生物脱氮除磷工艺简述

合集下载

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺

(2)反应过程 (3)反硝化反应的控制指标
①碳源
污水中的碳源,BOD5/T—N>3-5时,勿需外加 外加碳源,CH3OH(反硝化速率高生成CO2+H2O),
②PH值
当BOD5/T—N<3-5时
适当的PH值(6.5-7.5) ——主要的影响因素
PH>8,或PH<6,反硝化速率下降
8
同化反硝化
+4H
+4H
缓慢搅拌池
沉淀池
21
三、 生物除磷原理
霍米尔(Holmers)提出活性污泥的化学式 C118H170O51N17P 或C:N:P=46:8:1
※ 生物除磷——就是利用聚磷菌一类的的微生物,能够过量 的,在数量上超过其生理需要,从外部摄取磷,并将磷以聚合 形式贮藏在菌体内,形成高磷污泥,排出系统外,达到从废水 中除磷的效果。
设内循环
产生碱度,3.75mg碱度/mgNO3—N 勿需建后曝气池
回流水含有NO3—N(沉淀池污泥反硝化生成)
要提高脱氮率,要增加回流比
(2)影响因素与主要工艺参数
水力停留时间:3 :1; 循环比:200%; MLSS值:大于3000mg/l; 污泥龄:30d; N/MLSS负荷率:0.03gN/gMLSS.d 进水总氮浓度:小于30mg/l。
活性污泥法的传统功能——去除水中溶解性有机物
1、同化作用
污水生物处理中,一部分氮备同化微生物细胞的 组分。按细胞干重计算,微生物中氮的含量约为 12.5%
4
2、氨化反应 与硝化反应 (1)氨化反应
RCHNH2COOH+O2氨化菌 RCOOH+CO2+NH3
3、硝化反应
(1)硝化过程

生物脱氮除磷工艺

生物脱氮除磷工艺

生物脱氮除磷工艺生物脱氮除磷工艺是一种通过微生物代谢作用来减少废水中氮和磷的浓度的工艺。

该工艺逐渐被广泛应用于城市污水处理、农业生产、工业废水处理等领域。

生物脱氮除磷工艺涉及多个过程,包括生物脱氮池、一/二级沉淀池、生物滤池、化学除磷装置等。

其中生物脱氮池和生物滤池是主要的过程单元。

生物脱氮池是一个特殊的好氧反应器,主要是使用异养菌为营养基础,利用硝化反应将氨氮和有机氮转化为硝态氮,然后通过反硝化反应将硝态氮还原为氮气排出。

为了使池内的好氧环境被保持,池内需要提供足够的氧气。

生物滤池是一个非常重要的污水处理单位,它是通过微生物群落代谢作用,利用吸附作用来吸附废水中的氮和磷元素。

微生物生长在滤料表面,铺设在水平或者竖直的格栅上,滤料可以是沙砾、玄武岩等物质。

滤料的特殊结构、表面特性和自备的微生物群落成为生物滤池内的去除污染物的主要手段。

废水在流经滤料层时,氮和磷元素在滤料表面被吸附,吸附到细胞表面的氮被异养菌氧化为氮气,磷元素则随着污泥浓度增加,在池内逐步沉积。

生物脱氮除磷工艺的优点在于原理简单,适用范围广泛,处理效率高,成本较低,不需要大量的化学物质,并且不会产生二次污染。

然而,这种工艺也存在一些缺陷。

例如,处理后的产物含有大量的氮和磷,商业利用它们困难,造成浪费;污水中如果有过多的脂肪和油脂,可能会对生物脱氮除磷工艺产生影响,导致工艺失效。

总之,生物脱氮除磷工艺是一种受到广泛关注的废水处理方案。

未来,随着社会对环境保护意识的不断提高,生物脱氮除磷工艺势必会在更多的领域得到应用,成为减少污染物排放的重要手段。

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。

2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。

通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。

3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。

近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。

与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。

分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。

分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。

二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。

简述生物脱氮和生物除磷的基本原理和过程

简述生物脱氮和生物除磷的基本原理和过程

生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。

下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。

一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。

其主要包括硝化和反硝化两个过程。

2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。

这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。

2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。

这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。

二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。

其主要包括磷的吸附和磷的沉淀两个过程。

2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。

这一过程主要发生在水中的底泥、生物膜等介质上。

2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。

这一过程主要发生在水中的缺氧或厌氧条件下。

生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。

其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。

希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。

生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。

在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。

污水生物脱氮除磷原理及工艺

污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合

生物脱氮除磷

生物脱氮除磷

反硝化反应可使有机物得到分解氧化,实际是利用了硝 酸盐中的氧,每还原1gNO3--N所利用的氧量约2.6g。
反硝化-2
当缺乏有机物时,则无机物如氢、Na2S等也可作为反硝 化反应的电子供体 (1)反硝化菌属于异养型兼性厌氧菌,在缺氧条件下, 进行厌氧呼吸,以NO3-—O为电子受体,以有机物的氢为电子 供体。
亚硝酸氮,控制氨根离子与亚硝酸根离子比例为1:1,然后通 过厌氧氨氧化作为反硝化实现脱氮的目的。全过程为自养的好
氧亚硝化反应结合自养的厌氧氨氧化反应.无需有机碳源,对 氧的消耗比传统硝化/反硝化减少62.5%,同时减少碱消耗量和 污泥生成量。
二、硝化—反硝化过程影响因素
1.温度 硝化反应的适宜温度范围是30~35℃,温度不但影响硝化茵的比 增长速率,而且影响硝化菌的活性,在5~35℃的范围内,硝化反应 速率随温度的升高而加快,仅超过30℃时增加幅度减少,当温度低于 5℃时,硝化细菌的生命活动几乎停止。对于同时去除有机物和进行 硝化反应的系统,温度低于15℃即发现硝化速率迅速降低,低温对硝 酸菌的抑制作用更为强烈,因此在低温12~14℃时常出现亚硝酸盐的 积累。在30~35℃较高温度下,亚硝酸菌的最小倍增时间要小于硝酸 菌,因此,通过控制温度和污泥龄,也可控制反应器中亚硝酸菌的绝 对优势。 反硝化反应的最佳温度范围为35~45℃,温度对硝化菌的影响比 反硝化菌大。
6.2.1 生物脱氮除磷
氮和磷的排放会加速导致水体的富营养化,其次是氨 氮的好氧特性会使水体的溶解氧降低,此外,某些含氮化 合物对人和其他生物有毒害作用。因此,国内外对氮磷的 排放标准越来越严格。本章阐述生物脱氮除磷技术。生物 脱氮除磷技术是近20年发展起来的,一般来说比化学法和 物理化学法去除氮磷经济,尤其是能有效地利用常规的二 级生物处理工艺流程进行改造达到生物脱氮除磷的目的, 是日前应用广泛和最有前途的氮磷处理方法。

4.3生物脱氮除磷技术

4.3生物脱氮除磷技术

NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,

生物脱氮除磷工艺简介

生物脱氮除磷工艺简介

生物脱氮除磷工艺简介1、生物脱氮除磷工艺的进展从20世纪60年代开始,美国曾系统地进行了脱氮除磷物化方法研究,结果认为该法的主要缺点是药耗量大,产生的污泥多,特别对处理大量城市污水时,处理成本高。

因此,转入研究生物脱氮除磷工艺。

从20世纪70年代开始,在活性污泥法脱氮工艺(A/0工艺)逐步实现工业化,并在此基础上研究开发出了生物脱氮除磷工艺(如A2/0工艺等)。

以后,随着微生物学和细胞学在污水生化处理上的新应用,又不断出现了多种变形的生物脱氮除磷工艺,如MSBR等。

我国从20世纪80年代初开始生物脱氮除磷研究,80年代后期实现了工业化流程。

污水脱氮除磷可供选择的工艺通常有生物处理和物理化学处理两大类。

后者由于需要投加相当数量的化学药剂,存在运行费用高,残渣量大和运行管理难度大等缺陷,因此,城市污水处理中一般不推荐采用。

而一般生物处理又分为活性污泥和生物膜法两种。

目前对城市污水的生物脱氮除磷工艺,指的是活性污泥生物脱氮除磷工艺。

目前已实用的几种生物脱氮除磷工艺有:A2/O、氧化沟、SBR工艺以及以上三种工艺的系列改良工艺。

2、生物脱氮除磷的工艺原理简述(1)生物脱氮首先,污水中的蛋白质和尿素等在水解酶和尿素酶的作用下转化为氨氮,而后在有氧条件下和在硝化菌的作用下,氨氮被氧化为硝酸盐,这阶段称为硝化(即氨氮转化为硝酸盐)。

再以后,在缺氮条件和反硝化菌的参与作用,并有外加碳源提供能量,硝酸盐还原成气态氮(N2)逸出,这阶段称为反硝化(即硝酸盐的氮转化为氮气)。

整个脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。

在脱氮过程中,硝化菌增长速度较缓慢,所以要有足够的污泥泥龄。

反硝化菌的生长主要在缺氧条件下进行,还要有充裕的碳源提供能量,才可能使反硝化作用顺利进行。

除上述条件以外,影响脱氮效率的因素还有溶解氧,温度和PH 值等。

硝化阶段,应有足够的溶解氧,其值一般应大于2g/L。

反硝化阶段为缺氧条件,溶解氧值宜为0.4mg/L左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物脱氮除磷工艺简述摘要:本文对生物脱氮除磷工艺的原理进行了介绍,并对目前常用的脱氮除磷处理工艺进行了简要阐述。

关键词:生物脱氮除磷,氧化沟A/A/O生物处理工艺,SBR法Abstract: in this paper, the biological denitrification and the principle of dephosphorization technology are introduced, and the common denitrification and phosphorus processing technology are briefly described.Keywords: biological denitrification and phosphorus, the oxidation ditch A/A/O biological treatment technology, SBR method生物脱氮除磷工艺是目前常见的污水处理工艺,其处理机理及形式如下:1.生物脱氮除磷原理1.1生物脱氮生物脱氮是通过硝化和反硝化两个生化过程来完成的。

污水中含氮化合物经异养性氨化细菌作用分解为NH3-N,然后在好氧条件下,通过亚硝酸菌和硝酸菌的作用,将氨氮氧化成亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)的过程称为硝化过程。

在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,在氢供给体充分的条件下,将亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)还原成N2排入空气中,同时有机物分解的过程称为反硝化过程。

1.2生物除磷生物除磷是利用活性污泥中的聚磷菌在厌氧条件下释磷,在好氧条件下过量吸磷的原理来进行的。

1.3同时生物脱氮除磷系统的设计要素从生物脱氮除磷原理看出,两者要求的有些方面是相互制约的。

要正常发挥脱氮除磷系统效率,详细分析进水水质是十分必要的:进水BOD5浓度:不宜低于150mg/L。

BOD5/TKN比值:理论上BOD5/TKN>2.86时反硝化过程才能进行,实际运行要求BOD5/TKN应大于4,脱氮效果较好;若在4~2.86之间,可采用生物脱氮方法;小于2.86,城市污水较难用生物脱氮方法。

BOD5/TP比值:进水中的BOD5是作为营养物质供给聚磷菌活动的基质,故BOD5/TP是衡量能否有效除磷的重要指标,一般认为该值应大于20,比值越大,除磷效果越明显。

水温:供氧量用夏季水温计算,生物降解用冬季水温计算。

2.生物脱氮除磷工艺目前常用的脱氮除磷处理工艺有A/A/O法、氧化沟法、SBR法等,各处理工艺的机理简述如下:2.1 A/A/O工艺A/A/O工艺(Anaerbio-Anoxic-Oxic)称为厌氧-缺氧-好氧三者结合系统2.1.1 传统A/A/O工艺常规生物脱氮除磷工艺呈厌氧(A1)/缺氧(A2)/好氧(O)的布置形式。

其典型工艺流程见图1。

常规A/A/O工艺存在以下三个缺点:①由于厌氧区居前,回流污泥中的硝酸盐对厌氧区产生不利影响;②由于缺氧区位于系统中部,反硝化在碳源分配上居于不利地位,因而影响了系统的脱氮效果;③由于存在内循环,常规工艺系统所排放的剩余污泥中实际只有一小部分经历了完整的放磷、吸磷过程,其余则基本上未经厌氧状态而直接由缺氧区进入好氧区,这对于系统除磷是不利的。

图1A/A/O工艺流程图2.1.2 倒置A/A/O工艺倒置A/A/O工艺是将缺氧区设置在厌氧区前,取消内回流,增加外回流提高系统污泥浓度并将硝酸盐回流至缺氧段。

实践说明,该工艺不仅具有投资省、费用低、电耗少,而且效率高、运行稳,管理方便,适合新厂建设和老厂改造。

流程见图2。

图2倒置A/A/O工艺2.1.3 分点进水倒置A/A/O工艺分点进水倒置A/A/O工艺见图3是对倒置A/A/O工艺的改进,在减小外回流的同时减少进入缺氧段的流量,将大部分优质碳源分配给厌氧除磷。

来自二沉池的回流污泥和50~70%的进水,100~200%的混合液回流均进入缺氧段,停留时间为1~3h。

回流污泥和混合液在缺氧池内进行反硝化,去除硝态氮,再进入厌氧段,保证了厌氧池的厌氧状态,强化除磷效果。

由于污泥回流至缺氧段,单位池容的反硝化速率明显提高,反硝化作用能够得到有效保证。

再根据不同进水水质,不同季节情况下,生物脱氮和生物除磷所需碳源的变化,调节分配至缺氧段和厌氧段的进水比例,反硝化作用能够得到有效保证,系统中的除磷效果也有保证,因此,本工艺与其他除磷脱氮工艺相比,具有明显优点。

图3分点进水倒置A/A/O工艺2.2 氧化沟氧化沟实际上是活性污泥法的一种改型,其曝气池呈封闭的沟渠型,污水和活性污泥的混合液在其中进行不断的循环流动,因而又被称为“环形曝气池”,“无终端的曝气系统”。

2.2.1交替式氧化沟交替式氧化沟是在间歇运行的氧化沟基础上发展的一种新型的氧化沟,有二沟、三沟交替工作系统,前者有代表性的是D型、VR型和DE型,后者是T型。

其中最具代表性的是三沟式氧化沟。

三沟式氧化沟以三条相互联系的氧化沟作为一整体,每条沟都装有用于曝气和推动循环的水平转刷并都设有进水口,污水由进水分配井进行分配转换。

三沟式氧化沟的脱氮是通过双速电机来实现的,曝气转刷起到混合器曝气器的双重功能,沟内好氧和缺氧状态由转刷转速的改变来控制。

通常三沟式氧化沟是采用三条沟并排布置,如图4,利用沟壁上的连通孔连接。

两侧边沟可起曝气和沉淀双重作用,故不再设沉淀池,该种氧化沟在运行稳定可靠的前提下,具有操作管理更趋灵活方便等优点。

图4三沟式氧化沟的基本布置形式该工艺的主要特点是:(1)处理流程简单,构筑物数量少,可不设沉淀池和污泥回流构筑物,污泥回流通过系统内水流方向改变来完成。

(2)与整个系统体积相比,进入系统的水量较小,因此反应器运行方式接近间歇运行方式,具有SBR工艺的特性,处理效果好,水力损耗少,管理简单。

(3)氧化沟具有环流功能,污水进入氧化沟后立即液相混合,耐冲击负荷能力强。

(4)氧化沟使用转刷曝气,机械效率低,运行费用高,池深较浅,占地面积大。

曝气时间仅为全运行过程的58%,设备利用率低。

(5)氧化沟泥龄长,有机负荷低,污泥量少且稳定,可减少污泥处置成本。

(6)水力控制简单,自动控制堰可调节水流方向和转刷浸没深度,利于实现各种工艺条件对混合、充氧等的要求。

2.2.2 Carrousel氧化沟图5标准Carrousel氧化沟布置图Carrousel氧化沟见图5是一个多沟串联系统,进水与活性污泥混合后沿箭头方向在沟内作不停的循环流动。

表曝机与分隔墙的布局使表曝机将混合液从上游推进到下游,并保证足够的混合液渠道流速。

氧化沟采用垂直安装的低速表面曝气器,形成了靠近曝气器下游的富氧区和上游以及外环的缺氧区,这样有利于生物凝聚,使活性污泥易于沉淀。

与其它池型氧化沟相比,其最大的特点是采用立式低速表曝机作曝气设备,由于曝气设备的不同(区别于其它水平轴式曝气装置),形成高速度梯度的高能区,有利于氧的传递,而且使污水在混和曝气充氧的同时具有局部水力提升作用,使混合液和原水得到彻底的混合。

带前置厌氧池的Carrousel 2000工艺是一种先进的脱氮除磷工艺,通过设在曝气机周围的侧向导流渠,可充分利用氧化沟原有的渠道流速,在不增加任何回流提升动力的情况下,将相当于400%进水流量以上的硝化液回流到前置缺氧池与原水混合并进行反硝化反应,达到较高的脱氮效果。

同时前置厌氧池,又达到了同时脱氮除磷的目的。

同时系统保留了反硝化过程的一切优点,包括可恢复硝化阶段约50%的碱度,可利用缺氧条件去除一部分BOD,从而节省充气能耗,以及改进活性污泥性能等。

该系统与其他反硝化工艺相比,最突出的优点是可实现硝化液的高回流比,达到较高程度的总氮去除。

该氧化沟工艺典型布置见图6。

图6前置厌氧池Carrousel 2000氧化沟布置图2.3 SBR法SBR法中曝气、沉淀集同一池内,节约了二沉池和污泥回流系统,但曝气池体积、曝气动力设备均要增加,在中小规模污水处理中是较好的处理工艺。

SBR 发展至今已经有了很多形式。

2.3.1 ICEAS工艺即间歇式循环延时曝气活性污泥法,它用隔墙将反应池分为两部分,前面是预反应区,后面是主反应区,采用连续进水,间歇曝气、沉淀、排水、排泥。

它可以脱氮除磷,但效果不够理想。

2.3.2 DAT—IAT工艺即连续曝气和间歇曝气相结合的工艺,反应池中部用隔墙分为两部分,前边的DAT连续曝气,后边的IAT间歇曝气、沉淀、排水、排泥。

它的脱氮除磷功能一般,需增加设施才能提高脱氮除磷效率。

2.3.3 CASS工艺在序批式活性污泥法(SBR)的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。

整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法的二沉池和污泥回流系统;同时可连续进水,间断排水。

2.3.4 UNITANK工艺是三个矩形池并联,按照类似三沟式氧化沟的周期运行模式工作,但把转刷曝气改为鼓风曝气,可加大池深,把出水可调堰改为固定堰,简化了排水,它的功能和三沟式氧化沟类似。

以上生物脱氮除磷工艺适用于不同水质及水量情况的污水处理工程,应根据工程实际灵活运用。

参考文献[1]王建龙.生物脱氮新工艺及其技术原理[J].中国给水排水,2000,16(2):25-28.[2]王晓莲,彭永臻. A2/O法污水生物脱氮除磷处理技术与应用[M],北京:科学出版社,2009.[3]Baker P S,Dold P L. Denitrification behavior in biological excess phosphorus removal activated sludge system[J].Water Research,1996,30(4):769-780.[4]张建琴.改良型A2/O工艺的生产运行效果[J].水处理技术,2007,33(5):33-36.[5]李启红.氧化沟工艺简述[J].工程与建设,2010,13(1):69-71.[6]柴春省.三沟交替式氧化沟工艺新型经济运行程序的生产性研究[J].中国科技信息,2010,22(3):158-160.注:文章内所有公式及图表请用PDF形式查看。

相关文档
最新文档