2020届江苏高三数学模拟试题以及答案

合集下载

2020届江苏高三高考数学全真模拟试卷09(解析版)

2020届江苏高三高考数学全真模拟试卷09(解析版)

2020届江苏高三高考数学全真模拟试卷09数学试题I一、 填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填写在相应位置上.1. 函数y =x -1的定义域为A ,函数y =lg(2-x)的定义域为B ,则A∩B =____________. 答案:[1,2)解析:易知A =[1,+∞),B =(-∞,2),A∩B =[1,2).2. 已知⎝⎛⎭⎫1+2i 2=a +bi(a 、b ∈R ,i 为虚数单位),则a +b =__________. 答案:-7解析:∵ 2i =-2i ,∴ (1+2i)2=(1-2i)2=-3-4i ,∴ a =-3,b =-4,a +b =-7. 3. 在平面直角坐标系xOy 中,已知双曲线x 29-y 2m=1的一个焦点为(5,0),则实数m =________. 答案:16解析:由题知a 2+b 2=9+m =25,∴ m =16.4. 样本容量为100的频率分布直方图如图所示,由此估计样本数据落在[6,10]内的频数为________.(第4题)答案:32解析:[6,10]内的频数为100×0.08×4=32.5. “φ=π2”是“函数y =sin(x +φ)的图象关于y 轴对称”的__________条件. 答案:充分不必要解析:当φ=π2时,y =sin(x +π2)=cosx 为偶函数,当y =sin(x +φ)为偶函数时,φ=kπ+π2, 6. 已知S n 为等差数列{a n }的前n 项和,a 1=-1,S 3=6,则S 6=________.答案:39解析:由题设知a 1=-1,a 2+a 3=7,从而d =3,从而a 6=-1+5d =14,S 6=(-1+14)×62=39. 7. 函数y =1lnx(x≥e)的值域是________. 答案:(0,1]解析:y =1lnx为[e ,+∞)上单调递减函数,从而函数值域为(0,1] 8. 执行下面的程序图,那么输出n 的值为____________.答案:6解析:由题知流程图执行如下:第1次 ⎩⎪⎨⎪⎧n =2,S =1,第2次 ⎩⎪⎨⎪⎧n =3,S =3,第3次 ⎩⎪⎨⎪⎧n =4,S =7,第4次 ⎩⎪⎨⎪⎧n =5,S =15, 第5次 ⎩⎪⎨⎪⎧n =6,S =31.停止输出n =6. (第8题)9. 在1,2,3,4四个数中随机地抽取1个数记为a ,再在剩余的三个数中随机地抽取1个数记为b ,则“a b是整数”的概率为____________. 答案:13解析:由题设可求出基本事件如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).其中a b 整数的个数为4,从而所求概率为43×4=13. 10. 已知△ABC 为等腰直角三角形,斜边BC 上的中线AD =2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥CABD 的体积为____________. 答案:233解析:如下图所示:作BC 中点E ,连结DE 、AE ,则易知BC ⊥平面ADE , 从而V CABD =13S △ADE ·BC ,又DE =3,AE =7, 从而V CABD =13×12×2×3×2=233. 11. 直线y =kx 与曲线y =2e x 相切,则实数k =__________.答案:2e解析:设切点(x 0,2ex 0),则切线方程为y =2ex 0(x -x 0)+2ex 0,又切线过点(0,0),得x 0=1,从而切点为(1,2e),从而k =2e.12. 已知平面内四点O 、A 、B 、C 满足OA →·BC →=2,OB →·CA →=3,则OC →·AB →=____________.答案:-5解析:由题设知OA →(OC →-OB →)=2,OB →(OA →-OC →)=3,两式相加得OA →·OC →-OB →·OC →=5,即OC →·(OA →-OB →)=5,从而OC →·AB →=-5.13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________.答案:14解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14. 14. 已知x 、y ∈R ,满足2≤y≤4-x ,x≥1,则x 2+y 2+2x -2y +2xy -x +y -1的最大值为____________. 答案:103解析:由题易知x 2+y 2+2x -2y +2xy -x +y -1=(x +1)2+(y -1)2(x +1)(y -1)=x +1y -1+y -1x +1,令t =y -1x +1,则由线性规划知t ∈[13,1],从而t +1t ∈[2,103]. 二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且tanB tanA +1=2c a. (1) 求角B ;(2) 若cos ⎝⎛⎭⎫C +π6=13,求sinA 的值. 解:(1) 由tanB tanA +1=2c a 及正弦定理,得sinBcosA cosBsinA +1=2sinC sinA,(2分) 所以sinBcosA +cosBsinA cosBsinA =2sinC sinA, 即sin (A +B )cosBsinA =2sinC sinA ,则sinC cosBsinA =2sinC sinA . 因为在△ABC 中,sinA≠0,sinC≠0,所以cosB =12.(5分) 因为B ∈(0,π),所以B =π3.(7分) (2) 因为0<C <2π3, 所以π6<C +π6<5π6. 因为cos ⎝⎛⎭⎫C +π6=13, 所以sin(C +π6)=223.(10分) 所以sinA =sin(B +C)=sin ⎝⎛⎭⎫C +π3 =sin ⎣⎡⎦⎤⎝⎛⎭⎫C +π6+π6(12分) =sin ⎝⎛⎭⎫C +π6cos π6+cos(C +π6)sin π6=26+16.(14分) 16.(本小题满分14分)如图,正四棱锥P-ABCD 的高为PO ,PO =AB =2.E 、F 分别是棱PB 、CD 的中点,Q 是棱PC 上的点.(1) 求证:EF ∥平面PAD ;(2) 若PC ⊥平面QDB ,求PQ.(1) 证明:取PA 中点M ,连结ME 、MD ,由条件得,ME ∥AB ,DF ∥AB ,∴ ME ∥DF.且ME =12AB ,DF =12AB , ∴ ME =DF.(2分)∴ 四边形EFDM 是平行四边形.则EF ∥MD.(4分)又MD Ì平面PAD ,EF Ë平面PAD ,∴ EF ∥平面PAD.(7分)(2) 解:连结OQ.∵ PC ⊥平面QDB ,OQ Ì平面QDB ,∴ PC ⊥OQ.(9分)∵ PO ⊥平面ABCD ,OC Ì平面ABCD ,∴ PO ⊥OC.由正方形ABCD 的边长为2,得OC = 2.∵ PO =2,∴ PC =PO 2+OC 2= 6.(11分)则PQ =PO·sin ∠CPO =2·26=233.(14分), 所以FH =|3x 0-4|x 20+⎝⎛⎭⎫1-x 204-23x 0+3 =|3x 0-4|34x 20-23x 0+4=|3x 0-4|⎝⎛⎭⎫32x 0-22=2.(1417. (本小题满分14分)某种树苗栽种时高度为A(A 为常数)米,栽种n 年后的高度记为f(n).经研究发现f(n)近似地满足f(n)=9A a +bt n,其中t =2-23,a 、b 为常数,n ∈N ,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍.(1) 栽种多少年后,该树木的高度是栽种时高度的8倍;(2) 该树木在栽种后哪一年的增长高度最大.解:(1) 由题意知f(0)=A ,f(3)=3A.所以⎩⎪⎨⎪⎧9A a +b =A ,9A a +14b=3A ,解得a =1,b =8.(4分) 所以f(n)=9A 1+8×t n ,其中t =2-23. 令f(n)=8A ,得9A 1+8×t n=8A , 解得t n =164, 即2-2n 3=164,所以n =9. 所以栽种9年后,该树木的高度是栽种时高度的8倍.(6分)(2) 由(1)知f(n)=9A 1+8×t n .第n 年的增长高度为Δ=f(n)-f(n -1)=9A 1+8×t n -9A 1+8×t n -1.(9分) 所以Δ=72At n -1(1-t )(1+8t n )(1+8t n -1)=72At n -1(1-t )1+8t n -1(t +1)+64t 2n -1=72A (1-t )1t n -1+64t n +8(t +1)(12分) ≤72A (1-t )264t n ×1t n -1+8(t +1) =72A (1-t )8(1+t )2=9A (1-t )1+t. 当且仅当64t n =1tn -1,即2-2(2n -1)3=164时取等号,此时n =5. 所以该树木栽种后第5年的增长高度最大.(14分18. (本小题满分16分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P(-1,-1),c 为椭圆的半焦距,且c =2b.过点P 作两条互相垂直的直线l 1、l 2与椭圆C 分别交于另两点M 、N.(1) 求椭圆C 的方程; (2) 若直线l 1的斜率为-1,求△PMN 的面积;(3) 若线段MN 的中点在x 轴上,求直线MN 的方程.解:(1) 由条件得1a 2+1b 2=1,且c 2=2b 2,所以a 2=3b 2,解得b 2=43,a 2=4. 所以椭圆方程为x 24+3y 24=1.(3分) (2) 设l 1方程为y +1=k(x +1),联立⎩⎪⎨⎪⎧y =kx +k -1,x 2+3y 2=4, 消去y 得(1+3k 2)x 2+6k(k -1)x +3(k -1)2-4=0.因为P 为(-1,-1),解得M ⎝ ⎛⎭⎪⎫-3k 2+6k +11+3k 2,3k 2+2k -11+3k 2.(5分) 当k≠0时,用-1k代替k ,得N ⎝ ⎛⎭⎪⎫k 2-6k -3k 2+3,-k 2-2k +3k 2+3.(7分) 将k =-1代入,得M(-2,0),N(1,1).因为P(-1,-1),所以PM =2,PN =22,所以△PMN 的面积为12×2×22=2.(9分) (3) (解法1)设M(x 1,y 1),N(x 2,y 2),则⎩⎪⎨⎪⎧x 21+3y 21=4,x 22+3y 22=4, 两式相减得(x 1+x 2)(x 1-x 2)+3(y 1+y 2)(y 1-y 2)=0,因为线段MN 的中点在x 轴上,所以y 1+y 2=0,从而可得(x 1+x 2)(x 1-x 2)=0.(12分)若x 1+x 2=0,则N(-x 1,-y 1).因为PM ⊥PN ,所以PM →·PN →=0,得x 21+y 21=2.因为x 21+3y 21=4,所以解得x 1=±1,所以M(-1,1),N(1,-1)或M(1,-1),N(-1, 1).所以直线MN 的方程为y =-x.(14分)若x 1-x 2=0,则N(x 1,-y 1),因为PM ⊥PN ,所以PM →·PN →=0,得y 21=(x 1+1)2+1.因为x 21+3y 21=4,所以解得x 1=-12或-1, 经检验x =-12满足条件,x =-1不满足条件. 综上,直线MN 的方程为x +y =0或x =-12.(16分) (解法2)由(2)知,当k≠0时,因为线段MN 的中点在x 轴上,所以3k 2+2k -11+3k 2=--k 2-2k +3k 2+3, 化简得4k(k 2-4k -1)=0,解得k =2±5.(12分)若k =2+5,则M ⎝⎛⎭⎫-12,52,N(-12,-52),此时直线MN 的方程为x =-12. 若k =2-5,则M ⎝⎛⎭⎫-12,-52,N(-12,52),此时直线MN 的方程为x =-12.(14分) 当k =0时,M(1,-1),N(-1,1),满足题意,此时直线MN 的方程为x +y =0.综上,直线MN 的方程为x =-12或x +y =0.(16分) 19. (本小题满分16分)若存在实数x 0与正数a ,使x 0+a ,x 0-a 均在函数f(x)的定义域内,且f(x 0+a)=f(x 0-a)成立,则称“函数f(x)在x =x 0处存在长度为a 的对称点”.(1) 设f(x)=x 3-3x 2+2x -1,问是否存在正数a ,使“函数f(x)在x =1处存在长度为a 的对称点”?试说明理由;(2) 设g(x)=x +b x(x >0),若对于任意x 0∈(3,4),总存在正数a ,使得“函数g(x)在x =x 0处存在长度为a 的对称点”,求b 的取值范围.解:(1) 由f(1+a)=f(1-a),得(1+a)3-3(1+a)2+2(1+a)-1=(1-a)3-3(1-a)2+2(1-a)-1.(2分)即a(a +1)(a -1)=0.(6分)∵ a >0,∴ a =1.(8分)(2) 令g(x)=c ,得x +b x=c ,即x 2-cx +b =0.(*)(10分) 由题意,方程(*)必须有两正根,且两根的算术平均值为x 0.∴ c >0,b >0,c 2-4b >0,c 2=x 0.(14分) 则0<b <x 20对一切x 0∈(3,4)均成立.∴ b 的取值范围是(0,9].(16分)20. (本小题满分16分)已知常数λ≥0,设各项均为正数的数列{a n }的前n 项和为S n ,满足a 1=1,S n +1=a n +1a nS n +(λ·3n +1)a n +1(n ∈N *).(1) 若λ=0,求数列{a n }的通项公式;(2) 若a n +1<12a n 对一切n ∈N *恒成立,求实数λ的取值范围. 解:(1) λ=0时,S n +1=a n +1a n S n +a n +1.∴ S n =a n +1a n S n .(2分) ∵ a n >0,∴ S n >0.∴ a n +1=a n .∵ a 1=1,∴ a n =1.(4分)(2) ∵ S n +1=a n +1a n S n+(λ·3n +1)a n +1,a n >0, ∴ S n +1a n +1-S n a n =λ·3n +1.(5分) 则S 2a 2-S 1a 1=λ·3+1,S 3a 3-S 2a 2=λ·32+1,…,S n a n -S n -1a n -1=λ·3n -1+1(n≥2). 相加,得S n a n-1=λ·(3+32+…+3n -1)+n -1.则S n =⎝⎛⎭⎫λ·3n -32+n ·a n (n≥2).上式对n =1也成立, ∴ S n =⎝⎛⎭⎫λ·3n -32+n ·a n (n ∈N *). ③(7分) ∴ S n +1=⎝⎛⎭⎫λ·3n +1-32+n +1·a n +1(n ∈N *). ④④-③,得a n +1=⎝⎛⎭⎫λ·3n +1-32+n +1·a n +1-⎝⎛⎭⎫λ·3n -32+n ·a n . 即⎝⎛⎭⎫λ·3n +1-32+n ·a n +1=(λ·3n -32+n)·a n .(9分) ∵ λ≥0,∴ λ·3n -32+n >0,λ·3n +1-32+n >0. ∵ a n +1<12a n 对一切n ∈N *恒成立, ∴ λ·3n -32+n <12⎝⎛⎭⎫λ·3n +1-32+n 对一切n ∈N *恒成立.即λ>2n 3n +3对一切n ∈N *恒成立.(12分) 记b n =2n 3n +3,则 b n -b n +1=2n3n +3-2n +23n +1+3=(4n -2)3n -6(3n +3)(3n +1+3). 当n =1时,b n -b n +1=0;当n≥2时,b n -b n +1>0;∴ b 1=b 2=13是一切b n 中的最大项.(15分) 综上所述,λ的取值范围是λ>13.(16分)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修42:矩阵与变换](本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 6β. 解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.(5分)令β=m α1+n α2,得m =4,n =-3. M 6β=M 6(4α1-3α2) =4(M 6α1)-3(M 6α2)=4×36⎣⎢⎡⎦⎥⎤11-3(-1)6⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤2 9132 919.(10分)B .[选修44:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,圆的参数方程为⎩⎪⎨⎪⎧x =2+2cosα,y =2sinα(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求:(1) 圆的普通方程; (2) 圆的极坐标方程.解:(1) 圆的普通方程为(x -2)2+y 2=4.(5分)(2) 把⎩⎪⎨⎪⎧x =ρcosθ,y =ρsinθ代入上述方程,得圆的极坐标方程为ρ=4cosθ.(10分)D. 解:f(x)的最小值为3-|a 2-2a|,(5分) 由题设,得|a 2-2a|<3,解得a ∈(-1,3).(10分) C .[选修45:不等式选讲](本小题满分10分)已知:a≥2,x ∈R .求证:|x -1+a|+|x -a|≥3. 证明:因为|m|+|n|≥|m -n|,所以|x -1+a|+|x -a|≥|x -1+a -(x -a)|=|2a -1|.(8分)又a≥2,故|2a -1|≥3.所以|x -1+a|+|x -a|≥3.(10分)【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写 出文字说明、证明过程或演算步骤.22. 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1) 求甲同学至少有4次投中的概率; (2) 求乙同学投篮次数ξ的分布列和数学期望.解:(1) 设甲同学在5次投篮中,恰有x 次投中,“至少有4次投中”的概率为P ,则 P =P(x =4)+P(x =5)(2分) =C 45⎝⎛⎭⎫234⎝⎛⎭⎫1-231+C 55(23)5(1-23)0=112243.(4分) (2) 由题意ξ=1,2,3,4,5. P(ξ=1)=23,P(ξ=2)=13×23=29,P(ξ=3)=13×13×23=227,P(ξ=4)=⎝⎛⎭⎫133×23=281, P(ξ=5)=⎝⎛⎭⎫134=181. ξ的分布列为(8分)ξ的数学期望Eξ=1×23+2×29+3×227+4×281+5×181=12181.(10分)23.设S n =C 0n -C 1n -1+C 2n -2-…+(-1)m C m n -m,m 、n ∈N *且m <n ,其中当n 为偶数时,m =n 2;当n 为奇数时,m =n -12.(1) 证明:当n ∈N *,n≥2时,S n +1=S n -S n -1;(2) 记S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,求S 的值.(1) 证明:当n 为奇数时,n +1为偶数,n -1为偶数,∵ S n +1=C 0n +1-C 1n +…+(-1)n +12Cn +12n +12,S n =C 0n -C 1n -1+…+(-1)n -12Cn -12n +12,S n -1=C 0n -1-C 1n -2+…+(-1)n -12Cn -12n -12,∴ S n +1-S n =(C 0n +1-C 0n )-(C 1n -C 1n -1)+…+(-1)n -12(C n +12-1n +12+1-C n -12n +12)+(-1)n +12C n +12n +12(2分)=-[C 0n -1-C 1n -2+…+(-1)n -12Cn -12n -12]=-S n -1.∴ 当n 为奇数时,S n +1=S n -S n -1成立.(5分)同理可证,当n 为偶数时,S n +1=S n -S n -1也成立.(6分)(2) 解:由S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,得 2 014S =C 02 014-2 0142 013C 12 013+2 0142 012C 22 012-2 0142 011C 32 011+…-2 0141 007C 1 0071 007=C 02 014-⎝⎛⎭⎫C 12 013+12 013C 12 013+(C 22 012+22 012C 22 012)-(C 32 011+32 011C 32 011)+…-⎝⎛⎭⎫C 1 0071 007+1 0071 007C 1 0071 007 =(C 02 014-C 12 013+C 22 012-…-C 1 0071 007)-(C 02 012-C 12 011+C 22 010-…+C 1 0061 006)=S 2 014-S 2 012.(9分)又由S n +1=S n -S n -1,得S n +6=S n ,所以S 2 014-S 2 012=S 4-S 2=-1,S =-12 014.(10分)。

江苏省盐城市2020届高三第三次模拟考试(6月)+数学+Word版含答案

江苏省盐城市2020届高三第三次模拟考试(6月)+数学+Word版含答案

若函数 f(x)=Msin(ωx+φ)(M>0,ω>0,0<φ<π)的最小值是-2,最小正周期是 2π,
π 且图象经过点 N( ,1).
3
(1) 求 f(x)的解析式;
(2) 在△ABC 中,若 f(A)=8,f(B)=10,求 cos C 的值.
5
13
16. (本小题满分 14 分) 如图,在四棱锥 PABCD 中,底面 ABCD 是菱形,PC⊥BC,点 E 是 PC 的中点,且平面 PBC⊥平面 ABCD.求证: (1) PA∥平面 BDE; (2) 平面 PAC⊥平面 BDE.
11. 若集合 P={(x,y)|x2+y2-4x=0},Q={(x,y)||x+2|≥ 15},则 P∩Q 表示的曲线 y
的长度为________.
m+ex,x>0,
12. 若函数 f(x)=
的图象上存在关于原点对称的相异两点,则实数 m 的最
e2x-1,x≤0
大值是________.
13. 在△ABC 中,AB=10,AC=15,∠A 的平分线与边 BC 的交点为 D,点 E 为边 BC
的中点.若A→B·A→D=90,则 A→B·A→E的值是________.
14. 若实数 x,y 满足 4x2+4xy+7y2=1,则 7x2-4xy+4y2 的最小值是________.
二、 解答题:本大题共 6 小题,共 90 分. 解答时应写出必要的文字说明、证明过程或
演算步骤.
15. (本小题满分 14 分)
数学附加题(满分 40 分,考试时间 30 分钟)
21. 【选做题】 在 A,B,C 三小题中只能选做两题,每小题 10 分,共 20 分.若多做,

2020年高考江苏(专用)全真模拟 数学试题(附答案与全解全析)

2020年高考江苏(专用)全真模拟 数学试题(附答案与全解全析)

2020年高考江苏(专用)全真模拟试题数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:高中全部内容。

一、填空题:本题共14个小题,每题5分,满分70分.1.定义一种集合运算(){|AB x x A B =∈⋃,且()}x A B ∉⋂},设{}|22M x x =-<<,{}|13N x x =<<,则MN 所表示的集合是________.2.已知复数z 满足(1)13i z i +=+,则z =________.3.已知数列{}n a 为等差数列,若159a a a π++=,则28sin()a a +=________ 4.函数()f x =的定义域为_______. 5.已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.6.如图,在ABC V 中,若AB a =u u u v v ,AC b =u u u v v,线段AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP ma nb =+u u u v v v,则m n +=_____.7.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是___________.8.设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为______.9.在长方体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,若其外接球的表面积为16π,则异面直线1BD 与1CC 所成的角的余弦值为__________.10.曲线()x f x xe =在点(1,(1))f 处的切线在y 轴上的截距是_______. 11.定义在R 上的奇函数()f x ,若()1f x +为偶函数,且()12f -=,则()()1213f f +的值等于______.12.根据如图所示算法流程图,则输出S 的值是__.13.已知双曲线()2222:10,0x y C a b a b -=>>的左焦点为F ,圆222:O x y a +=与双曲线的渐近线在第二象限相交于点M (O 为坐标原点),若直线MF 的斜率为ba,则双曲线C 的离心率为______. 14.已知偶函数满足,若在区间内,函数有4个零点,则实数的取值范围_________.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos sin 0b A a B -=. (1)求角A 的大小; (2)已知b =ABC ∆的面积为1,求边a .16.如图,已知PA ⊥平面ABCD ,底面ABCD 是矩形,1PA AB ==,AD =,F 是PB 中点,点E在BC 边上.()f x []2(2)(),1,0()f x f x x f x x -=∈-=且当时,[]13-,()()()log 2a g x f x x =-+a(1)求三棱锥E PAD -的体积; (2)求证:AF PE ⊥;(3)若//EF 平面PAC ,试确定E 点的位置.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,右焦点为F ,以原点O 为圆心,椭圆C 的短半轴长为半径的圆与直线0x y -=相切.(1)求椭圆C 的方程;(2)如图,过定点(2,0)P 的直线l 交椭圆C 于,A B 两点,连接AF 并延长交C 于M ,求证:PFM PFB ∠=∠.18.已知函数()2ln 1f x x x kx =+--.(I )讨论函数()f x 的单调性;(II )若()f x 存在两个极值点()1212,x x x x <,求证:()()210f x f x <<. 19.已知数列{}n a 中,11a =, 且()21232,1n n n na a n n n N n -*-=+≥∈-g . (1)求23,a a 的值及数列{}n a 的通项公式;(2)令()13n n nb n N a -*=∈, 数列{}n b 的前n 项和为n S , 试比较2nS 与n 的大小;(3)令()11n n a c n N n *+=∈+, 数列()221n n c c ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭的前n 项和为n T , 求证: 对任意n N *∈, 都有2n T <. 20.如图所示,某镇有一块空地OAB ∆,其中3OA km =,OB =,AOB 90∠=o 。

江苏省盐城市2020届高三年级三模数学试卷及答案

江苏省盐城市2020届高三年级三模数学试卷及答案
盐城市 2020 届高三年级第三次模拟考试
数学Ⅰ
参考公式:
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答.题.卡.相.应.位.置.上..
1.已知集合 M x x2 2x 0 , N x 1 x 1 , 则 M 与 N 的并.集.M N = ▲ .
大,周长 l 尽可能小.但显然 S、l 都是关于 r 的减函数,于是设 f (r) S ,当 f (r) 的值越大, l
满意度就越高.试问 r 为何值时,该淋浴房底座的满意度最高?(解.答.时. 以.3.代.入.运.算.).
3
18.(本小题满分 16 分)
如图,A、B
为椭圆
C:
x a
2 2
y2
1短轴的上、下顶点,P 为直线 l: y
…………13 分
答:当 r 8 2 15 时,该淋浴房的满意度最高.
…………14 分
18.解:(1)由椭圆 C
:
x2 a2
y2
1 ,所以
A(0,1) , B(0, 1)
,设 M (x0 ,
y0 ) ,
则 y0 1 y0 1 1 ,
x0
x0
2
…………2 分
所以
y02
1
1 2
x02
,又
x02 a2
求证:(1)OP∥平面 ABB1A1;
(2)平面 ACC1 ⊥平面 OCP .
17.(本小题满分 14 分) 如图 1 是淋浴房示意图,它的底座是由正方形截去一角得到,这一角是一个与正方形两邻边
1
相切的圆的 圆弧(如图 2),现已知正方形的边长是 1 米,设该底座的面积为 S 平方米,
4
周长为 l 米(周.长.是.指.图.2.的.实.线.部.分.),圆的半径为 r 米.设计的理想要求是面积 S 尽可能

2020届江苏省普通高中高三下学期高考全真模拟卷(八)数学试题(解析版)

2020届江苏省普通高中高三下学期高考全真模拟卷(八)数学试题(解析版)

绝密★启用前江苏省普通高中2020届高三下学期高考全真模拟卷(八)(南通密卷)数学试题(解析版)注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共2页,均为非选择题(第1题~第20题,共20题).本卷满分为160分,考试时间为120分钟考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米色水的签字笔填写在答题卡的规定位置.3.请认真核对监考员在答题卡上所粘點的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米色墨水的签字笔在答题卡的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合{}1A x x =>-,{}2,1,0,1,2,3B =--,则A B =________.【答案】{}0,1,2,3【解析】【分析】根据交集的定义可求得集合A B . 【详解】{}1A x x =>-,{}2,1,0,1,2,3B =--,因此,{}0,1,2,3A B =.故答案为:{}0,1,2,3.【点睛】本题考查交集的计算,考查计算能力,属于基础题.2. 已知复数2z ai =+的模为5,其中0a >,i 为虚数单位,则实数a 的值是________.【答案】1【解析】【分析】根据复数的模长公式结合实数a 的取值范围可求得实数a 的值.【详解】2z ai =+,则2225z a =+=,解得1a =±,0a >,因此,1a =. 故答案为:1.【点睛】本题考查利用复数的模长公式求参数,考查计算能力,属于基础题.3. 执行如图所示的伪代码,则输出的n 的值为________.【答案】6 【解析】 【分析】。

2020届江苏高三高考数学全真模拟试卷07(解析版)

2020届江苏高三高考数学全真模拟试卷07(解析版)

直线 AB 的方程为____________.
答案:x+y-3=0
解析:设圆心为 C,由题知 kAB·kCP=-1,又 kCP=2-1=1,∴ kAB=-1,∴ 直线 AB 的方程为 y= 1-0
-(x-1)+2,即 x+y-3=0.
11. 在△ABC 中,BC=2,A=2π,则A→B·A→C的最小值为________. 3
抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为________.
答案: y=± 3x 解析:由题设知a2=1,又易知双曲线焦点在 x 轴上,且 a=1,所以 b2=c2-a2=3,从而双曲线方程为
c2
x2-y2=1,所以双曲线渐近线方程为 y=± 3x. 3
7. 在平面直角坐标系 xOy 中,若点 P(m,1)到直线 4x-3y-1=0 的距离为 4,且点 P 在不等式 2x+y≥3 表示的平面区域内,则 m=________. 答案:6 解析:由题知|4m-4|=4,得 m=6 或-4,∴ P(6,1)或 P(-4,1).又 2x+y≥3,∴ m=6. 5
11

a

- 1 x4+4x3-12x2 25 3
+12×104],(10
分)
11
令 f(x)=- 1 x4+4x3-12x2,则 25 3
f′(x)=-
4
x3+4x2-24x=-4x
1 x2-x+6 25
.
25
由 f′(x)=0,解得 x=0(舍去)或 x=10 或 x=15,(12 分)
列表如下:
a
a
14. 已知等比数列{an}的首项为4,公比为-1,其前 n 项和为 Sn,若 A≤Sn- 1 ≤B 对 n∈N*恒成立,则 B

2020届江苏高三数学模拟试题以及答案

2020届江苏高三数学模拟试题以及答案

2020届江苏高三数学模拟试题以及答案1.已知集合U={-1.0.1.2.3.23},A={2.3},则U-A={-1.0.1.4.5.23}。

2.已知复数z=a+bi是纯虚数,则a=0.3.若输出y的值为4,则输入x的值为-1.4.该组数据的方差为 9.5.2只球都是白球的概率为 3/10.6.不等式f(x)>f(-x)的解集为x2.7.S3的值为 61/8.8.该双曲线的离心率为 sqrt(3)/2.9.该几何体的体积为27π/2.10.sin2α的值为 1/2.11.λ+μ的值为 1/2.12.离墙距离为 3.5m时,视角θ最大。

13.实数a的值为 2.14.CD的最小值为 3/2.15.在△ABC中,已知$a$,$b$,$c$分别为角$A$,$B$,$C$所对边的长度,且$a(\sin A-\sin B)=(c-b)(\sin B+\sin C)$。

1)求角$C$的值;2)若$a=4b$,求$\sin B$的值。

16.如图,在四棱锥$P-ABCD$中,底面$ABCD$是平行四边形,平面$BPC$⊥平面$DPC$,$BP=BC$,$E$,$F$分别是$PC$,$AD$的中点。

证明:(1)$BE\perp CD$;(2)$EF\parallel$平面$PAB$。

17.如图,在平面直角坐标系$xOy$中,已知椭圆$C$:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,经过点$M(0,1)$。

1)求椭圆$C$的方程;2)过点$M$作直线$l_1$交椭圆$C$于$P$,$Q$两点,过点$M$作直线$l_1$的垂线$l_2$交圆$N(x_0,0)$于另一点$N$。

若$\triangle PQN$的面积为$3$,求直线$l_1$的斜率。

18.南通风筝是江苏传统手工艺品之一。

现用一张长$2$米,宽$1.5$米的长方形牛皮纸$ABCD$裁剪风筝面,裁剪方法如下:分别在边$AB$,$AD$上取点$E$,$F$,将三角形$AEF$沿直线$EF$翻折到$A'EF$处,点$A'$落在牛皮纸上,沿$A'E$,$A'F$裁剪并展开,得到风筝面$AEA'F$,如图$1$。

2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)

2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
5.已知 是定义在R上的奇函数.当 时, ,若 ,则实数t的值为_____________.
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2020届高三第三次调研测试1. 已知集合{1023}U =-,,,,{03}A =,,则UA = ▲ .2. 已知复数i 13i a z +=+(i 是虚数单位)是纯虚数,则实数a 的值为 ▲ .3. 右图是一个算法流程图.若输出y 的值为4,则输入x 的值为 ▲ . 4. 已知一组数据6,6,9,x ,y 的平均数是8,且90xy =,则该组数据的方差为 ▲ .5. 一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为 ▲ .6. 已知函数2220()20x x x f x x x x ⎧-=⎨--<⎩,≥,,, 则不等式()()f x f x >-的解集为 ▲ .7. 已知{}n a 是等比数列,前n 项和为n S .若324a a -=,416a =,则3S 的值为 ▲ .8. 在平面直角坐标系xOy 中,双曲线22221y x a b-=(00a b >>,)的右准线与两条渐近线分别交于A ,B两点.若△AOB 的面积为4ab ,则该双曲线的离心率为 ▲ .9. 已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =3 cm ,BC =1 cm ,CD =2 cm .将此直角梯形绕AB 边所在的直线旋转一周,由此形成的几何体的体积为 ▲ cm 3.10.在平面直角坐标系xOy 中,若曲线sin 2y x =与1tan 8y x =在()2ππ,上交点的横坐标为α,则sin 2α的值为 ▲ .11.如图,正六边形ABCDEF 中,若AD AC AEλμ=+(λμ∈,R ),则λμ+的值为 ▲ .12.如图,有一壁画,最高点A 处离地面6 m ,最低点B 处离地面 m .若从离地高2 m 的C 处观赏它,则离墙 ▲ m 时,视角θ最大.13.已知函数2()23f x x x a =-+,2()1g x x =-.若对任意[]103x ∈,,总存在[]223x ∈,,使得12()()f xg x ≤成立,则实数a 的值为 ▲ .(第3题)F (第11题)A(第12题)14.在平面四边形ABCD 中,90BAD ∠=︒, 2AB =,1AD =.若43AB AC BA BC CA CB ⋅+⋅=⋅, 则12CB CD +的最小值为 ▲ .15.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,(sin sin )()(sin sin )a A B c b B C -=-+.(1)求角C 的值;(2)若4a b =,求sin B 的值.16.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,平面BPC ⊥平面DPC ,BP BC =,E ,F 分别是PC ,AD 的中点. 求证:(1)BE ⊥CD ; (2)EF ∥平面PAB .17.如图,在平面直角坐标系xOy 中,已知椭圆22221y x C a b+=:(0a b >>)的上顶点为()03A ,,圆2224a O x y +=:经过点()01M ,. (1)求椭圆C 的方程;(2)过点M 作直线1l 交椭圆C 于P ,Q 两点,过点M 作直线1l 的垂线2l 交圆O 于另一点N .若△PQN 的面积为3,求直线1l 的斜率.18.南通风筝是江苏传统手工艺品之一.现用一张长2 m ,宽 m 的长方形牛皮纸ABCD 裁剪风筝面,裁剪方法如下:分别在边AB ,AD 上取点E ,F ,将三角形AEF 沿直线EF 翻折到A EF '处,点A '落在牛皮纸上,沿A E ',A F '裁剪并展开,得到风筝面AEA F ',如图1.(1)若点E 恰好与点B 重合,且点A '在BD 上,如图2,求风筝面ABA F '的面积; (2)当风筝面AEA F '的面积为23m 时,求点A '到AB 距离的最大值.ABCDPEF(第16题)xOA(第17题)y M N PQ(图1)AD F A '(图2)A(E )CD F A '19.已知数列{}n a 满足11(2)(21)n n n n na a a a ---=-(2n ≥),1n nb n a =-(n *∈N ).(1)若1=3a ,证明:{}n b 是等比数列;(2)若存在k *∈N ,使得1k a ,11k a +,21k a +成等差数列.① 求数列{}n a 的通项公式;② 证明:111ln ln(1)22n n n a n a ++>+-.20.已知函数2()1ln ax f x x=+(0a ≠),e 是自然对数的底数.(1)当0a >时,求()f x 的单调增区间;(2)若对任意的12x ≥,1()2e b f x -≥(b ∈R ),求b a 的最大值;(3)若()f x 的极大值为2-,求不等式()e 0x f x +<的解集.21.A .[选修4-2:矩阵与变换]已知a b c d ∈,,,R ,矩阵20a b -⎡⎤=⎢⎥⎣⎦A 的逆矩阵111c d -⎡⎤=⎢⎥⎣⎦A .若曲线C 在矩阵A 对应的变换作用下得到曲线21y x =+,求曲线C 的方程.B .[选修4-4:坐标系与参数方程]在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,()5π4,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值. C .[选修4-5:不等式选讲]已知a ∈R ,若关于x 的方程2410x x a a ++-+=有实根,求a 的取值范围.22.现有一款智能学习APP ,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP 积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟 积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频 学习积分的概率分布表如表2所示.(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为ξ,求ξ的概率分布及数学期望.23.设202(1)i nn i i n P C =-=∑,212(1)j nn jj njQ C =-⋅=∑. (1)求222P Q -的值;(2)化简n n nP Q -.表1表2参考答案1、 {12}-,2、3-3、1-4、1455、126、(20)(2)-+∞,,7、14 8、2 9、73π 10、 11、43 12、13- 1415、(1)π3C =.(2)sin B =.16、略17、(1)椭圆C 的方程为22143y x +=. (2)若1l 的斜率为0,则PQ ,2MN =, 所以△PQN 的,不合题意,所以直线1l 的斜率不为0. 设直线1l 的方程为1y kx =+, 由221431y x y kx ⎧+=⎪⎨⎪=+⎩,消y ,得22(34)880k x kx ++-=, 设()11P x y ,,()22Q x y ,,则1x =,2x所以PQ12x -=直线2l 的方程为11y x k =-+,即0x ky k +-=,所以.MN = 所以△PQN的面积12S PQ MN =⋅132==,解得12k =±,即直线1l 的斜率为12±. 18、(1)方法一:建立直角坐标系四边形ABA F '的面积为24m 3.方法二:设ABF θ∠=,则2ABA θ'∠=.在直角△ABD 中,3tan 24AD AB θ==, 所以22tan 341tan θθ=-, 解得1tan 3θ=或tan 3θ=-(舍去).所以2tan 3AF AB θ==. 所以△ABF 的面积为21222m 233⨯⨯=,所以四边形ABA F '的面积为24m 3.(2)方法一:建立如图所示的直角坐标系. 设AE a =,AF b =,()00A x y ',,则直线EF 的方程为0bx ay ab +-=,因为点A ,A '关于直线EF 对称,所以0000022y ax b bx ay ab ⎧=⎪⎪⎨⎪+-=⎪⎩,,解得20222a b y a b =+. 因为四边形AEA F '所以ab =,所以033y a a==+. 因为02a <≤,302b <≤,以2a ≤. 设33()f a a a =+,2a ≤.49()1f a a '=-=, 令()0f a '=,得a =a =(舍去). 列表如下:当a ()f a, 所以0y 的最大值为32,此时点A '在CD上,a =1b =. 答:点A '到AB 距离的最大值为3m 2.方法二:设AE a =,AEF θ∠=,则tan AF a θ=.因为四边形AEA F '的面AE AF ⋅2tan a θ=tan θ.过点A '作AB 的垂线A T ',垂足为T ,则sin2sin2sin2A T A E AE a θθθ''=⋅=⋅=2224322sincos 2tan 33sin cos tan 11a a a a a a a θθθθθθ=⋅=⋅=⋅=++++.因为02AE <≤,302AF <≤2a ≤. (下同方法一)19、(1)由11(2)(21)n n n n na a a a ---=-,得1122n n n a a -=+-,得()11121n n n n a a -⎡⎤-=--⎢⎥⎣⎦,即12n n b b -=因为1=3a ,所以11121=03b a =--≠,所以12n n bb -=(2n ≥),所以{}n b 是以1b 为首项,2为公比等比数列.(2)① 设111a λ-=,由(1)知,12n n b b -=, 所以21121222n n n n b b b b ---====,即112n nn a λ--=⋅,所以112k k k a λ-=⋅+.因为1k a ,11k a +,21k a +成等差数列,则11(2)(22)2(21)k k k k k k λλλ-+⋅++⋅++=⋅++, 所以120k λ-⋅=,所以0λ=,所以1n n a =,即1n a n=.② 要证111ln ln(1)22n n n a n a ++>+-,即证111()ln 2n n n a a n +++>,即证1112ln 1n n n n ++>+.设1n t n +=,则111111t t t n n t t -+=-+=-+,且1t >,从而只需证,当1t >时,12ln t t t ->. 设1()2ln f x x x x=--(1x >),则22121()1(1)0f x x x x '=+-=->,所以()f x 在(1)+∞,上单调递增,所以()(1)0f x f >=,即12ln x x x ->,因为1t >,所以12ln t t t ->,所以,原不等式得证. 20、(1)()f x 的定义域为()()110e e --+∞,,. 由, 222112(1ln )2(ln )2()(1ln )(1ln )ax x ax ax x x f x x x +-⋅+'==++ 令()0f x '>,因为0a >,得12e x ->, 因为112ee -->,()f x 的单调增区间是()12e -+∞,. A 'ABCDFET(2)当0a <时,1(1)02e b f a -=<<,不合题意; 当0a >时,令()0f x '<,得10e x -<<或112e e x --<<, 所以()f x 在区间()10e-,和()112ee--,上单调递减. 因为()1121e e 2--∈,,且()f x 在区间()12e-+∞,上单调递增,所以()f x 在12e x -=处取极小值2e a ,即最小值为2e a . 若12x ∀≥,1()2e b f x -≥,则122e e b a -≥,即e b a ≥.不妨设0b >,则e b b b a ≤. 设()e bb g b =(0b >),则1()e b b g b -'=.当01b <<时,()0g b '>;当1b >时,()0g b '<,所以()g b 在()01,上单调递增;在()1+∞,上单调递减,所以()(1)g b g ≤,即1e ebb ≤,所以b a 的最大值为1e . (3)由(2)知,当0a >时,()f x 无极大值, 当0a <时,()f x 在()10e -,和()112e e--,上单调递增;在()12e -+∞,上单调递减,所以()f x 在12e x -=处取极大值, 所以122(e )2ea f -==-,即e a =-. 设()()e x F x f x =+,即2e ()e 1ln xx F x x=-+, 当()10e x -∈,,1ln 0x +<,所以()0F x >; 当()1e x -∈+∞,,2e (12ln )()e (1ln )x x x F x x +'=-+, 由(2)知,e e x x ≤,又212ln (1ln )x x ++≤, 所以()0F x '≥,且()F x 不恒为零, 所以()F x 在()1e -+∞,上单调递增.不等式()e 0x f x +<,即为()0(1)F x F <=,所以1e 1x -<<, 即不等式的解集为()1e 1-,. 21A 、由题意得,11001-⎡⎤=⎢⎥⎣⎦AA ,即2122100101a c a dac b d bd b ---⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 所以1120a b c d ====,,,,即矩阵1201-⎡⎤=⎢⎥⎣⎦A . 设()P x y ,为曲线C 上的任意一点,在矩阵A 对应的变换作用下变为点()P x y ''',, 则 1201x x y y '-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即2.x x y y y '=-⎧⎨'=⎩, 由已知条件可知,()P x y ''',满足21y x =+,整理得:2510x y -+=, 所以曲线C 的方程为2510x y -+=.21B 、(1)分别将()π42A ,,()5π4B ,转化为直角坐标为()04A ,,()22B --,, 所以直线AB 的直角坐标方程为340x y -+=. (2)曲线C 的方程为r ρ=(0r >),其直角坐标方程为222x y r += 又直线AB 和曲线C 有且只有一个公共点,即直线与圆相切, 所以圆心到直线AB=r .21C 、因为关于x 的方程2410x x a a ++-+=有实根, 所以164(1)0a a ∆=--+≥,即41a a -+≤ 当1a ≥时,421a -≤,得512a ≤≤; 当01a <<时,1≤4,恒成立,即01a <<; 当0a ≤时,412a -≤,得032a -≤≤, 综上:所求a 的取值范围为3522a -≤≤.22、(1)由题意,获得的积分不低于9分的情形有:因为两类学习互不影响,所以概率111111115926223229P =⨯+⨯+⨯+⨯=,所以每日学习积分不低于9分的概率为59.(2)随机变量ξ的所有可能取值为0,1,2,3.由(1)每个人积分不低于9分的概率为59.()()3464=0=9729P ξ=;()()()21354240=1=C 99729P ξ=;()()()22354300=2=C 99729P ξ=;()()35125=3=9729P ξ=. 所以,随机变量ξ的概率分布列为所以642403001255()01237297297297293E ξ=⨯+⨯+⨯+⨯=.所以,随机变量ξ的数学期望为53.23、(1)由201234444441111153P C C C C C =-+-+=,2123444441234103Q C C C C =-+-+=,所以2220P Q -=.(2)设n n T nP Q =-,则01221232222222221232()()n nn n n n n n n n n n n n n T C C C C C C C C =-+-⋅⋅⋅+--+-+⋅⋅⋅+ 0123222222123nn n n n nn n n n n C C C C C ----=-+-+⋅⋅⋅+ ① 因为222k n k n n C C -=, 所以2212223022222123n n n n n n n n n n n n n n T C C C C C -------=-+-+⋅⋅⋅+0123222222123nn n n n n n n n n n C C C C C ----=-+-+⋅⋅⋅+ ② ①+②得,20T =,即0n n T nP Q =-=,所以0n n nP Q -=.。

相关文档
最新文档