C、914D、6719、已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所围成集合体的侧面积分别记为S1、S2 ,则S1、S2的比值等于A、12B、1C、2D、420、若由函数y=sin(2x+π2)图像变换得到y=sin(x2+π3)的图像,则可以通过以下两个步骤完成:第一步,把y=sin(2x+π2)上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x轴A、向右平移π3个单位B、向右平移5π12个单位C、向左平移π3个单位D、向左平移5π12个单位二、填空题21、已知函数f(x)={x 2+1,x>0−5,x≤0,则f[f(0)]的值等于。

2018年春季高考数学真题

2018年春季高考数学真题

2018 春季高考真题一、选择题1、已知集合 M = {a, b} , N = {b, c},则 M ∩N 等于A 、 ?B 、 {b}C 、 {a, c}D 、 {a, b, c}2 、函数 f x = ??+ 1+ ????-1的定义域是 A 、( - 1, + ∞) B 、( - 1,1 ) ∪( 1, + ∞)C 、 [ - 1, + ∞)D 、 [ - 1,1 ) ∪( 1,+ ∞)3 、奇函数 y = f(x) 的布局如图所示,则A 、 f(2) > 0 > ??(4)B 、f(2)< 0< ??(4) C 、 f(2)> ??(4) > 0 D 、f(2) < ??(4) < 0 4 、已知不等式 1 + lg|x| < 0的解集是1 1 ) B 、( - 1 1A 、( - 10 , 0) ∪( 0, 1010 , 10 ) C 、( - 10,0 ) ∪( 0, 10 ) D 、( - 10 ,10 )5 、在数列 { ?? }中, ??=-1, ??=0 , ?? = ?? + ?? ,则 ??等于?? 1 2 ??+2 ??+1 ?? 5 A 、 0 B 、 - 1 C 、 - 2D 、- 36 、在如图所示的平面直角坐标系中,向量AB 的坐标是 A 、( 2,2 ) B 、( - 2,- 2) C 、( 1,1 ) D 、( -1, - 1)7 、圆 ( ??+ 1) 2 + ( ??- 1) 2 = 1 的圆心在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限8 、已知 a 、 b ∈R ,则 “a > ??是”“2?? > 2 ??”的 A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9 、关于直线 l: x - 3??+ 2 = 0,下列说法正确的是 A 、直线 l 的倾斜角为 60 。

2018年春季高考数学真题完整

2018年春季高考数学真题完整

2018春季高考真题一、选择题1、已知集合M ={a,b},N ={b,c},则M ∩N 等于A 、?B 、{b}C 、{a,c}D 、{a,b,c}2、函数f (x )=√??+1+????-1的定义域是A 、(-1,+∞)B 、(-1,1)∪(1,+∞)C 、[ -1,+∞)D 、 [ -1,1)∪(1,+∞)3、奇函数y =f(x)的布局如图所示,则A 、f(2)>0>??(4) B 、f(2)<0<??(4)C 、f(2)> ??(4)>0D 、f(2)<??(4)<04、已知不等式1+lg|x|<0的解集是A 、(-110,0)∪(0,110)B 、(-110,110)C 、(-10,0)∪(0,10)D 、(-10,10)5、在数列{????}中,??1=-1 , ??2=0,????+2=????+1+????,则??5等于A 、0B 、-1C 、-2D 、-36、在如图所示的平面直角坐标系中,向量AB????? 的坐标是A 、(2,2)B 、(-2,-2)C 、(1,1)D 、(-1,-1)7、圆(??+1)2+(??-1)2=1的圆心在A 、第一象限B 、第二象限C 、第三象限D 、第四象限8、已知a 、b ∈R ,则“a>??”是“2??>2??”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、关于直线l:x -√3??+2=0,下列说法正确的是A 、直线l 的倾斜角为60。

B 、向量??=(√??,??)是直线l 的一个方向向量C 、直线l 经过点(1,√3)D 、向量??=(??,√??)是直线l 的一个法向量10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是A 、6B 、10C 、12D 、2011、在平面直角坐标系中,关于x,y 的不等式Ax +By +AB >0(AB ≠0)表示的区域(阴影部分)可能是12、已知两个非零向量a 与b 的夹角为锐角,则A 、?????>0B 、?????<0C 、?????≥0D 、?????≤013、若坐标原点(0,0)到直线x -y +sin 2??=0的距离等于√22,则角θ的取值集合是A 、{θ|θ=k π±??4,??∈??} B 、{θ|θ=k π±??2,??∈??} C 、{θ|θ=2k π±??4,??∈??}D 、{θ|θ=2k π±??2,??∈??}14、关于x,y 的方程??2+????2=a 2(a ≠0),表示的图形不可能是15、在(x -2y )2的展开式中,所有项的系数之和等于A 、32B 、-32C 、1D 、-116、设命题p:5≥3,命题q:{1}?{0,1,2},则下列命题中为真命题的是A 、p ∧q B 、?p ∧qC 、p ∧?qD 、?p ∨?q17、已知抛物线??2=????(??≠0)的焦点为F ,准线为l,该抛物线上的点M 到x 轴的距离为5,且|MF|=7,则焦点F 到准线l 距离是A 、2B 、3C 、4D 、518、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A 、514B 、1528C 、914D 、6719、已知矩形ABCD ,AB=2BC ,把这个矩形分别以AB ,BC 所在直线为轴旋转一周,所围成集合体的侧面积分别记为S 1、S 2 ,则S 1、S 2的比值等于A 、12B 、1C 、2D 、420、若由函数y =sin(2??+??2)图像变换得到y =sin(??2+??3)的图像,则可以通过以下两个步骤完成:第一步,把y =sin(2??+??2)上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x 轴A 、向右平移??3个单位B 、向右平移5π12个单位C 、向左平移??3个单位D 、向左平移5π12个单位二、填空题21、已知函数f (x )={x 2+1,??>0-5,??≤0,则f[f(0)]的值等于。

(完整版)2018年春季高考数学真题

(完整版)2018年春季高考数学真题

2018春季高考真题一、选择题1、已知集合M={a,b},N={b,c},则M∩N等于A、∅B、{b}C、{a,c}D、{a,b,c}2、函数f(x)=√x+1+xx−1的定义域是A、(−1,+∞)B、(−1,1)∪(1,+∞)C、[ −1,+∞)D、 [ −1,1)∪(1,+∞)3、奇函数y=f(x)的布局如图所示,则A、f(2)>0>f(4)B、f(2)<0<f(4)C、f(2)> f(4)>0D、f(2)<f(4)<04、已知不等式1+lg|x|<0的解集是A、(−110,0)∪(0,110)B、(−110,110)C、(−10,0)∪(0,10)D、(−10,10)5、在数列{a n}中,a1=-1 , a2=0,a n+2=a n+1+a n,则a5等于A、0B、−1C、−2D、−36、在如图所示的平面直角坐标系中,向量AB⃗⃗⃗⃗⃗ 的坐标是A、(2,2)B、(−2,−2)C、(1,1)D、(−1,−1)7、圆(x+1)2+(y−1)2=1的圆心在A、第一象限B、第二象限C、第三象限D、第四象限8、已知a、b∈R,则“a>b”是“2a>2b”的A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件9、关于直线l:x−√3y+2=0,下列说法正确的是A、直线l的倾斜角为60。

B、向量v=(√3,1)是直线l的一个方向向量C、直线l经过点(1,√3)D、向量n=(1,√3)是直线l的一个法向量10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是A、6B、10C、12D、2011、在平面直角坐标系中,关于x,y的不等式Ax+By+AB>0(AB≠0)表示的区域(阴影部分)可能是12、已知两个非零向量a与b 的夹角为锐角,则A、a∙b>0B、a∙b<0C、a∙b≥0D、a∙b≤013、若坐标原点(0,0)到直线x−y+sin2θ=0的距离等于√22,则角θ的取值集合是A、{θ|θ=kπ±π4,k∈Z} B、{θ|θ=kπ±π2,k∈Z}C、{θ|θ=2kπ±π4,k∈Z} D、{θ|θ=2kπ±π2,k∈Z}14、关于x,y的方程x2+ay2=a2(a≠0),表示的图形不可能是15、在(x−2y)2的展开式中,所有项的系数之和等于A、32B、-32C、1D、-116、设命题p:5≥3,命题q:{1}⊑{0,1,2},则下列命题中为真命题的是A、p∧qB、¬p∧qC、p∧¬qD、¬p∨¬q17、已知抛物线x2=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF|=7,则焦点F到准线l距离是A、2B、3C、4D、518、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A、514B、1528C、914D、6719、已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所围成集合体的侧面积分别记为S1、S2 ,则S1、S2的比值等于A、12B、1C、2D、420、若由函数y=sin(2x+π2)图像变换得到y=sin(x2+π3)的图像,则可以通过以下两个步骤完成:第一步,把y=sin(2x+π2)上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x轴A、向右平移π3个单位B、向右平移5π12个单位C、向左平移π3个单位D、向左平移5π12个单位二、填空题21、已知函数f(x)={x 2+1,x>0−5,x≤0,则f[f(0)]的值等于。

山东省2018年普通高校招生(春季)考试 数学试题-答案

山东省2018年普通高校招生(春季)考试 数学试题-答案

三 、解 答 题 (本 大 题 5 个 小 题 ,共 40 分 ) 26.(本 小 题 6 分 )

博 解:(1)函数f(x)=x2+(m -1)x+4的对称轴为x=-m2-1,……………………… (1分) 东 因为函数f(x)在区间(-∞,0)上单调递减,
所以-m2-1≥0,…………………………………………………………………………… (1分)
(2 7)2=(3 7)2+72-2×3 7×7×cos∠B,
解 得 cos∠B =277,

传 所以sin∠B=
1-
æç2
7
ö2
÷
=
è7ø
21,… … … … … … … … … … … … … … … … … … … … … 7
(1 分 )
化 sin∠APB
=sin(180°-30°-
∠B
)=sin150°cos∠B
山东省2018年普通高校招生(春季)考试 数学试题答案及评分标准
卷 一 (选 择 题 ,共 60 分 )
一 、选 择 题 (本 大 题 20 个 小 题 ,每 小 题 3 分 ,共 60 分 )
题号
1
2
3
4
5
6
7
8
9 10
答案
B
D
A
A
C
D
B
C
B
C
题号
11 12 13 14 15 16 17 18 19 20
-cos150°sin∠B
=
1 2
27 ×7-
æ
ç
è
-
3ö÷ 2ø
×
文 721=5147,………………………………………………………………………………… (1分)

(完整版)2018山东春季高考数学试题

(完整版)2018山东春季高考数学试题

山东省2018年普通高校招生(春季)考试数学试题卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合M={a,b},N={b,c},则M N等于(A)∅(B){b} (C){a,c} (D){a,b,c}2.函数f(x)=的定义域是11-++xxx(A)(-1,+∞)(B)(-1,1)(1,+∞)(B)[-1,+∞)(D)[-1,1)(1,+∞)3.奇函数y=f(x)的局部图像如图所示,则(A)f(2)> 0 > f(4) (B)f(2)< 0 < f(4)(C)f(2)> f(4)> 0 (D)f(2)< f(4)< 04.不等式1+lg <0的解集是(A) (B)101,0()0,101(-101,101(-(C) (D)(-10,10))10,0()0,10(-5.在数列{a n}中,a1=-1,a2=0,a n+2=a n+1+a n,则a5等于(A)0 (B)-1 (C)-2 (D)-36. 在如图所示的平角坐标系中,向量的坐标是AB(A)(2,2) (B)(-2,-2)(C)(1,1) (D)(-1,-1)7.圆的圆心在()()22111x y++-=(A) 第一象限 (B) 第二象限(C) 第三象限 (D) 第四象限8.已知,则“”是“ ”的a b R∈、a b>22a b>(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件9.关于直线,下列说法正确的是:20,l x-+=(A)直线的倾斜角60° (B)向量=,1)是直线的一个方向向量l v lxy(第6题图)(第3题图)e ae i r(C)直线经过(1,) (D)向量=(1)是直线的一个法向量l n l 10.景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同走发的种数是(A) 6 (B) 10 (C) 12 (D) 2011.在平面直角坐标系中,关于x ,y 的不等式Ax+By+AB>0(AB ≠0)表示的区域(阴影部分)可能是12.已知两个非零向量a 与b 的夹角为锐角,则(A)0a b ⋅> (B )0a b ⋅< (C )0a b ⋅≥(D )0a b ⋅≤13.若坐标原点(0,0)到直线 的距离等于,则角θ的取值集合是(A) (B)(C) )(D)14.关于x,y 的方程 ,表示的图形不可能是15.在 的展开式中,所有项的系数之和等于(A )32 (B )-32 (C )1 (D )-116. 设命題p: 53,命題q: {1} ⊆{0, 1, 2},则下列命題中为真命題的是≥ (A) p ∧q (B) ﹁p ∧q (C) p ∧﹁q (D) ﹁p ∨﹁q17.己知抛物线x²=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M 到x 轴的距离为5,且|MF |=7,则焦点F 到准线l 的距离是(A) 2 (B) 3 (C) 4 (D) 518.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是 (A)(B) (C) (D)1452815149762,2k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭sin 0x y θ-+=()2220x ay a a +=≠,2k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭,4k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭2,4k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭5(2)x y -19.已知矩形ABCD,AB= 2BC,把这个矩形分别以AB、BC所在直线为轴旋转一周,所围成几何体的侧面积分别记为S1、S2,则S1与S2的比值等于(A) (B) 1 (C) 2 (D) 42120.若由函数y= sin(2x+)的图像变换得到y=sin()的图像,则可以通过以下两个步骤完3π32π+x成:第一步,把y= sin(2x+)图像上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把3π所得图像沿x轴 (A)向右平移个单位 (B)向右平移个单位3π125π(C) 向左平移个单位 (D)向左平移个单位3π125π二、填空题(本大题5个小题,每小题4分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2018年普通高校招生(春季)考试
数学试题
卷一(选择题,共60分)
一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题
目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合M={a,b},N={b,c},则M I N 等于
(A )∅ (B ){b} (C ){a,c} (D ){a,b,c} 2.函数f (x )=
1
1-+
+x x
x 的定义域是 (A )(-1,+∞) (B )(-1,1)Y (1,+∞) (B )[-1,+∞) (D )[-1,1)Y (1,+∞) 3.奇函数y=f (x )的局部图像如图所示,则
(A)f (2)> 0 > f (4) (B)f (2)< 0 < f (4) (C)f (2)> f (4)> 0 (D)f (2)< f (4)< 0
4.不等式1+lg <0的解集是
(A ) )101,0()0,101(Y -
(B) )10
1
,101(- (C) )10,0()0,10(Y - (D )(-10,10) 5.在数列{a n }中, a 1=-1,a 2=0,a n+2=a n+1+a n ,则a 5等于 (A )0 (B )-1 (C )-2 (D )-3
6. 在如图所示的平角坐标系中,向量AB uuu r
的坐标是
(A)(2,2) (B)(-2,-2) (C)(1,1) (D)(-1,-1) 7.圆()()2
2
111x y ++-=的圆心在
(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 8.已知a b R ∈、,则“a b >”是“ 22a
b
>”的
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件 9.
关于直线:20,l x -+=,下列说法正确的是
(A)直线l 的倾斜角60° (B)向 量v =
,1)是直线l 的一个方向向量
x
y
(第6题图)
(第3题图)
(C)直线l经过(1,
) (D)向量n=(1
)是直线l的一个法向量
10.景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同走发的种数是
(A) 6 (B) 10 (C) 12 (D) 20
11.在平面直角坐标系中,关于x,y的不等式Ax+By+AB>0(AB≠0)表示的区域(阴影部分)可能是
12.已知两个非零向量a与b
的夹角为锐角,则
(A)0
a b⋅>(B)0
a b⋅<(C)0
a
b⋅≥(D)0
a b⋅≤
13.若坐标原点(0,0)到直线的距离等于,则角θ的取值集合是
(A) (B)
(C) )(D)
14.关于x,y的方程,表示的图形不可能是
15.在的展开式中,所有项的系数之和等于
(A)32 (B)-32 (C)1 (D)-1
16. 设命題p: 5≥3,命題q: {1} ⊆{0, 1, 2},则下列命題中为真命題的是
(A) p∧q (B) ﹁p∧q (C) p∧﹁q (D) ﹁p∨﹁q
17.己知抛物线x²=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF |=7,则焦点F到准线l的距离是
(A) 2 (B) 3 (C) 4 (D) 5
18.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车
位,则至少有2辆汽车停放在相邻车位的概率是 (A)
14
5
(B)
28
15
(C)
14
9
(D)
7
6
2
2,
2
k k Z
π
θθπ
⎧⎫
|=±∈
⎨⎬
⎩⎭
sin0
x yθ
-+=
()
2220
x ay a a
+=≠
,
2
k k Z
π
θθπ
⎧⎫
|=±∈
⎨⎬
⎩⎭
,
4
k k Z
π
θθπ
⎧⎫
|=±∈
⎨⎬
⎩⎭
2,
4
k k Z
π
θθπ
⎧⎫
|=±∈
⎨⎬
⎩⎭
5
(2)
x y
-
19.已知矩形ABCD,AB= 2BC,把这个矩形分别以AB、BC所在直线为轴旋转一周,所围成几何体的侧面积分别记为S1、S2,则S1与S2的比值等于
(A)
2
1
(B) 1 (C) 2 (D) 4
20.若由函数y= sin(2x+
3
π
)的图像变换得到y=sin(
3
2
π
+
x
)的图像,则可以通过以下两个步骤完成:
第一步

把y= sin(2x+
3
π
)图像上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把所得
图像沿x轴 (A)向右平移
3
π
个单位 (B)向右平移
12

个单位
(C) 向左平移
3
π
个单位 (D)向左平移
12

个单位
二、填空题(本大题5个小题,每小题4分,共20分。

请将答案填在答题卡相应题号的横线上)
21.已知函数f(x)=
2
x1x > 0
-5 , x0
⎧+




,则f[f(0)]的值等于 .
22.已知,0
2
π
θ⎛⎫
∈-

⎝⎭
, 若
3
cosθ=,则sinθ等于 .
23.如图所示,已知正方体
1111
ABCD A B C D
-,E,F分别是
11
D B A C
,上不重合的两个动点,给出下列四个结论:
○1
1
CE D F
P;○211
AFD B EC
P
平面平面
○3
1
AB EF
⊥;○4P11
平面AED平面ABB A
其中,正确结论的序号是 .
24.已知椭圆C的中心在坐标原点,一个焦点的坐标是(0,3),若点(0,4)
在椭圆C上,则椭圆C的离心率等于
25.在一批棉花中随机抽测了500根棉花纤维的长度(精确到1mm)作为样本,并绘制了如图所示的频率分布直方图,由图可知,样本中棉花纤维长度大于225mm的频数是
0.0038
0.0022 0.0020
0.0026
0.0044
0.0050
0.002
0.003
0.004
0.005
组距
(第23题图)
三、解答题(本大题5个小题,共40分)
26.(本小题6分)已知函数f(x)=x 2+(m-1)x+4,其中m 为常数
(1)若函数f(x)在区间(-∞,0)上单调递减,求实数m 的取值范围; (2)若∀x ∈R ,都有f(x)>0,求实数m 的取值范围 27.(本小题8分)已知在等比数列{}n a 中,a 2=14,a 5=132。

(1) 求数列{}n a 的通项公式;
(2) 若数列{}n b 满足n n b a n =+,求{}n b 的前n 项和S n.
28.(本小题8分)如图所示的几何体中,四边形ABCD 是矩形,MA ⊥平面ABCD ,NB ⊥平面ABCD , 且AB=NB=1,AD=MA=2 (1) 求证:NC ║平面MAD ; (2)求棱锥M -NAD 的体积.
29.(本小题8分)如图所示,在△ABC 中,BC=7,2AB=3AC,点P 在BC 上,且∠BAP=∠PAC=30°.求线段AP 的长.
30.(本小题10分)双曲线22
22x y a b
-=1(a>0,b>0)
的左、右焦点分别是F 1,F 2,抛物线y 2
=2px (p>0) 的焦点与点F 2重合,点M (2
,)是抛物线 与双曲线的一个交点,如图所示.
(1) 求双曲线及抛物线的标准方程;
(第25题图)
25.5
75.5
125.5
225.5 175.5
275.5
325.5
(第28题图) (第29题图)
A
C
D B
M
N
A
C P B
(2)设直线l与双曲线的过一、三象限的渐近线平行,
且交抛物线于A,B两点,交双曲线于点C,
若点C是线段AB的中点,求直线l的方程.
l
(第30题图)。

相关文档
最新文档