牛吃草问题工程问题经典例题含答案版

合集下载

牛吃草问题练习题及答案

牛吃草问题练习题及答案

牛吃草问题练习题及答案一、基础题1. 一片草地上有足够的草,可供10头牛吃30天。

若15头牛吃这片草地,可以吃几天?2. 一片草地上有草若干,每天生长的草量可供5头牛吃1天。

若20头牛吃这片草地,可以吃几天?3. 一片草地上有草若干,每天生长的草量可供10头牛吃2天。

若30头牛吃这片草地,可以吃几天?4. 一片草地上有草若干,每天生长的草量可供15头牛吃3天。

若40头牛吃这片草地,可以吃几天?5. 一片草地上有草若干,每天生长的草量可供20头牛吃4天。

若50头牛吃这片草地,可以吃几天?二、提高题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。

若20头牛吃这片草地,每天实际消耗的草量是生长量的几倍?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。

若30头牛吃这片草地,每天实际消耗的草量是生长量的几倍?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。

若40头牛吃这片草地,每天实际消耗的草量是生长量的几倍?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。

若50头牛吃这片草地,每天实际消耗的草量是生长量的几倍?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。

若60头牛吃这片草地,每天实际消耗的草量是生长量的几倍?三、拓展题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。

若20头牛吃这片草地,草地上的草可以维持多少天?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。

若30头牛吃这片草地,草地上的草可以维持多少天?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。

若40头牛吃这片草地,草地上的草可以维持多少天?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。

若50头牛吃这片草地,草地上的草可以维持多少天?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。

若60头牛吃这片草地,草地上的草可以维持多少天?四、综合应用题1. 一片草地原有草量可供50头牛吃20天,若这片草地每天长出的草量可以供10头牛吃1天。

牛吃草问题练习题及答案

牛吃草问题练习题及答案

牛吃草问题练习题及答案一、选择题1. 假设有一头牛,每天可以吃掉1/3的草。

如果草场的草足够一头牛吃100天,那么这头牛可以吃多少天?A. 30天B. 50天C. 100天D. 150天2. 如果有三头牛,每头牛每天可以吃掉1/3的草,草场的草足够三头牛吃30天,那么一头牛可以吃多少天?A. 30天B. 60天C. 90天D. 120天3. 某草场的草可以供5头牛吃20天,如果草场的草每天自然生长,使得草的总量每天增加1/5,那么这5头牛可以吃多少天?A. 20天B. 25天C. 30天D. 35天二、填空题4. 如果一头牛每天吃草的量是草场总量的1/5,草场的草足够这头牛吃50天,那么草场的草总量每天自然增长的比例是________。

5. 假设有四头牛,每头牛每天吃草的量是草场总量的1/6,草场的草足够这四头牛吃40天,如果草场的草每天自然减少1/7,那么这四头牛实际上可以吃______天。

三、计算题6. 某草场的草可以供7头牛吃35天,如果草场的草每天自然减少1/10,求这7头牛实际上可以吃多少天?7. 假设有一头牛,每天可以吃掉草场总量的1/4,草场的草足够这头牛吃60天,如果草场的草每天自然增长,使得草的总量每天增加1/6,求这头牛实际上可以吃多少天?四、解答题8. 一个草场的草可以供8头牛吃45天,如果草场的草每天自然减少1/9,求这8头牛实际上可以吃多少天,并解释你的计算过程。

9. 某草场的草可以供10头牛吃60天,如果草场的草每天自然增长,使得草的总量每天增加1/8,求这10头牛实际上可以吃多少天,并解释你的计算过程。

五、应用题10. 一个农场主有一块草场,他发现这块草场的草可以供15头牛吃50天。

如果草场的草每天自然减少1/12,农场主决定增加牛的数量,使得这些牛可以吃更长时间。

如果他增加到20头牛,这20头牛实际上可以吃多少天?请给出你的计算过程。

答案:1. C2. B3. C4. 1/255. 356. 35天7. 120天8. 36天9. 80天10. 60天请注意,这些答案仅供参考,具体的计算过程需要根据题目的具体条件进行详细的数学推导。

牛吃草问题经典例题10道

牛吃草问题经典例题10道

牛吃草问题经典例题10道牛吃草问题常被认为是经典的运筹学题目,在这里我们汇总了10道牛吃草问题的理论例题,以帮助大家学习这些问题的解决方法,加深对运筹学的理解。

例题一:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,那么它最少要移动几次,才能将草地吃完?解答:首先,要吃完草地,牛至少要移动L/a次,也就是说,牛要吃完草地,它最少要移动L/a次,例如当L=12,a=4时,牛需要移动3次才能吃完草地。

例题二:有一片长度为L的草地,有两头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:这里我们可以使用二分法来求解,即每次移动时,两头牛分别前进a/2的距离,最后再合起来这样移动L/a次便可将草地吃完,即当L=12,a=4时,两头牛最少要移动6次,分别前进2次,才能将草地吃完。

例题三:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:牛的数量与它们吃掉草地的最少次数没有关系,只要它们每次移动距离等于a,那么无论有多少头牛,它们最少要移动L/a次,例如当L=12,a=4时,无论有几头牛,它们最少要移动3次才能吃完草地。

例题四:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,而每头牛的移动速度不同,那么它们最少要移动几次,才能将草地吃完?解答:考虑到牛的不同移动速度,它们吃完草地的最少次数取决于最慢移动的牛,即其吃掉草地的总时间就等于最慢移动的牛移动的时间,也就是说最慢移动的牛最少要移动L/a次才能吃完草地,例如当L=12,a=4时,无论有几头牛,最慢的牛最少要移动3次才能将草地吃完。

例题五:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,但是牛有一定的消耗,每移动一次需要消耗b的能量,它有总共c的能量,那么它最多可以移动几次?解答:由于牛有一定的消耗,所以它最多可以移动c/b次,例如当L=12,a=4,b=1,c=8时,牛最多可以移动8次。

牛吃草问题、工程问题经典例题(含答案版)word版本

牛吃草问题、工程问题经典例题(含答案版)word版本

牛吃草问题、工程问题经典例题(含答案版)小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90)÷(6-5)=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量(150-10×10)÷10=5头[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225)÷(9-8)=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷(21+15)=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

行测牛吃草问题(含例题、答案、讲解)

行测牛吃草问题(含例题、答案、讲解)

小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)*(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90)十(6-5)=10份20X 5=100份……原草量-5天的减少量原草量:100+5X 10=150或90+6X 10=150份15X6=90份……原草量-6天的减少量(150-10X 10)- 10=5头[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225) - (9-8 )=15份30X 8=240份……原草量-8天的减少量原草量:240+8X 15=360份或220+9X15=360份25X 9=225份……原草量-9天的减少量360 -(21+15)=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

六年级数学下册《牛吃草问题》例题+答案

六年级数学下册《牛吃草问题》例题+答案
注水的速度:(15×3-6×6)÷(15-6)=1(份/分钟)
原有水量:15×3-15×1=30(份)
需要的时间:30÷(4-1)=10(分钟)
答:10分钟后可以将水排光。
解析∶设1头牛1天吃草1份
每天固定减少的草量:(20×5-15×6)÷(6-5)=10(份/天)
原有草总量=牛吃草量+固定减少草量
原有草量:20×5+10×5=150(份)
牛的头数:150÷10-10=5(头)
答:这块草地可供5头牛吃10天。
4.牧场上有一片青草,每天匀速生长,已知 15 头牛 10 天可以吃完这片青草,25 头牛 5 天可吃完这片青草,如果有 30 头牛,那么几天可吃完这片青草?
六年级数学下册
《牛吃草问题》例题+答案,练习掌握
牛吃草问题的重要公式
前提条件∶每头牛单位时间内吃的草量是相同的四个公式∶
①草长速度=总草量差÷总时间差
②原草量数=总草量数-草长速度×吃草时间
③吃草时间=原草量数÷(牛的总数-吃新草牛数)
④牛的总数=原草量数÷吃草时间+吃新草牛数
1.若这片草地,草匀速生长。该草地可供14头牛吃30天或供20头牛吃20天。那么该片草地每天新长的草可供2头牛吃多少天?
5.小诗博士的实验室内有一个水槽,水槽有1根注水管和6根排水管。打开注水管后,水不停地匀速流入水槽。若干分钟后,小诗博士想把水排出。如果将排水管全部打开,6分钟可以将水排光如果只打开3根排水管,15分钟可以将水排光。如果小诗博士同时打开4根排水管,多少分钟后可以将水排光?
解析∶假设一根排水管一分钟排出1份水
解析∶假设1头牛1天吃1份草;
那么,14头牛30天吃14×1×30=420(份)
20头牛20天吃20×1×20=400(份)

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

牛吃草问题练习及答案

牛吃草问题练习及答案

牛吃草问题姓名:主要类型:1、求时间2、求头数基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。

基本公式:解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度第一种:一般解法“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

”一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。

)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天) 所以养21头牛,12天才能把牧场上的草吃尽。

第二种:公式解法有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初冲刺第2讲牛吃草问题
基本公式:
1) 设定一头牛一天吃草量为“1”
2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
4)吃的天数=原有草量÷(牛头数-草的生长速度);
5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15
头牛吃10天。

问:这片牧草可供25头牛吃多少天?
解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份
10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份
15×10=150份……原草量+10天的生长量 100÷(25-5)=5天
[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?
解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份
9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份
15×10=150份……原草量+10天的生长量 120÷(18-3)=8天
例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块
草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?
解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90)÷(6-5)=10份
20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份
15×6=90份……原草量-6天的减少量(150-10×10)÷10=5头
[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?
解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225)÷(9-8)=15份
30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份
25×9=225份……原草量-9天的减少量 360÷(21+15)=10天
例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每
分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?
男孩:20×5 =100(级)自动扶梯的级数-5分钟减少的级数
女孩;15×6=90(级)自动扶梯的级数-6分钟减少的级数
每分钟减少的级数= (20×5-15×6) ÷(6-5)=10(级)
自动扶梯的级数= 20×5+5×10=150(级)
[自主训练]两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问该扶梯共有多少级?3×100=300自动扶梯级数+100秒新增的级数
2×300=600自动扶梯级数+300秒新增的级数
每秒新增的级数:(2×300-3×100)÷(300-100)=1.5(级)
自动扶梯级数= 3×100-100×1.5=150(级)
工程问题
数量关系式:
工作量=工作效率×工作时间,
工作时间=工作量÷工作效率,
工作效率=工作量÷工作时间。

例4、某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?
分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

答:甲队干了12天。

[自主训练] 单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?
分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效
例5、单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?
分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了
[自主训练] 一批零件,张师傅独做20时完成,王师傅独做30时完成。

如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个?
分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间,
例6、一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?
[自主训练] 甲、乙二人同时从两地出发,相向而行。

走完全程甲需60分钟,乙需40分钟。

出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。

甲再出发后多长时间两人相遇?
分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。

甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。

我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。

答:甲再出发后15分钟两人相遇。

相关文档
最新文档