牛吃草经典题型
牛吃草问题练习题及答案

牛吃草问题练习题及答案一、基础题1. 一片草地上有足够的草,可供10头牛吃30天。
若15头牛吃这片草地,可以吃几天?2. 一片草地上有草若干,每天生长的草量可供5头牛吃1天。
若20头牛吃这片草地,可以吃几天?3. 一片草地上有草若干,每天生长的草量可供10头牛吃2天。
若30头牛吃这片草地,可以吃几天?4. 一片草地上有草若干,每天生长的草量可供15头牛吃3天。
若40头牛吃这片草地,可以吃几天?5. 一片草地上有草若干,每天生长的草量可供20头牛吃4天。
若50头牛吃这片草地,可以吃几天?二、提高题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。
若20头牛吃这片草地,每天实际消耗的草量是生长量的几倍?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。
若30头牛吃这片草地,每天实际消耗的草量是生长量的几倍?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。
若40头牛吃这片草地,每天实际消耗的草量是生长量的几倍?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。
若50头牛吃这片草地,每天实际消耗的草量是生长量的几倍?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。
若60头牛吃这片草地,每天实际消耗的草量是生长量的几倍?三、拓展题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。
若20头牛吃这片草地,草地上的草可以维持多少天?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。
若30头牛吃这片草地,草地上的草可以维持多少天?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。
若40头牛吃这片草地,草地上的草可以维持多少天?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。
若50头牛吃这片草地,草地上的草可以维持多少天?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。
若60头牛吃这片草地,草地上的草可以维持多少天?四、综合应用题1. 一片草地原有草量可供50头牛吃20天,若这片草地每天长出的草量可以供10头牛吃1天。
牛吃草问题行测

牛吃草问题行测一、基础题型。
1. 牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?- 解析:- 设每头牛每天的吃草量为1份。
- 首先求草的生长速度,因为10头牛20天的总吃草量为10×20 = 200份,15头牛10天的总吃草量为15×10=150份。
- 20天的总草量比10天的总草量多的部分就是(20 - 10)天生长出来的草,所以草的生长速度为(200 - 150)÷(20 - 10)=5份/天。
- 然后求牧场原有的草量,根据10头牛吃20天的情况,原有的草量为10×20 - 5×20 = 100份。
- 对于25头牛,设可以吃x天,可列出方程100+(5x)=25x。
- 解得x = 5天。
2. 有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?- 解析:- 设每头牛每天吃草量为1份。
- 27头牛6天吃草量为27×6 = 162份,23头牛9天吃草量为23×9 = 207份。
- 草的生长速度为(207 - 162)÷(9 - 6)=15份/天。
- 牧场原有的草量为27×6 - 15×6 = 72份。
- 设21头牛可以吃x天,方程为72+(15x)=21x。
- 解得x = 12天。
3. 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?- 解析:- 设每头牛每天吃草量为1份。
- 20头牛5天吃草量为20×5 = 100份,15头牛6天吃草量为15×6 = 90份。
- 草每天减少的量为(100 - 90)÷(6 - 5)=10份。
- 牧场原有的草量为20×5+10×5 = 150份。
牛吃草问题创新思维题库

牛吃草问题创新思维题库牛吃草问题一直被人们所熟知,这是一个关于数量关系和逻辑推理的经典问题。
通过对牛吃草问题进行创新思维,可以激发我们的智慧,培养我们的逻辑思维能力。
下面将给大家呈现一些富有挑战性和创新性的牛吃草问题,希望能激发大家的思考和灵感。
1. 第一道牛吃草问题:有一块草地,上面有一头牛,这头牛每天吃掉草地的一半,并且每天还会再长出草地原来长度的一半。
如果这头牛每天都持续这样吃草,那么经过几天,草地上还会有草呢?解析:这是一个经典的反复递归问题。
设草地原来长度为x,第一天被吃掉一半剩下x/2,第二天再长出原来长度的一半,即x/4,第三天被吃掉x/4,剩下3x/4,第四天再长出x/8,不难发现,经过n天后,剩下的草地长度为x(1-1/2^n),当n趋于无穷大时,剩下的草地长度趋近于x。
因此,经过无限天后,草地上仍然有草存在。
2. 第二道牛吃草问题:现在有一块很大的草地,每天长出10cm的草,有一头牛每天吃草的长度是前一天长出的草的1/4,问这头牛在什么情况下可以吃光整块草地?解析:设第n天整块草地的长度为L_n,第n天被吃掉的长度为L_n/4,第n+1天增长的长度为10cm,根据题意可得到递推公式L_n+1 = L_n - L_n/4 + 10,整理得到L_n+1 = 3/4*L_n + 10,初值条件L_1 = 0,通过递推可以得到L_n = 40*(4/3)^n - 40。
因此,当n趋于无穷大时,L_n趋近于无穷大,说明这头牛永远也吃不光整块草地。
3. 第三道牛吃草问题:现在有两头牛和一片草地,这两头牛每天吃掉一片草地的一半,问这片草地被吃光需要多久?解析:设草地原来长度为x,第一天被吃掉一半为x/2,剩下x/2,第二天再长出x/4,被吃掉x/4,剩下3x/4,第三天长出x/8,被吃掉x/8……可见,草地上的草永远不会被吃完,因此这片草地永远也不会被吃光。
通过以上创新思维的牛吃草问题,我们可以看到逻辑推理和数量关系的重要性,同时也可以锻炼我们的思维能力和解决问题的能力。
牛吃草问题练习题及答案

牛吃草问题练习题及答案一、选择题1. 假设有一头牛,每天可以吃掉1/3的草。
如果草场的草足够一头牛吃100天,那么这头牛可以吃多少天?A. 30天B. 50天C. 100天D. 150天2. 如果有三头牛,每头牛每天可以吃掉1/3的草,草场的草足够三头牛吃30天,那么一头牛可以吃多少天?A. 30天B. 60天C. 90天D. 120天3. 某草场的草可以供5头牛吃20天,如果草场的草每天自然生长,使得草的总量每天增加1/5,那么这5头牛可以吃多少天?A. 20天B. 25天C. 30天D. 35天二、填空题4. 如果一头牛每天吃草的量是草场总量的1/5,草场的草足够这头牛吃50天,那么草场的草总量每天自然增长的比例是________。
5. 假设有四头牛,每头牛每天吃草的量是草场总量的1/6,草场的草足够这四头牛吃40天,如果草场的草每天自然减少1/7,那么这四头牛实际上可以吃______天。
三、计算题6. 某草场的草可以供7头牛吃35天,如果草场的草每天自然减少1/10,求这7头牛实际上可以吃多少天?7. 假设有一头牛,每天可以吃掉草场总量的1/4,草场的草足够这头牛吃60天,如果草场的草每天自然增长,使得草的总量每天增加1/6,求这头牛实际上可以吃多少天?四、解答题8. 一个草场的草可以供8头牛吃45天,如果草场的草每天自然减少1/9,求这8头牛实际上可以吃多少天,并解释你的计算过程。
9. 某草场的草可以供10头牛吃60天,如果草场的草每天自然增长,使得草的总量每天增加1/8,求这10头牛实际上可以吃多少天,并解释你的计算过程。
五、应用题10. 一个农场主有一块草场,他发现这块草场的草可以供15头牛吃50天。
如果草场的草每天自然减少1/12,农场主决定增加牛的数量,使得这些牛可以吃更长时间。
如果他增加到20头牛,这20头牛实际上可以吃多少天?请给出你的计算过程。
答案:1. C2. B3. C4. 1/255. 356. 35天7. 120天8. 36天9. 80天10. 60天请注意,这些答案仅供参考,具体的计算过程需要根据题目的具体条件进行详细的数学推导。
牛吃草问题经典例题10道

牛吃草问题经典例题10道牛吃草问题常被认为是经典的运筹学题目,在这里我们汇总了10道牛吃草问题的理论例题,以帮助大家学习这些问题的解决方法,加深对运筹学的理解。
例题一:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,那么它最少要移动几次,才能将草地吃完?解答:首先,要吃完草地,牛至少要移动L/a次,也就是说,牛要吃完草地,它最少要移动L/a次,例如当L=12,a=4时,牛需要移动3次才能吃完草地。
例题二:有一片长度为L的草地,有两头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:这里我们可以使用二分法来求解,即每次移动时,两头牛分别前进a/2的距离,最后再合起来这样移动L/a次便可将草地吃完,即当L=12,a=4时,两头牛最少要移动6次,分别前进2次,才能将草地吃完。
例题三:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:牛的数量与它们吃掉草地的最少次数没有关系,只要它们每次移动距离等于a,那么无论有多少头牛,它们最少要移动L/a次,例如当L=12,a=4时,无论有几头牛,它们最少要移动3次才能吃完草地。
例题四:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,而每头牛的移动速度不同,那么它们最少要移动几次,才能将草地吃完?解答:考虑到牛的不同移动速度,它们吃完草地的最少次数取决于最慢移动的牛,即其吃掉草地的总时间就等于最慢移动的牛移动的时间,也就是说最慢移动的牛最少要移动L/a次才能吃完草地,例如当L=12,a=4时,无论有几头牛,最慢的牛最少要移动3次才能将草地吃完。
例题五:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,但是牛有一定的消耗,每移动一次需要消耗b的能量,它有总共c的能量,那么它最多可以移动几次?解答:由于牛有一定的消耗,所以它最多可以移动c/b次,例如当L=12,a=4,b=1,c=8时,牛最多可以移动8次。
牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)牛吃草问题一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天)。
说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(10—5)×20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
因此,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
所以,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
牛吃草问题(附练习题)

⽜吃草问题(附练习题)⽜吃草问题(附练习题)⽜吃草问题是经典的奥数题型之⼀,这⾥我只介绍⼀些⽐较浅显的⽜吃草问题,给⼤家开拓⼀下思维,⾸先,先介绍⼀下这类问题的背景,⼤家看知识要点知识要点⼀、定义伟⼤的科学家⽜顿著的《普通算术》⼀书中有这样⼀道题:“12头⽜4周吃牧草10/3格尔,同样的牧草,21头⽜9周吃10格尔。
问24格尔牧草多少⽜吃18周吃完。
”(格尔——牧场⾯积单位),以后⼈们称这类问题为“⽜顿问题”的⽜吃草问题。
这类问题难在哪呢?⼤家看看它的特点⼆、特点在“⽜吃草”问题中,因为草每天都在⽣长,草的数量在不断变化,也就是说这类问题的⼯作总量是不固定的,⼀直在均匀变化。
难吗?难什么啊,⼀点都不难,只要掌握了⽅法,以后这样的题就都会了,来,看看这例题典例评析例1 牧场上长满牧草,每天都匀速⽣长。
这⽚牧场可供27头⽜吃6天或23头⽜吃9天。
问可供21头⽜吃⼏天?【分析】这⽚牧场上的牧草的数量每天在变化。
解题的关键应找到不变量——即原来的牧草数量。
因为总草量可以分成两部分:原有的草与新长出的草。
新长出的草虽然在变,但应注意到它是匀速⽣长的,因⽽这⽚牧场每天新长出飞草的数量也是不变的。
从这道题我们看到,草每天在长,⽜每天在吃,都是在变化的,但是也有不变的,都是什么不变啊?草是以匀速⽣长的,也就是说每天长的草是不变的;,同样,每天⽜吃草的量也是不变的,对吧?这就是我们解题的关键。
这⾥因为未知数很多,我教⼤家⼀种巧妙的设未知数的⽅法,叫做设“1”法。
我们设⽜每天吃草的数量为1份,具体1份是多少我们不知道,也不⽤管它,设草每天增长的数量是a份,设原来的草的数量为b份,那么我们可以列⽅程了:27*6=b+6a;23*9=b+9a【思考1】⼀⽚草地,每天都匀速长出青草,如果可供24头⽜吃6天,或20头⽜吃10天,那么可供18头⽜吃⼏天?15天.设1头⽜1天吃的草为1份。
则每天新⽣的草量是(20×10-24×6)÷(10-6)=14份,原来的草量是(24-14)×6=60份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛吃草(一)【学习目标】1.理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路。
2.初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系。
【经典例题】一般的牛吃草问题【例1】牧场上长满牧草,每天牧草都均匀生长。
这片牧场可供10头牛吃20天,可供15头牛吃10天。
供25头牛可吃几天?(难度系数:★★)思考探索:※同样都是把牧场的草吃完了,为什么吃草的总量不一样呀?你明白为什么吗?题目分析:因为每天都会有新的草长出来,所以草的总量并不是固定不变的。
吃的时间越长,长得草越多,草的总量也就多了。
设1头牛1天的吃草量为“1”,(1)10头牛吃20天共吃了10×20=200份;(2)15头牛吃10天共吃了15×10=150份。
比较:第一种吃法比第二种吃法多吃了200-150=50份,这50份草是牧场的草20-10=10天生长出来的,(3)所以每天新生长的草量为50÷10=5份,牛吃的草包含2部分:①新长的草;②原有的草。
25头牛一天要吃25份草,而每天新长5份草,显然不够这25头牛吃!所以还必须吃掉20份原有的草。
(4)那么原来草量为:200-5×20=100份。
(5)供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100÷(25-5)=100÷20=5天可将原来的牧草吃完,即它可供25头牛吃5天。
反思提升:解答牛吃草问题通常设每头牛每日吃掉的草量为单位“1”,解题关键在于通过对题中条件的分析比较,求出牧场上原有的草量,单位时间生长的草量。
我们对于基本的牛吃草问题可以做如下总结,我们称之为“五步法”:第1步:求出两个总量;第2步:总量的差÷时间差=每天长草量=安排去吃新草的牛数;第3步:每天长草量×天数=总共长出来的草;第4步:草的总量-总共长出来的草=原有的草;第5步:原有的草÷吃原有草的牛=能吃多少天(或原有的草÷能吃多少天=吃原有草的牛)当然,牛吃草问题的变化还比较多,因此以上“五步法”只能作为参考,切不可生搬硬套。
【总结与归纳】“五步法”是从算术方法的角度,提供一种分析问题的思路,我们应该在解题中时刻把握“牛吃草问题”的核心是:牛吃草总量=草场原有草量+新长草量这种关系,在实际题目中,一般会出现两种方案,对这两种方案进行比较是获得解题思路的捷径,这种比较主要看两种方案“总草量”之差,这对应着两种方案的“时间差”。
具体来看这里的关系:牛的头数×吃的天数=草场原有草量+每天长草量×吃的天数。
由此可知,一般牛吃草问题,首先要把两个关键的量求出来,即每天长草量和草场原有草量。
【例2】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变。
)(难度系数:★★)题目分析:设1只猴子一周吃的野果为“1”,则野果的生长速度是(21×12-23×9)÷(12-9)=15份,原来的野果为(23-15)×9=72份,如果要4周吃光野果,则需要72÷4+15=33只猴子一起吃。
【例3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度减少。
已知某块草地上的草,可供25头牛吃4天,或可供16头牛吃6天,照此计算,可以供10头牛吃多少天?(难度系数:★★)题目分析:设1头牛1天吃的草为“1”,牧场上的草每天自然减少(25×4-16×6)÷(6-4)=2份,原来牧场有草(25+2)×4=108份,可供10头牛吃的天数是:108÷(10+2)=9天反思提升:牛吃草问题涉及三种数量:原有的草、新长出来的草、牛吃到的草。
牛吃草问题解法上大体分三步:第1步:先求出草的生长速度,即生长出来的草可供几头牛吃;第2步:再求出原有的草量;第3步:根据要求求出牛数和吃草的天数。
【例4】有一片草场,草每天的生长速度相同。
若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。
那么,17头牛和20只羊多少天可将草吃完?(难度系数:★★★)题目分析:“4只羊一天吃草量相当于1头牛一天的吃草量”,所以可以设一只羊一天的食草量为“1”,那么14头牛30天吃了14×4×30=1680单位草量,而70只羊16天吃了16×70=1120单位草量,所以草场每天增加:(1680-1120)÷(30-16)=40份草量,原来的草量为1120-40×16=480份草量,所以如果安排17头牛和20只羊,即每天食草17×4+20=88份草量,经过480÷(88-40)=10天,可将草吃完。
牛吃草问题的变例【例5】有一池水,池底有泉水不断涌出,想要把水池里的水抽干,10台抽水机需要8小时,8台抽水机需要12小时,如果要用6小时将水抽完,那么需要多少台抽水机?(难度系数:★★★)思考探索:这道题表面上好像和牛吃草没有什么关系,但是仔细想一想,我们可以怎样类比?※把抽水机当作什么?(牛)※把水当作什么?(草),※把出水口看成是来帮忙吃草的牛※大家可以试试用“三步法”来解答一下喽。
题目分析:设一根抽水管1小时抽水的量为“1”,那么12-8=4小时进水量为8×12-10×8=16份,即每小时进水量为16÷4=4份,原有水量为:(10-4)×8=48份。
要用6小时将水抽完,需要抽水机的台数为48÷6+4=12(台)。
【总结与归纳】“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。
难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。
“牛吃草”问题是小学应用题中的难点。
解“牛吃草”问题的主要依据:(1)草的每天生长量不变;(2)每头牛每天的食草量不变;(3)草的总量= 草场原有的草量+新生的草量,其中草场原有的草量是一个固定值,新生的草量=每天生长量×天数。
“牛吃草”问题有很多的变例,如抽水问题、检票口问题等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题。
【自主挑战】1.自动扶梯以均匀速度往上行驶着,两位性急的孩子在扶梯上行走。
已知男孩每分钟走20级梯级,女孩每分钟走15级梯级。
结果男孩用了5分钟到达梯顶,女孩用了6分钟到达梯顶,问扶梯共有多少级?(难度系数:★★)2.有一块匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?(难度系数:★)3.一块匀速生长的草地,可供20头牛吃12天,或供60只羊吃24天,如果一头牛一天吃草量等于4只羊一天吃草量,那么这块草地可供12头牛与88只羊一起吃几天?(难度系数:★)4.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?(难度系数:★)5.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,同时开4个检票口需要30分钟,同时开5个检票口需要20分钟。
如果同时打开7个检票口,需要多少分钟?(难度系数:★★)6.一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管。
开始进水管以均匀的速度不停地向这个蓄水池蓄水。
池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光。
如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时。
如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?(难度系数:★★)7.由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度减少。
已知某块草地上的草,可供25头牛吃4天,或可供16头牛吃6天,照此计算,可以供多少头牛吃12天?(难度系数:★★)8.画展8:30开门,但早有人排队等候入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开三个入场口,9:00就不再有人排队;如果开五个入场口,8:45就没有人排队;请问第一个观众到达的时间?(难度系数:★★)9.假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年;或供90亿人生活210年。
为了使资源不致减少,地球上最多生活多少人?(难度系数:★★★)10、有一牧场,17头牛30天可将草吃完。
19头牛则24天可以吃完。
现在若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完。
问:原来有多少头牛吃草(草均匀生长)?(难度系数:★★★)习题解答1.题目分析:电梯每分钟向上的级数为:(20×5-15×6)÷(6-5)=10(级)扶梯的级数为:20×5+10×5=150(级)2.题目分析:设一头牛1周的吃草量为“1”,草的生长速度为(23×9-27×6)÷(9-6)=15份,原有草量为(27-15)×6=72份,可供牛的头数为72÷18+15=19(头)3.题目分析:设一头牛1天吃草量为“1”,60只羊的吃草量等于15头牛的吃草量,88只羊的吃草量等于22头牛的吃草量,所以草的生长速度为(15×24-20×12)÷(24-12)=10份,原有草量为(20-10)×12=120份,12头牛与88只羊一起吃可以吃120÷(12+22-10)=5(天)4.题目分析:设一个人一分钟掏出的水量为“1”,40-16=24分钟的进水量为3×40-6×16=24份,所以每分钟的进水量为24÷24=1份,那么原有水量为:(3-1)×40=80份。
5人掏水需要80÷(5-1)=20(分钟)把水掏完。
5.题目分析:设一分钟一个检查口检票人数为“1”,则检查速度为(30×4-20×5)÷(30-20)=2份,原来等待人数为(4-2)×30=60份,如果同时打开7个检票口,那么需要60÷(7-2)=12分钟。
6.题目分析:设一根排水管1小时排水为“1”,进水速度为(3×18-8×3)÷(18-3)=2份,原有水量为(8-2)×3=18份,如果想要在8小时内将池中的水全部排光,最少要打开18÷8+2=4.25根出水管,每根出水管1小时排水为1份,又出水管的根数是整数,故最少要打开5根出水管。