中心对称图形教案1
中心对称图形教案

中心对称图形教案第一章:中心对称图形的概念与性质1.1 引入中心对称图形的概念利用实物或图片引导学生观察和感知中心对称现象。
向学生介绍中心对称图形的定义:在同一平面内,如果一个图形能够绕某一点旋转180度后与原来的图形完全重合,这个图形就叫做中心对称图形。
1.2 探索中心对称图形的性质引导学生通过实际操作,探究中心对称图形的性质。
学生总结出中心对称图形的性质:(1)对称中心是图形的旋转中心;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。
1.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形。
让学生自己找出一些中心对称图形,并画出它们的对称中心。
第二章:中心对称图形的绘制与识别2.1 学习中心对称图形的绘制方法引导学生学习如何绘制中心对称图形。
学生通过实际操作,学会利用直尺和圆规绘制中心对称图形。
2.2 提高中心对称图形的识别能力提供一些图形,让学生判断它们是否为中心对称图形。
引导学生学会如何找出中心对称图形的重心。
2.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形,并找出它们的重心。
让学生自己找出一些中心对称图形,并画出它们的对称中心。
第三章:中心对称图形与坐标系3.1 引入坐标系的概念向学生介绍坐标系的定义和作用。
利用实际例子,让学生理解坐标系中点的表示方法。
3.2 学习中心对称图形在坐标系中的性质引导学生学习中心对称图形在坐标系中的性质。
学生总结出中心对称图形在坐标系中的性质:(1)对称中心的坐标为(h, k),其中h为对称中心在x轴上的坐标,k为对称中心在y轴上的坐标;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。
3.3 练习与巩固提供一些图形,让学生在坐标系中判断它们是否为中心对称图形。
让学生自己在坐标系中找出一些中心对称图形,并画出它们的对称中心。
人教版九年级数学上册23.2.2:中心对称图形(教案)

4.学生小组讨论环节,大家在分享成果时表现出很高的热情。但在讨论过程中,我发现有些小组在解决问题时过于依赖教师,缺乏自主解决问题的能力。针对这个问题,我将在后续的教学中,逐步减少对学生的干预,让他们在探讨中学会自主分析和解决问题。
(4)中心对称图形的创新能力:学生在创作中心对称图形时,往往局限于教材中的例子,缺乏创新意识。
突破方法:鼓励学生发挥想象,尝试将中心对称知识应用于不同的场景和领域,提高学生的创新能力和实践能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些美丽的图案,它们看起来是完全对称的?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中心对称图形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如对称中心的寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
5.总结回顾环节,学生对中心对称图形的基本概念和性质有了较好的掌握,但在实际应用方面还显得有些吃力。为了提高学生的应用能力,我计划在课后布置一些具有实际背景的作业,让学生在完成作业的过程中,进一步巩固所学知识。
《中心对称》教案

《中心对称》教案1教学目标:知识与技能:(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.过程与方法:利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.情感、态度与价值观:经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.教学重点难点:重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.教学方法:(一)创设情境导入新课:导语一在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等.)导语二观察图中三个图形旋转的角度,发现哪个图形与其他二个不同?(二)合作交流解读探究:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用.它都能给人以一种美的享受.本节我们就来研究这些图形的形成——中心对称.探究:如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?发现:我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.上述发现可以证明如下.(1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段AA'上,且OA=OA',即点O是线段AA'的中点.(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.探索:下图中△A'B'C'与△ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)结论:(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.例1如图4-31,已知四边形ABCD和点O,画出四边形A′B′C′D′,使它与四边形AB CD关于点O成中心对称.解:(1)连接AO,BO,CO,DO;(2)分别延长AO到A′,BO到B′,CO到C′,DO到D′,使OA′=OA,OB′=OB,O C′=OC,OD′=OD;(3)顺次连接点A′,B′,C′,D′.(如图4-32)四边形A′B′C′D′就是所求的四边形.议一议:中心对称与轴对称有什么区别?又有什么联系?《中心对称》教案2教学目标:教学知识点:1.熟记中心对称图形的有关概念.2.叙述并应用中心对称图形的基本性质.过程与方法:1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.掌握中心对称图形及其基本性质,掌握平行四边形是中心对称图形.情感、态度与价值观:通过师生的共同活动,使学生体会积累一定的审美体验.教学重、难点:教学重点:中心对称图形的定义及其性质.教学难点:中心对称图形的定义.教学过程:Ⅰ.巧设情景问题,引入课题[师]同学们,平行四边形纸板准备好了吗?好,我们现在来做一做如下图所示,在一个平行四边形纸板上,连结两条对角线,得到交点O,用图钉过点O 将纸板固定在一张纸上,并描下此时四边形ABCD的轮廓.绕点O旋转平行四边形纸板,使得点A移动到点C的位置.(1)此时的纸板与原来的位置是否重合?(2)指出旋转中心,求出旋转角的度数.(3)根据上面的过程,你能验证平行四边形的哪些性质?与同伴交流.(学生动手做、讨论、总结)[生1]把平行四边形纸板绕对角线的交点O旋转,使点A移动到点C的位置时,纸板与描下的轮廓重合.平行四边形旋转的中心是对角线的交点O,由于点A和点C在一条直线上,所以旋转的角度为180°.[师]这位同学分析得很正确:下面来看第(3)个问题,大家互相交流交流.[生2]从刚才旋转的过程中,验证了平行四边形的对边相等,对角相等,对角线互相平分等性质.[师]很好,我们来看(演示刚才学生旋转的过程),这个平行四边形绕它的对角线的交点O旋转180°,它与原图重合,我们把这样的图形,称为中心对称图形.这节课我们就来探讨中心对称图形.Ⅱ.讲授新课[师]我们再来看这根木条(出示教具),它绕着这一点(指出木条的中点)旋转180°时,也和原图重合.即与它本身重合,这样的图形叫中心对称图形.大家来总结归纳:什么是中心对称图形?[生]把一个图形绕它的某个点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形叫做中心对称图形.[师]很好,在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形(centralsymmetryfigure).这个点叫做它的对称中心.想一想,平行四边形的对称中心是什么?[生]平行四边形的对称中心是对角线的交点.[师]对,大家再想一想:我们学过的哪些图形是中心对称图形.[生]线段、平行四边形、矩形、菱形、正方形.[师]很好,它们的对称中心各是什么?[生]线段的对称中心是线段的中点.平行四边形的对称中心是对角线的交点,因为矩形、菱形、正方形是特殊的平行四边形,所以它们的对称中心都是对角线的交点.[师]这位同学回答得真棒.假设点A是某个中心对称图形上的一点,绕O点旋转180°后,它变成了点C,点A和点C 就是一对对应点,而且O是AC的中点.(如图)再看平行四边形是中心对称图形,点B绕O点旋转180°后,它与点D重合,点B和点D就是一对对应点,从平行四边形的性质也可知:O是BD的中点.由此大家能否总结出中心对称图形的性质吗?[生]中心对称图形上的每一对对应点所连成的线段的中点都是对称中心.[师]同学们总结得很好,这就是中心对称图形的性质.中心对称图形上的每一对对应点所连成的线段都被对称中心平分.中心对称图形在日常生活和生产中有广泛的应用,请你举出所看到的中心对称图形的实例.[生甲]家庭装饰中的各种图案、竹签做的玩具小飞机、纸做的小风车.[生乙]飞机的双叶螺丝桨、风车的风轮.[生丙]水泵叶轮……[师]很好,大家举出这么多中心对称图形的例子.你能说说中心对称图形在欣赏和实用方面的价值吗?(出示一些中心对称图形的图片).[生1]中心对称图形的形状匀称、美观,所以在很多建筑物和工艺品上常用这种图形作装饰图案.[生2]由于中心对称图形绕中心旋转180°,后与原来的图形重合.所以具有中心对称图形的物体,在平面内能绕对称中心平稳地旋转.这种特性在生活和生产中都有应用.[师]同学们回答得真棒.下面大家拿出扑克牌,看看这些牌的牌面哪些是中心对称图形?[生1]红桃2、方块2、黑桃2、黑桃10、方块J、梅花10、方块K、黑桃4.[生2]红桃4、红桃K、梅花Q.[生3]方块中除7不是,其余的都是中心对称图形.[师]很好,从大家回答中知道同学们基本掌握了中心对称图形的概念.下面大家来“想一想”.除了平行四边形,你还能找到哪些多边形是中心对称图形?[生1]正六边形、正八边形、正十边形.[生2]这样的多边形很多,在正多边形中,只要边数为偶数,那它就是中心对称图形.[师]很好,下面我们来做练习,以巩固中心对称图形的定义及性质.Ⅲ.练习1.正方形是中心对称图形吗?正方形绕两条对角线的交点旋转多少度能与原来的图形重合?能由此验证正方形的一些特殊性质吗?答案:正方形是中心对称图形,它绕两条对角线的交点旋转90°或其整数倍,都能与原来的图形重合.由此,可以验证正方形的四条边相等,四个角是直角,对角线互相垂直平分等性质.2.下图中,哪个“风车”是中心对称图形?(1) (2) (3)答案:(1)(3)是中心对称图形.3.如图,点O是正六边形ABCDEF的中心.(1)找出这个轴对称图形的对称轴.(2)这个正六边形绕点O旋转多少度后能和原来的图形重合.(3)如果换成其他的正多边形呢?能得到一般的结论吗?答案:(1)直线AD、CF、BE以及AB、BC、CD的垂直平分线都是这个正六边形的对称轴.(2)这个正六边形绕O点旋转60°或其整数倍的度数后能与原来的图形重合.(3)一般地,绕正n边形的中心旋转n360或其整数倍,都能与原来的图形重合.Ⅳ.课时小结本节课我们学习了中心对称图形的有关概念和它的基本性质.能判定一个图形是否是中心对称图形.。
中心对称图形教案+教案说明

中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
通过一系列的教学活动和实例,学生将能够掌握中心对称图形的性质和特点,并能够运用这些知识解决实际问题。
教学目标:1. 了解中心对称图形的定义和性质。
2. 能够识别和绘制中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学内容:第一章:中心对称图形的定义1.1 引入中心对称图形的概念。
1.2 解释中心对称图形的定义。
1.3 举例说明中心对称图形的特征。
第二章:中心对称图形的性质2.1 介绍中心对称图形的基本性质。
2.2 通过实例演示中心对称图形的性质。
第三章:识别中心对称图形3.1 教授如何识别中心对称图形。
3.2 提供练习题,让学生练习识别中心对称图形。
3.3 给予反馈和指导。
第四章:绘制中心对称图形4.1 教授如何绘制中心对称图形。
4.2 提供练习题,让学生练习绘制中心对称图形。
4.3 给予反馈和指导。
第五章:中心对称图形在实际问题中的应用5.1 介绍中心对称图形在实际问题中的应用。
5.2 提供实际问题,让学生运用中心对称图形的知识解决。
5.3 给予反馈和指导。
教学方法:1. 采用直观演示法,通过实物和图形进行展示和讲解。
2. 采用问题解决法,提供实际问题,让学生运用中心对称图形的知识解决。
3. 采用分组讨论法,让学生分组讨论和交流,促进学生的思维和合作能力。
评价方法:1. 课堂练习题,评估学生对中心对称图形的理解和掌握程度。
2. 实际问题解决,评估学生运用中心对称图形知识解决实际问题的能力。
3. 学生分组讨论和交流,评估学生的合作和思维能力。
教学资源:1. 中心对称图形的实物和图形展示。
2. 练习题和实际问题。
3. 分组讨论和交流的指导。
教学时间:1. 第一章:2课时2. 第二章:2课时3. 第三章:1课时4. 第四章:1课时5. 第五章:1课时通过本教案的学习和实践,学生将能够理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
中心对称图形教案+教案说明

中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会如何判断一个图形是否为中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学重点:1. 中心对称图形的定义和性质。
2. 判断一个图形是否为中心对称图形的方法。
教学难点:1. 理解中心对称图形的性质并运用解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 中心对称图形的示例图形。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍中心对称图形的概念。
2. 向学生展示一些中心对称图形的示例。
二、新课(15分钟)1. 向学生讲解中心对称图形的定义和性质。
2. 通过示例图形,让学生观察和操作,引导学生发现中心对称图形的性质。
3. 引导学生通过推理和交流,总结中心对称图形的性质。
三、练习(10分钟)1. 让学生独立完成一些判断中心对称图形是否为中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
四、总结(5分钟)1. 让学生回顾本节课所学的中心对称图形的定义和性质。
2. 让学生谈谈自己在练习中遇到的问题和解决方法。
五、作业(5分钟)1. 让学生完成一些关于中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
教学反思:通过本节课的教学,学生应该能够理解中心对称图形的定义和性质,并能运用其性质解决实际问题。
在教学过程中,要注意引导学生通过观察、操作、推理和交流等活动,加深对中心对称图形性质的理解。
要关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
中心对称图形导教学教案

中心对称图形导教学教案第一章:中心对称图形的概念引入1.1 教学目标:让学生了解中心对称图形的定义。
培养学生识别中心对称图形的能力。
引导学生通过实际操作探索中心对称图形的性质。
1.2 教学重点:中心对称图形的定义。
中心对称图形的性质。
1.3 教学难点:理解并应用中心对称图形的性质。
1.4 教学准备:准备一些中心对称图形的实物或图片,如矩形、正方形、圆等。
准备一张大白纸和一些彩色笔,用于学生实际操作。
1.5 教学过程:1.5.1 导入:向学生介绍中心对称图形的概念,引导学生思考他们是否曾经见过类似的图形。
展示一些中心对称图形的实物或图片,让学生尝试识别它们。
1.5.2 新课导入:向学生解释中心对称图形的定义,即存在一个点作为中心,将图形上的任意一点关于这个中心进行对称,得到的图形与原图形完全重合。
举例说明一些常见的中心对称图形,如矩形、正方形、圆等。
1.5.3 实践操作:让学生分组,每组领取一张大白纸和一些彩色笔。
要求学生各自在白纸上画出一个自己设计的中心对称图形。
学生完成绘制后,让他们互相交换图形,并尝试找出中心对称点,将图形折叠或旋转,验证是否完全重合。
1.5.4 性质探索:引导学生小组合作,探索中心对称图形的性质。
学生可以通过实际操作,观察中心对称图形的特点,如对称轴的数量、对称点到图形的距离等。
教师进行点评和补充。
1.6 作业布置:让学生回家后,找一些生活中的中心对称图形,拍照或画出来,并在下一堂课上进行分享。
第二章:中心对称图形的基本性质2.1 教学目标:让学生掌握中心对称图形的基本性质。
培养学生通过实际操作验证中心对称图形性质的能力。
2.2 教学重点:中心对称图形的基本性质。
2.3 教学难点:理解和应用中心对称图形的基本性质。
2.4 教学准备:准备一些中心对称图形的实物或图片。
准备一张大白纸和一些彩色笔。
2.5 教学过程:2.5.1 复习导入:复习上节课学习的中心对称图形的定义。
让学生展示他们回家找到的中心对称图形,并进行分享。
中心对称图形导教学教案

中心对称图形导教学教案一、教学目标知识与技能:1. 学生能够理解中心对称图形的概念。
2. 学生能够识别生活中的中心对称图形。
3. 学生能够运用中心对称性质进行图形的变换。
过程与方法:1. 学生通过观察、操作、思考,培养观察能力和空间想象力。
2. 学生通过合作交流,提高解决问题的能力。
情感态度价值观:1. 学生培养对几何图形的兴趣,激发学习热情。
2. 学生在解决实际问题中,体会数学与生活的联系。
二、教学重点与难点重点:1. 中心对称图形的概念。
2. 中心对称图形的性质。
难点:1. 理解中心对称图形与轴对称图形的区别。
2. 运用中心对称性质进行图形变换。
三、教学准备教师准备:1. 中心对称图形的图片素材。
2. 教学PPT或黑板。
3. 剪刀、彩纸等教具。
学生准备:1. 课本及相关学习资料。
2. 笔记本、彩笔等学习用品。
四、教学过程1. 导入新课:教师展示一些生活中的图形,如剪纸、图案等,引导学生观察。
提问:这些图形有什么特点?学生可能回答出“对称”、“漂亮”等词语。
教师总结:这些图形都是中心对称图形,今天我们就来学习中心对称图形的知识。
2. 自主学习:学生阅读课本,了解中心对称图形的概念和性质。
教师巡视课堂,解答学生疑问。
3. 课堂讲解:教师结合PPT或黑板,讲解中心对称图形的概念和性质。
讲解过程中,引导学生参与互动,如举例、提问等。
4. 动手实践:教师发放剪刀、彩纸等教具,学生动手制作中心对称图形。
教师巡回指导,解答学生疑问。
5. 成果展示:学生将自己的作品展示给大家,分享制作过程中的心得体会。
教师点评,给予鼓励和指导。
6. 课堂小结:教师引导学生总结本节课的中心对称图形的概念、性质和运用。
五、课后作业1. 完成课后练习题,巩固所学知识。
2. 观察生活中的中心对称图形,拍下照片或手绘图形,下节课分享。
3. 思考如何运用中心对称性质解决实际问题,下节课交流。
六、教学反思1. 学生对中心对称图形的理解和掌握程度如何?2. 教学过程中是否有不足之处,如何改进?3. 学生参与度和积极性如何,有哪些方法可以提高?4. 如何针对不同学生的学习情况,进行针对性的辅导?七、评价与反馈1. 教师通过对学生的课堂表现、作业完成情况进行评价,了解学生对中心对称图形的掌握程度。
第三章中心对称图形(一)全章教案

【课题】9.1 图形的旋转【课标要求】⒈通过具体的实例认识旋转,探索它的性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
⒉能够按要求作出简单平面图形旋转后的图形。
⒊欣赏旋转在现实生活中的应用。
【教学目标】⒈经历对生活中旋转现象观察、分析过程,引导学生用数学的眼光看待生活中的有关问题。
⒉通过具体实例认识旋转,知道旋转的性质。
⒊经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作图的技能。
【教学重点】⒈旋转图形的性质⒉旋转图形的画法【教学难点】旋转图形的画法【教学思路】从学生熟悉的生活中的旋转现象入手,帮助学生通过具体的旋转实例认识旋转,理解旋转的基本涵义,再通过观察,从而得出旋转图形的性质,最后通过画旋转图形,让学生掌握作图技能,进一步加深对旋转图形性质的认识。
【教学过程】一、创设情境日常生活中,经常看到以下情境:游乐场里的摩天轮绕着一个固定的点旋转;钟摆绕着一个固定的点摆动。
(有条件的学校可以用实物投影仪投放生活中的旋转实例)提出问题:⑴上述情境中的旋转现象有什么共同的特征?⑵生活还有类似的例子吗?【设计说明:从学生熟悉的生活中的旋转现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义。
同时引导学生用数学的眼光看待生活中的有关问题,发展学生的数学观。
】二、探索活动一⒈将一块三角尺ABC绕点C按逆时针方向旋转到DCB的位置问题: 度量∠ACD与∠BCE的度数,线段AC与DC、BC与EC的长度。
你发现了什么?⒉将绕点按顺时针方向旋转到的位置。
问题:度量∠AOA`、∠BOB`、∠COC`的度数,线段AO与A`O、BO与B`O、CO与C`O的长度。
你发现了什么?【设计说明:教学中,要引导学生根据课本的要求,实际度量相关角的度数、相关线段的长度。
通过对具体实例的观察和实际操作活动,帮助学生认识旋转,理解旋转的涵义,在此基础上,引入旋转的概念。
】三、新课讲授⒈在学生看了与做了的基础上,得出概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称图形教案
初中数学课的教学应结合具体的数学内容采用“问题情境——合作探究——建立模型——应用与拓展”的模式展开,让学生经历了知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,增强学好数学的愿望和信心。
特别对于抽象的概念教学,要关注概念的实际背景与形成过程,帮助学生克服记忆概念的学习方式。
现以《中心对称图形》为例,阐述如何“创设问题情境、建立知识模型”的过程。
一、教学目标:
1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:
理解中心对称图形的概念及其基本性质。
三、教学过程:
(一)创设问题情境
1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
(课堂反应:学生非常安静,目不转睛地盯着老师做动作。
每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。
)
师重复以上活动2次后提问:
(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?
(2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)
(反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。
在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。
这也是对他们从事科学研究的情感态度的培养。
学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
)
2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O后和原来牌面一样。
3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:(1)只有一张扑克牌图案颠倒后和原来牌面一样。
(2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O 后,就可以马上在一堆扑克牌中找出它。
(反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。
从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。
)(二)学生分组讨论、思考探究:
1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?
生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。
2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用“Z+Z”演示其旋转过程。
)
3.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?
(对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。
)
(三)教师明晰,建立模型
1.给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2.对比轴对称图形与中心对称图形:(列出表格,加深印象)
轴对称图形中心对称图形
有一条对称轴——直线有一个对称中心——点
沿对称轴对折绕对称中心旋转180O
对折后与原图形重合旋转后与原图形重合
(四)解释、应用与拓广
1.教师用“Z+Z智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。
(利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。
)
2.探究中心对称图形的性质
板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
3.师问:怎样找出一个中心对称图形的对称中心?
(两组对应点连结所成线段的交点)
4.平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?
学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?
5.逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?
学生讨论回答。
6.你还能找出哪些多边形是中心对称图形?
(反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。
)
(五)拓展与延伸
1.中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?
2.正六边形的对称中心怎样确定?
(六)魔术表演:
1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180º后,得到右图,你知道哪一张扑克被旋转过吗?
2.学生小组活动:
以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。
(新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。
通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。
只有这样,学生的创新意识和动手意识才会充分地发挥出来。
)
四、案例小结
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。
”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。
”这两段话,
正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。
现实性的生活内容,能够赋予数学足够的活力和灵性。
对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。
这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。