中心对称图形设计
中心对称图形教案+教案说明

中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
通过一系列的教学活动和实例,学生将能够掌握中心对称图形的性质和特点,并能够运用这些知识解决实际问题。
教学目标:1. 了解中心对称图形的定义和性质。
2. 能够识别和绘制中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学内容:第一章:中心对称图形的定义1.1 引入中心对称图形的概念。
1.2 解释中心对称图形的定义。
1.3 举例说明中心对称图形的特征。
第二章:中心对称图形的性质2.1 介绍中心对称图形的基本性质。
2.2 通过实例演示中心对称图形的性质。
第三章:识别中心对称图形3.1 教授如何识别中心对称图形。
3.2 提供练习题,让学生练习识别中心对称图形。
3.3 给予反馈和指导。
第四章:绘制中心对称图形4.1 教授如何绘制中心对称图形。
4.2 提供练习题,让学生练习绘制中心对称图形。
4.3 给予反馈和指导。
第五章:中心对称图形在实际问题中的应用5.1 介绍中心对称图形在实际问题中的应用。
5.2 提供实际问题,让学生运用中心对称图形的知识解决。
5.3 给予反馈和指导。
教学方法:1. 采用直观演示法,通过实物和图形进行展示和讲解。
2. 采用问题解决法,提供实际问题,让学生运用中心对称图形的知识解决。
3. 采用分组讨论法,让学生分组讨论和交流,促进学生的思维和合作能力。
评价方法:1. 课堂练习题,评估学生对中心对称图形的理解和掌握程度。
2. 实际问题解决,评估学生运用中心对称图形知识解决实际问题的能力。
3. 学生分组讨论和交流,评估学生的合作和思维能力。
教学资源:1. 中心对称图形的实物和图形展示。
2. 练习题和实际问题。
3. 分组讨论和交流的指导。
教学时间:1. 第一章:2课时2. 第二章:2课时3. 第三章:1课时4. 第四章:1课时5. 第五章:1课时通过本教案的学习和实践,学生将能够理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
中心对称图形--教学设计(王克维)

级上册第十六章第4节中心对称图形河北省石家庄市第十九中学王克维《中心对称图形》教学设计河北省石家庄市第十九中学王克维一.教学内容和内容解析《中心对称图形》是冀教版八年级上册第十六章第四节的内容,共一课时.本章一共学习了两种对称,分别是轴对称和中心对称,它们在现实生活中有着广泛的应用.本节内容是在学习轴对称以后的中心对称,属于概念性知识.本节课贯穿始终的思想方法是类比,类比轴对称研究中心对称.中心对称又是图形变换中旋转变换的一种特殊情况,所以图形的旋转是学习本节课内容的核心.伴随着课程的学习,学生会体会到,无论是轴对称还是中心对称,本质上都是图形中各个点的对称.本节内容从现实生活中中心对称的应用出发,研究其概念和性质,最终又体现到中心对称在生活和数学后继学习的应用上来.本节课的教学重点是:1. 中心对称图形,中心对称的概念;2. 中心对称的性质,以及运用性质作图.二.教学目标和目标解析图形的旋转在课标中是如下要求的:(1)通过具体实例认识平面图形关于旋转中心的旋转.探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等.(2)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.(3)探索线段,平行四边形,正多边形,圆的中心对称性质.(4)认识并欣赏自然界和现实生活中的中心对称图形.在“课标”的“总体目标”和“内容要求”的指导下,设置本节课的教学目标.(一)学生在知识与技能方面要经历如下过程:1.了解中心对称、中心对称图形的概念,辨析中心对称,中心对称图形;2.探索中心对称的基本性质;3.能画出一个图形关于某点成中心对称的图形.(二)学生进行如下数学思考:1.类比研究轴对称的方法,研究中心对称的概念和性质,以及作图;2. 通过对中心对称性质的探究及运用,体会特殊图形归纳到一般图形的思想.(三)学生在本节课的学习后要将以下问题解决:能用中心对称的性质准确作出已知图形关于某点中心对称的图形.(四)学生在本节课的学习后要提升以下情感态度价值观:1. 通过一系列探索活动,培养学生独立思考,大胆表述,动手实验,勇于探究的能力,同时,在与同学合作的过程中,体会团结协作的快乐,体会学习数学的快乐;2. 感受数学在生活中的应用,以及数学产生的美.三.教学问题诊断分析2.学生在小学学习过轴对称图形,以及图形绕着某一个点顺时针或逆时针旋转90°.七年级上册第二章学习了图形的旋转,知道旋转的三要素,了解图形旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等.所以,本节课学生只要认识到中心对称是旋转的一种特殊情况,就可以发现研究中心对称可以借助旋转的性质.本节课的难点之二中心对称性质的探究和发现,就得以突破.3.学生可能出现的问题或困难:(1)中心对称图形概念的关键理解不透彻.例如:学生举出中心对称图形的例子,有可能学生会举出“等边三角形”或“电扇”.这说明,学生没有充分意识到,必须旋转180°能重合的图形才叫中心对称图形,并不是只要旋转以后能重合就是中心对称图形.为此教师设计了“奔驰”图案,它可以代表“电扇”图案,可以扩充想象成“等边三角形”,它们旋转120°以后能和自身重合.如果“奔驰”图案研究透彻,学生就会明白中心对称图形定义的关键点,以及判断中心对称图形的依据.(2)归纳性质时,旋转性质应用不到位.由于图形旋转是七年级上学期所学,而三角形全等是本学期所学,学生对全等的使用根深蒂固.所以,在证明对应点连线被对称中心平分时,有的学生往往想到的方法是,测量或证全等.为此,像教材一样,将旋转的性质也放在课件和学案上,并用不同颜色的笔突出,目的是引起学生注意.在说明对应点连线经过对称中心时,有的学生可能根本不去考虑这条性质.因为,当他们把对应点连接时,自然而然交于点O,许多学生根本不去想为什么,他们从心理上认为这是必然的.所以,在小组交流时,适时点拨学生,为什么对应点连线要经过对称中心呢?引导学生利用旋转角是180°来进行说理.四.教学支持条件分析五.教学过程分析本节课分为以下六个教学环节:创师探操巩小设生索作固结情辨归应练反境析纳用习思围绕这样的问题链展开:什么叫中心对称图形?类比轴对称,谈一谈什么叫两个图形成中心对称?中心对称图形和中心对称有何关系?中心对称的性质是怎样的?如何作出一个图形成中心对称的图形?(一)什么是中心对称图形?创设情境,引入新知1.问题设计意图:学生用欣赏的目光来审视美丽图片,体会它们蕴含的文化内涵.学生还会想到,老师为什么会选择这几幅图片呢,它们具有怎样的特征?在这种内驱力的引导下,学生迅速地拿起手中的学具进行动手实验.2.师生活动预设:学生欣赏生活中常见的几幅图片:故宫皇极殿,剪纸艺术品,手工风车,奔驰标志,狮子滚绣球,太极八卦图.在欣赏的同时,学生会发现这些图片都有着丰富的文化底蕴,或者是中国古代建筑物,或者是民间流传的剪纸艺术品,或者是现代轿车的标志图案等等.学生欣赏后老师提出问题:请用数学知识描述这些图片的特征,并用学具验证自己的想法.学生用提前学具进行操作,他们会发现:老师提供的图案,有的是轴对称图形,还能找到他们的对称轴;有的图案并不是轴对称图形.但是,他们都有各自的特征,就是绕着某一点旋转一定度数后与自身重合.师生辨析,生成概念小组交流后,代表上台展示自己的结论.通过生生之间的辨析,所有同学达成共识,这几幅图片中,有已经学习过的轴对称图形,也有绕一点旋转一定度数后能与自身重合的图形.此时,老师指出:本节课,我们就来研究绕一点旋转180°后能与自身重合的图形,揭示课题——中心对称图形.老师提出本节课的问题:你能依据刚才的过程,表述出中心对称图形的定义吗?3.需要概括的概念要点,思想方法:中心对称图形:如果一个图形绕着某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点,叫做它的对称中心,其中对称的点叫做对应点.概念关键点:某一点——对称中心;180°——旋转角;它自身重合——中心对称.思想方法:类比.4.需要学习的技能训练:动手验证,同伴交流,小组展示,积累数学活动经验,同时进行概念表述.5.需要培养的能力:动手验证,合作交流,语言表达能力等.(二)类比轴对称,谈一谈什么叫两个图形成中心对称?1.问题设计意图:学生充分经历观察,分析,举例,交流的过程,扩充对中心对称图形的感性认识,从而理性上能够表述出中心对称图形的定义,这培养了学生的语言表达能力和概括能力;而轴对称是本章刚深入研究过的,所以类比思想在这里起到了重要的作用.2.师生活动预设:类比着轴对称,学生描述出成中心对称的定义.教师举出一个例子,动画演示,加强学生几何直观能力的培养,让学生从形象上体会成中心对称概念.3.需要概括的概念要点,思想方法:成中心对称:如果一个图形绕着某一点旋转180°后与另一图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点,线段和角分别叫做对应点,对应线段,对应角.概念关键点:某一点——对称中心;180°——旋转角;另一图形重合——成中心对称.思想方法:类比.4.需要进行的技能训练:观察,分析,举例,交流,扩充对中心对称图形的感性认识,理性上表述出定义.5.需要培养的能力:语言表达能力和概括能力.(三)中心对称图形和两个图形成中心对称有什么关系呢?1.问题设计意图:2.师生活动预设老师提出问题中心对称图形和两个图形成中心对称有什么关系呢?学生思考,交流,陈述,达成共识.3.需要概括的结论:经过师生辨析,达成共识:中心对称图形是一个图形的性质,成中心对称是两个图形的位置关系具有对称性;如果把成中心对称的两个图形看做一个整体,这个图形就是中心对称图形;而中心对称图形和中心对称都需要绕某一点旋转180°,都属于旋转的一种特殊情况.4.需要进行的技能训练:观察,分析,交流,表达.5. 需要培养的能力:对比,语言表达,合作交流.(四)中心对称的性质是怎样的?合作探究,探索归纳1.设计意图:在本环节,学生的自主探究欲望促使他们积极探索和交流,他们会经历猜想,验证,证明等过程,证明时,学生可能会证明全等,也有可能会应用旋转的性质.总之,学生的数学思维过程得到很大的提升和锻炼.2. 师生活动预设:教师提出问题:你能借助旋转的性质,探索出成中心对称的两个图形间存在怎样的性质吗?以△ABC 和△C B A '''为例,进行研究. 学生积极思维,在小组间交流,可能会得到如下结论:①△ABC ≌△C B A '''②对应角相等;③对应边相等且平行(或共线);④O C CO O B BO O A AO '='='=,,;⑤C C B B A A ''',,交于一点O.3. 需要概况的性质:通过师生共同总结,探索并归纳出成中心对称的两个图形具有的性质:在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.4. 需要进行的技能训练:学生要积极探索和交流经历猜想,验证,证明等过程.5. 需要培养的能力:动手,作图,逻辑推理.(五) 如何作出一个图形成中心对称的图形?操作应用,总结提升1. 问题设计意图:学生独立作图,再和黑板上准确作图的步骤过程对比,认识到作图的步骤和依据.同时,将图形变化,使学生认识到,无论图形怎么变化,对称中心位置在哪里,只要作出图形上关键点的对应点,就可以作出中心对称图形.这一点,对于以后学习画函数图象等有非常大的影响.2. 师生活动预设:教师提出要求:请依据性质,完成以下作图:(1)已知线段AB 和点O ,画出线段AB 关于点O 的中心对称图形.(2)已知△ABC 和点O ,画出△ABC 关于点O 的中心对称图形.'A B OA BO C学生完成作图,并进行辨析,体会到作图的依据仍然是刚刚研究得到的性质. 教师指出,我们可以作出线段的中心对称图形,可以作出三角形的中心对称图形,那么四边形呢?学生体会到,某些图形只需要作出它顶点的对应点,再连线即可作出它成中心对称的图形.老师提出问题:对于另一些图形又该如何做出它的中心对称图形呢?通过师生辨析,发现任何图形的对称,本质上都是点的对称,只需做出关键点的对应点,就可以做出它的对称图形来.3. 需要概况的要点,思想方法:任何图形的对称,本质上都是点的对称,只需作出关键点的对应点,就可以作出它的对 称图形来.思想方法:由特殊到一般.4. 需要进行的技能训练:学生进行作图,猜测,辨析,进行归纳总结,体会如何思考抓住问题的本质,以不变应 万变.5. 需要培养的能力:动手作图,归纳总结,语言表达.六. 目标检测设计巩固练习,检验实效1. 下列图形中既是轴对称图形又是中心对称图形的是( ).2. 如图,已知△ABC 与△DEF 中心对称,找出它们的对称中心O .C A BD A BCE vF D设计目的:学生通过练习,进一步明确中心对称图形的定义以及成中心对称图形的性质.小结反思,课堂延伸3.学生梳理本节课知识,感悟收获:(1)中心对称图形,中心对称的概念,性质及应用;(2)类比,从特殊到一般的思想方法;(3)独立思考,语言表达能力,小组合作能力的培养;(4)中心对称在生活中和后继数学学习中的应用.4.布置作业:(1)完成课本126页1,2,3,4题;(2)寻找52张扑克牌中的中心对称图形;(3)列表比较中心对称图形和轴对称图形;(4)查询并试着总结“对称思想”在你学过的数学知识中的应用.设计目的:小结可以锻炼学生的概括能力,语言表达能力,更可以在学生脑海中加深对本节课的认识.通过课后作业培养学生的创新精神,增强主动探究的意识和能力.。
中心对称图形教学设计

中心对称图形教案一、教学内容1.关于中心对称图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称图形旋转后与原图形重合、中心对称与中心对称图形的区别与联系3、体验中心对称图形与现实生活的联系二、教学目标(知识与技能)理解中心对称图形的定义及特征,体会中心对称及中心对称图形之间的区别与联系(过程与方法)经历观察思考探索发现的过程,感受中心对称图形的特征,培养学生的观察能力与思考能力(情感态度)1、通过对中心对称图形的探究和认识,体验图形的变化规律,感受图形变换的美感。
享受学习数学的乐趣和积累一定的审美经验2、通过师生的共同活动,积累一定的审美体验,经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活。
重点、难点1.重点:中心对称图形的概念及相关的性质.2.难点:中心对称与中心对称图形的区别与联系.三、教学过程一、复习引入问题1、中心对称的两个图形有什么样的特征?问题2、观察如图所示的图形归纳中心对称的概念与性质。
轴对称与中心对称的区别与联系二、探索新知活动1、出示一些具有旋转对称性的图形,观察哪些图形需要旋转180°才可重合,从而引出中心对称图形。
活动2 P66(思考)、(1)如图将线段AB绕它的中点旋转180°,有什么发现?(2)将平行四边形ABCD绕它的对角线的交点O旋转180°,有什么发现?概念:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.特性:中心对称图形对称点所连线段都经过旋转中心且被对称点平分活动3、合作探究:小组讨论一个图形是中心对称图形的关键是什么?,让学生判断平行四边形是否是中心对称图形及平行四边形有哪些性质?活动4、研学教材:中心对称图形的应用活动5、能力拓展完成练一练(幻灯片15至幻灯片28)活动6、对比归纳:中心对称和中心对称图形的联系与区别四、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称及中心对称图形的有关概念;2.能判断简单的几何图形是否是中心对称图形;了解中心对称图形的应用。
人教版九年级数学上册《中心对称图形》教学设计

《中心对称图形》教学设计《中心对称图形》是初中几何第二册第四章的内容,在初中三年级上学期讲授。
下面我说明一下我是怎样组织第二课时《中心对称图形》这堂课的教学以及这样做的理由。
一.教材分析(一)教材的地位和作用中心对称包含在《四边形》一章中,是这章的难点之一。
困难的原因有两点:一是中心对称图形渗透了旋转变换思想,学生学习静态图形已成习惯,对运动变化不适应。
二是轴对称图形的干扰。
由于学习了轴对称图形,学生对“对称”概念形成定势,只承认轴对称为“对称”,不习惯中心对称。
虽然,义务教育初中数学教学大纲中只要求了解这一节的概念,并不要求运用本节定理证明问题。
但是,这一节的作用却不可小觑。
因为中心对称向学生渗透了旋转变换的思想方法。
学生掌握了这种思想,就会用动的观点研究问题,使学生的思维更加活跃,处理问题更加灵活(二)教学目标1.知识目标:(1)了解中心对称图形的概念(2)能找出线段、平行四边形的对称中心,能判断某一个图形是否是中心对称图形。
(3)明确哪些图形是轴对称图形,哪些图形是中心对称图形。
2.能力目标:通过猜想、实验、搜集分析、合作交流等一系列活动,培养学生的观察、推理、动手操作能力以及有条理的表达能力。
3.情感目标:通过本节的学习,让学生积累一定的审美体验,养成观察,探究事物的习惯。
(三)教学重点和难点教学重点:中心对称图形的概念教学难点:正确识别一个图形是否是中心对称图形,以及这些内容所渗透的变换思想。
(四)在教学中如何突破这个重点和难点为了突出重点,我利用课件连续三次播放动画,让学生通过观察“线段”和“平行四边形”分别绕某一点旋转180°后能与原图形重合的动画,进行深入的思考并最终引导学生自己归纳得出中心对称图形及对称中心的概念。
为了有效的突破难点,我指导学生采用了实践交流的学习方法。
由学生拿出课前准备好的几何图形,通过实践和互相的交流来研究它们是否为中心对称图形。
这里教师强调:射线,等边三角形,正五边形不是中心对称图形。
《中心对称图形》旋转中心对称图形

实例一:利用旋转作图求解几何问题
总结词:高效便捷;理解深刻
旋转中心对称作图方法可以解决涉及圆、椭圆、双曲 线等几何问题
将已知图形绕着某个点旋转一定角度后,观察旋转后 的图形能否与原图形重合。
作图的过程中,需要先确定旋转中心,然后确定旋转 角度和旋转方向
实例二:利用旋转对称性设计美丽的图案
总结词:美观实用;富有创意
旋转对称性往往使得图形在旋转特定角度后与原图重合。
旋转角度可变
不同的图形可能具有相同的旋转对称性,但其对应的旋转角度可能不同。
旋转对称性与平移对称性不同
旋转对称性是围绕着旋转中心进行旋转,而平移对称性则是沿着一定方向平移。
旋转对称性的应用
几何作图
利用旋转对称性可以方便地作 出一些几何图形,如正多边形
《中心对称图形》旋转中心 对称图形
xx年xx月xx日
目录
• 中心对称图形概述 • 中心对称图形的旋转 • 中心对称图形的旋转中心 • 中心对称图形的旋转对称性 • 中心对称图形的旋转作图 • 中心对称图形的实例分析 • 中心对称图形的思考与探究
01
中心对称图形概述
中心对称图形的定义
• 定义:把一个图形绕着某一点旋转180度,如果旋转后的图 形能够与原来的图形重合,那么这个图形就被称为中心对称 图形。
方法三
找到一个图形上的一条对称轴,该 轴线与图形的交点即为旋转中心。
04
中心对称图形的旋转对称性
旋转对称性的定义
定义
若一个图形沿着中心旋转 一定角度后,仍能与自身 重合,则称该图形具有旋 转对称性。
旋转中心
图形旋转过程中,不动的 点称为旋转中心。
旋转方向
顺时针或逆时针。
旋转对称性的特点
初二数学《中心对称图形》

民间艺术形式之一,通过剪刀和纸 张可以制作出各种美丽的图案。利用剪纸制作中心对 称图形也是一种常见的方法。首先,需要准备一张正 方形的纸,然后折叠出相应的图案,最后用剪刀沿着 折叠的痕迹进行剪裁。展开纸张后,就可以得到一个 中心对称的剪纸作品。这种方法不仅可以锻炼学生的 动手能力,还可以提高学生的艺术鉴赏能力。
利用折纸制作中心对称图形
总结词
简单、有趣
详细描述
折纸是一种常见的艺术形式,通过折叠纸张可以制作出各种形状的物体。对于中心对称 图形,可以通过折叠纸张的方式来实现。例如,将一张正方形的纸对折,然后折叠出相 应的图案,展开纸张后就可以得到一个中心对称的图形。这种方法简单易学,适合初学
者进行实践操作。
利用剪纸制作中心对称图形
05
中心对称图形的制作方法
利用几何画板制作中心对称图形
总结词
直观、精确
详细描述
几何画板是一个专业的数学绘图工具,可以 方便地绘制各种几何图形。在几何画板上, 可以通过设定对称中心,绘制出中心对称图 形,如正方形、矩形、圆等。这种方法可以 精确地绘制出中心对称图形,并且可以通过 动态演示来展示对称过程。
感谢您的观看
THANKS
中心对称图形的识别方法
观察特征
通过观察图形的形状和结 构,可以初步判断是否为 中心对称图形。
测量验证
通过测量和比较图形中各 点到对称中心的距离和角 度,可以验证是否为中心 对称图形。
旋转测试
将图形绕某点旋转180度, 观察是否与原图形重合, 是则为中心对称图形。
02
常见的中心对称图形
矩形
总结词
圆
总结词
圆是完美的中心对称图形,其对称中心是圆心。
详细描述
《中心对称的作图》课件

使用中心对称的摆设能使空间更加整洁和有序。
3 窗帘
带有中心对称图案的窗帘可以增加房间的亮点和视觉效果。
中心对称让生活更美妙
中心对称不仅存在于几何和艺术中,也存在于我们的日常生活中,如:
1 花朵
花朵的中心对称美让人心生愉悦和平静。
2 食物
一盘精美的中心对称食物让用餐更加愉悦和美味。
3 自然景观
中心对称在艺术中被广泛使用,如:
美术作品
许多艺术家使用中心对称美 学来创建令人惊叹的作品。
建筑设计
中心对称可用于创建独特的 建筑外观,如艺术博物馆和 剧院。
时尚设计
很多时尚设计师使用中心对 称布局来展现服装的华丽和 对称美。
家庭中的中心对称装饰
中心对称可以用于家庭装饰,如:
1 壁画
中心对称的壁画创造出温馨和谐的家居环境。
自然景观中的中心对称美给人带来宁静和启迪。
《中心对称的作图》PPT 课件
中心对称的作图
什么是中心对称?
中心对称是指图形相对于某个中心点进行对称,两侧的部分完全相同。
定义
中心对称是指图形相对于某 个中心点进行对称,两侧的 部分完全相同。
性质
中心对称图形满足自反性、 对称性和传递性。
例子
蝴蝶、花朵和雪花都展示了 中心对称美。
如何作出中心对称图形?
几何图形
中心对称图形可以用于创建复杂的几何图形,如雪花和星型。
点的构造
利用中心对称的性质可以创建对称的几何点。
图形分类
中心对称可以用于分类和识别不同类型的图形。
中心对称在建筑设计中的应用
中心对称心对称被用来创造和表达建筑的稳定和对称之美。
2
公共建筑
中心对称被用于创造和强调公共建筑的重要性。
《中心对称和中心对称图形》教学设计

中心对称和中心对称图形【课前准备】1.结合图形说出旋转的定义和性质旋转定义:将图形绕一个定点转动一定角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
旋转性质:对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等。
图形中的结论:(1)OA=OA’, OB=OB’ OC=OC’OD=OD’(2)∠AOA’=∠BOB’2.轴对称与轴对称图形的定义以及联系和区别轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。
轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.3.研究知识的体系定义——性质——应用4.常用数学思想:类比、从一般到特殊等5.学具:直尺圆规【动手操作】1.将透明纸覆盖在图①上,描出四边形ABCD,用大头针钉在O处,观察四边形ABCD能否与四边形A’B’C’D’重合?【尝试应用】动手画一画:1、已知△ABC与△A’B’C’成中心对称,请找出它们的对称中心。
2、已知:如图△ABC和点O,画出与△ABC关于点O的对称图形△A’B’C’.【概念辨析】中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这点对称,也称这两个图形成中心对称中心对称图形:把一个图形绕某一个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.2 中心对称(C卷)
(课标新型题拔高训练50分 45分钟)
一、科学探究题(15分)
1.我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面
积相等的两部分(如图)
探索下列问题:
(1)在图中给出的四个正方形中,各画出一条直线(依次是:•水平方向的直线、竖
直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积
相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,•将正六
边形分成左右两部分,其面积分别记为S1和S2.
①请你在图中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,
“>”连接);
②请你在图23-2-19中分别画出反映S1与S2三种大小关系的直线n,•并在相应图形
下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图23-2-20所示)•分割成面积
相等的两部分?请简略说出理由.
二、开放题(7分)
2.请你设计一幅平面图案满足以下几个要求:①由线段或圆组成;②是轴对称图形;③
是中心对称图形.
三、阅读理解题(10分)
3.如图所示,石头A和石头B相距80cm,且关于竹竿L对称,•一只电动青蛙在距竹竿
30cm,距石头A60cm的P1处,按图中顺序循环跳跃:
→
↑ ↑
←
(1)请你画出青蛙跳跃的路径(画图工具不作限制).
(•2)•青蛙跳跃25•次后停下,•此时它与石头A•相距________cm,•与竹竿L•相距
_____cm.
四、信息处理题(8分)
4.为了学习方便,有人把26个英文字母分成了五类,现在还剩下5个字母.D、M、Q、X、
Z请你根据现有的发类信息把这五个字母填在相应的方格中.
①F R P J L G ②H I O
③N S ④B C K E
从P1点以A为对 称中心跳至P2点 从P2点以L为对
称轴跳至P3点
从P4点以L为对
称轴跳至P1点
从P3点以B为对
称中心跳至P4点
⑤V A T Y W U
五、方案设计题(10分)
5.如图所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两
个共同特征:
(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所
给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)•
问而没有答第(1)问的解答不得分)
答案:
一、1.解:(1)如答图所示:
(2)①S1
②如答图所示:
(3)存在.对于任意一条直线L,在直线L•从平面图形的一侧向另一侧平移的过程
中,当图形被直线L分割后,直线L两侧图形的面积分别为S1,S2,两侧图形的面积由
S1
的时刻.因此,一定存在一条直线,将一个任意的平面图形分割成面积相等的两部分.
点拨:在探索过程中,我们遵循了从特殊到一般的思维方式,•先从特殊的多边形入
手,再进一步推广到任意的多边形,使探究的问题得以解决.
二、2.解:题目的答案不止一个,仅举一例,如答图所示.
点拨:图案的设计多种多样,越有创新意识越好.
三、3.解:(1)如答图所示,(2)60:50.
点拨:命题很有创意,作图的过程相对比较简单,在青蛙跳25次后,停在点P2.此
时,P1A=P2A=60cm.与竹竿的距离是40×2-30=50(cm).
四、4.解:①Q ②X ③Z ④D ⑤M
点拨:第①组字母即非中心对称图形,又不是轴对称图形,在剩下的5个字母中只有
Q符合这个条件;第②组字母既是中心对称图形,又是轴对称图形,符合条件的字母是X;
第③组字母不是轴对称图形,而是中心对称图形,符合条件的字母是Z.第④组字母仅是
轴对称图形,且对称轴为水平的直线,符合这个条件的字母是D.第⑤组字母仅是轴对称
图形,而对称轴为竖直的直线,符合条件的字母只有M.
五、5.解:(1)答案不唯一,例如所给的四个图案具有的共同特征可以是:①都是轴对
称图形;②面积都等于四个小正方形的面积之和;③图形中不含钝角„„只要写出两个即
可.
(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如:
同时具备特征①、②的部分图案如答图所示:
点拨:本小题主要考查同学们从不同图形中寻找共同的特征的能力,及数学语言表达
能力和空间观察.