铷原子频率

合集下载

铷盐概述

铷盐概述

铷盐概述一、铷的概述铷,元素符号Rb,银白色稀有碱金属,在元素周期表中属IA族,原子序数37,原子量85.4678,立方晶体,常见化合价为+1。

金属铷的熔点很低,质软,有延展性。

铷在地壳中很分散,至今还没有发现单纯的铷矿物。

铷在地壳中的含量为5.1X10-5--3.1×10-4,按元素丰度排列居16位。

铷资源主要赋存于花岗伟晶岩,卤水和钾盐矿床中。

现在人们主要从花岗伟晶岩矿床开发回收铷,主要工业矿物是锂云母,锂云母中铷含量可达3.75%,是提取铷的主要矿源。

国外花岗伟晶岩氧化铷资源储量约为17万t,其中津巴布韦10万t,占58%;纳米比亚5万t,占29%;加拿大1.2万t占7%.这三个国家氧化铷含量为16.2万t,占国外铷资源的95%。

我国有丰富的铷资源,储量名列前茅,且类型齐全,分布全国。

我国铷资源主要赋存于锂云母和盐湖卤水中,锂云母中铷含量占全国铷资源储量的55%,以江西宜春储量最为丰富,是目前我国铷矿产品的主要来源。

湖南、四川的锂云母矿中也含有铷。

青海、西藏的盐湖卤水中含有极为丰富的铷,是有待于开发的我国未来的铷资源。

目前,世界上铷盐工业生产的主要原料是锂云母。

用锂云母生产铷盐时,一般采用氯锡酸盐法、铁氯化物、BAMBP萃取法。

对于铷含量低的液体矿物,如海水、盐湖卤水、工业母液,一般采用吸附法和萃取法。

我国生产铷的主要工业原料是锂云母。

新余市东鹏化工有限责任是我国目前最大的铷盐生产基地,他们利用锂云母提锂后的混合碱母液采用T—BAMBP萃取法从中分离,提取铷,他们还利用这种萃取法提取铷化合物,以不同无机酸和或有机酸进行反萃,制得多种铷化合物。

T—BAMBP萃取工艺目前在国外都处于领先水平。

此外,对于一些有价值的潜在铷资源,我国也进行了有效的开发研究。

江西的开发研究成果,显示了我国巨大的铷开发、生产潜力。

二、铷化合物的提取方法铷广泛地分散于钾的矿物和盐卤中。

锂云母的组成为KRbLi(OH,F)Al2Si3O1,含3.5%以上Rb2O,是主要的铷资源。

铷的化学式-概述说明以及解释

铷的化学式-概述说明以及解释

铷的化学式-概述说明以及解释1.引言1.1 概述铷(Rubidium,化学符号Rb)是一种化学元素,属于第一周期的碱金属元素。

它是地壳中含量较稀少的元素之一,与钾、钠等金属具有相似的特性。

铷的化学式为Rb。

铷是一种银白色的金属,具有良好的导电性和导热性。

它的密度较小,相对分子质量约为85.47 g/mol。

与其他碱金属类似,铷在空气中容易与氧气发生反应,形成氧化铷(Rb2O)。

铷也与水反应,生成氢氧化铷(RbOH)。

铷的熔点较低,为39.3C,使得它在常温下可以轻易熔化。

铷具有一些特殊的化学性质。

它具有较高的电离能,使得铷可以形成带正电荷的离子。

在溶液中,铷离子会与其他带负电荷的离子形成化合物。

此外,铷还可以与氯、氟等非金属元素形成化合物,如RbCl、RbF等。

由于铷在自然界中含量较少,它的应用领域相对较窄。

然而,铷具有一些特殊的性质,使得它在某些领域有着独特的应用前景。

例如,铷在光学领域中被广泛应用于激光器和光电器件中。

此外,铷也被用作实验室中的基础化学物质,用于合成其他化合物或进行科学研究。

本文将详细介绍铷的基本性质和化学反应,以及总结铷的化学式。

我们还将展望铷在未来的应用前景,探讨其可能在材料科学、能源存储等领域的潜在应用价值。

通过深入了解铷的化学性质和应用前景,有助于我们更好地理解和利用这一元素。

1.2 文章结构本文将分为三个主要部分进行讨论。

首先,引言部分将提供关于本文的概述、文章结构以及研究目的的说明。

其次,正文部分将详细介绍铷的基本性质和化学反应。

最后,结论部分将总结铷的化学式,并展望铷的应用前景。

在正文部分中,2.1 铷的基本性质将详细探讨铷的物理和化学性质,包括其原子结构、元素周期表中的位置以及常见的物理特性(如密度、熔点、沸点等)。

此外,我们还将讨论铷的离子化倾向、电子亲和力以及化学键的形成等方面的特点。

接下来的2.2 铷的化学反应部分将着重探讨铷与其他元素或化合物之间的化学反应。

HJ5418H GPS铷原子频率标准

HJ5418H GPS铷原子频率标准
z 重量: <8Kg z 电源: 220V±20% 47Hz ~63Hz z 工作温度:-10℃~+50℃ z 存贮温度:-25℃~+85℃ z 湿度: 95%无冷凝 z 功耗: 50W 标准配置 z 主机 1 台 z 30 米高灵敏度授时天线 2 个 z 安装支架 1 套 z 1 米电源线 1 根 z 1 米串口线 1 根 z 中文说明书 1 本 可选件 z 10MHz、5MHz、1MHz 多路扩展输出 z 20PPS、100PPS 分频输出 z 2.048MHz 、E1 信号多路扩展 z IRIG-B(DC)、IRIG-B(AC)码多路扩展输出 z NTP 网络时间服务接口 z OCXO 高稳晶振热冗余备份 z 内置 GPS/GLONASS 双系统板 z 内置北斗授时接收机备份 z HJ5418M 模块化产品(易于集成) z 避雷器、加长天线电缆 z 多路 RS232、485、422 等电平信号输出; z 供电方式可选 48V、24V、12V 等 z Windows 系统同步软件 z 宽温、抗震设计 z 可按客户需求定制 z 如需检定证书,可代为送检或客户自行送检(203 所、国家计量院、总装计量中心……)
地 址:北京市海淀区上地六街数字传媒大厦316室
邮 编:100085
电 话:010-64845573、64864608
传 真:010-82782026
京泰福特电子科技有限公司
Beijing Time&Frequency Technology Co., Ltd.
HJ5418H 溯源同步到 GPS 卫星铯原子钟上,输出频率几乎没有漂移,所以不需送上级计量部门进行 周期校准,性能接近铯钟,但却远远低于铯钟的价格,而且不存在铯钟那样铯束管寿命短需要高成本更换 的问题。HJ5418 非常适合应用于 SDH 数字同步网的 1,2 级节点时钟,为电信、广电、时统、计量校准、 雷达设备等提供高精度的时间和频率基准。

铷原子的饱和吸收光谱和频率调变光谱

铷原子的饱和吸收光谱和频率调变光谱

Saturated Absorption SpectroscopyandFrequency Modulation Spectroscopyof Rubidium Atoms铷原子的饱和吸收光谱和频率调变光谱Dan LeeGrade 98, School of Physics, Department of Technical Physics摘要在这个实验中,我们测量了85Rb和87Rb原子的饱和吸收光谱和频率调变光谱.在饱和吸收光谱中,87Rb原子的|F=1〉→|F'=0,1,2〉和|F=2〉→|F'=1,2,3〉,85Rb原子的|F=2〉→ |F'=1,2,3〉和|F=3〉→|F'=2,3,4〉以及它们的交错信号都被完全的捕捉住.这里,F表示的是5S1/2基态的超精细能级,而F'则表示的是5P3/2激发态的超精细能级. 87Rb 原子的|F=2〉→|F'=1,2,3〉的谱线则被用于调频技术.AbstractWe have measured Dtransitions of 85Rb and 87Rb atoms with saturated2absorption spectroscopy and frequency modulation spectroscopy. These saturated absorption spectra, |F=1〉→ |F’=0,1,2〉and |F=2〉→ |F’=1,2,3〉of 87Rb atoms, |F=2〉→ |F’=1,2,3〉and |F=3〉→ |F’=2,3,4〉of 85Rb atoms, and their crossover lines are completely resolved, where F indicates the hyperfine level of the 5S1/2 ground state and F’ indicates that of the 5P3/2 excited state. The derivatives of the |F=2〉→|F’=1,2,3〉 spectra of 87Rb atoms are obtained with the technique of frequency modulation.As we know, the Rubidium atom is one kind of boson. It obeys the Bose-Einstein statistics. In 1995, Rubidium atom was successfully used to realize the Bose-Einstein condensation.In the nature, there are two types of isotopes of Rubidium: 87Rb and 85Rb. If we consider the hyperfine structure of the isotopes of 87Rb and 85Rb, we can get the figures for their energy levels. The hyperfine structure is resulted from the spin of the nucleus, which is called Zeeman effect that can lead to the separation of the energy levels in magnetic field.Fig. 1 below shows us the hyperfine structure of the 87Rb.Fig. 1. The hyperfine structure of the energy levels of87RbFig. 2 below shows us the hyperfine structure of theRb.Fig. 2. The hyperfine structure of the energy levels of 85RbThe two figures are similar to each other. The small differencebetween them is that the separation of energy levels of 85Rb is less thanthose of 87Rb. Another difference between the two isotopes is that the spin of the nucleus of 87Rb is 3/2 and that of 85Rb is 5/2.I did such a following experiment to study the main energy level and the spectrum at first. The experimental setup is shown schematically in Fig. 3.Fig. 3. Experimental setup for the absorption spectrum of the RubidiumThe diode laser is driven by the current from the laser diode driver and is controlled by the temperature controller.We choose the diode laser as the laser resource here because it has too many advantages: the inexpensive price, the small line width that is less than 100 kHz , the high output power which can reach more than 10 mW, the large tunable range of wavelength which is more than 20 nm , the high stability and the high sensitivity. All above, the most important merit is that it can provide the laser whose frequency is just what we need in such experiments.In this experiment, we also use a function generator to output a triangular wave with appropriate frequency and amplitude. We input this wave into the laser diode driver and then make the laser current changein a proper range. The amplitude of the triangular wave decides the range. So the wavelength (or frequency) of the laser changes with the triangular wave. The Rubidium atom will absorb some photons from the laser when their frequency is proper. The spectrum is shown in Fig. 4, where the amplitude of the triangular wave is 200 mV and its frequency is 80 MHz.Fig. 4. The absorption spectrum of the RubidiumOne thing that we must emphasize is why we do not choose the square wave or serrated wave but triangular wave. The current from the laser diode driver that drive the laser cannot be changed too drastically. Otherwise the diode laser would be damaged. From the Fig. 4, we can see the four apparent spectra lines. From right to left, we mark them as a, b, c, d.In fact, each line of a, b, c, d contains fine spectra. The a-line contains the spectra lines from 87Rb |5S 1/2,F=2> to |5P 3/2,F’=1,2,3>. Theb-line contains the spectra lines from 85Rb |5S 1/2,F=3> to |5P 3/2,F’=2,3,4>. The c-line contains the spectra lines from 85Rb |5S 1/2,F=2> to |5P 3/2,F’=1,2,3>. The d -line contains the spectra lines from 87Rb |5S 1/2,F=1> to |5P 3/2,F’=0,1,2>.But because of the Doppler broadening effect, we cannot distinguish the fine spectra lines. The reason is interesting. We know that only theatoms can absorb a certain kind of photons whose energy (or frequency) exactly matches the separation of the energy level of the static atom. In fact, all the atoms move in all directions. Due to Doppler effect, the atom can be excited by those photons whose frequency is slightly away from the exact ones; meanwhile the separation among the energy levels of the hyperfine structure of Rubidium is tiny, too. All of above lead to the result that we are not able to distinguish the fine spectra.If we want to distinguish these fine spectra, we can use the method to get the saturated absorption spectrum. The experimental setup is also displayed as a brief outline in Fig. 5.Fig. 5. Experimental setup for the saturated absorption spectrumWhen the laser comes to the BK7, most of it will penetrate the BK7, which is called saturation beam, and only a small part of it will be reflected, which is called probe beam.The saturation beam and the probe beam nearly overlap each other in the opposite directions. As the chopper rotates, it will chop the saturation beam at a certain frequency. If it always covers the saturation beam, we will get the same spectra as the Fig. 4 shows. But that thesaturation beam works or not at a certain frequency will provide a reference signal (one kind of TTL signal) and the lock-in amplifier will deal with the TTL signal and the signal from the probe beam that has passed the Rubidium vapor cell.The detailed spectrum will be shown as following:Fig. 6. The spectrum of a-line in the saturated absorption spectrum experimentThe parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 25 mVFrequency: 100 MHzFig. 6 shows us 6 spectrum lines obviously. From right to left,we mark them as a1, a2, a3, a4, a5 and a6. The a1-line, a3-line, a6-line representthe spectrum lines from 87Rb |5S1/2,F=2> to |5P3/2,F’=1>, from 87Rb |5S1/2,F=2>to |5P3/2,F’=2> and from 87Rb |5S1/2,F=2> to |5P3/2,F’=3>, respectively. Thethree other lines stand for crossover lines, which appear due to the Doppler effect. So there is a crossover line between each two lines of a1, a3 and a6.The parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 80 MHzFig. 7 also shows us 6 spectrum lines obviously. We mark them as b1, b2, b3, b4, b5 and b6 in the same way. The b1-line, b3-line, b6-linerepresent the spectrum lines from 85Rb |5S1/2,F=3> to |5P3/2,F’=2>, from 85Rb|5S1/2,F=3> to |5P3/2,F’=3> and from 85Rb |5S1/2,F=3> to |5P3/2,F’=4>,respectively. The three other lines stand for crossover lines.Fig.8. The spectrum of d-line in the saturated absorption spectrum experimentThe parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 50 MHzFig.8 shows us 5 spectrum lines but not obviously. D1, d2, d3, d4 and d5 are marked in the same way. The d1-line, d2-line, d5-line representthe spectrum lines from 87Rb |5S1/2,F=1> to |5P3/2,F’=0>, from 87Rb |5S1/2,F=1>to |5P3/2,F’=1> and from 87Rb |5S1/2,F=0> to |5P3/2,F’=2>, respectively. Thetwo other lines stand for crossover lines. In my opinion, another crossover line exists but we are just not able to measure it.It is the most difficult to get the saturated absorption spectrum for c-line. Fig.9 shows the experimental result and its appearance is far below that for a-line or b-line.The parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 20 MHzSuch a figure is frustrating. I have tried to find the reason leading to such a bad result. There is no problem with the experimental setup because we can get good spectrum lines for a-line etc. Maybe the reason is that the instruments are not stable as the time goes on. But we can get as the same wonderful figure for a-line as before. Strictly speaking, I do not get success in the saturated absorption spectrum experiment for c-line. But I have to do the further experiment and I am told that only spectrum lines we need to apply to the further experiment are those for a-lines. So I give up making it clear before the fifth week.To make the figure more clearly, we design the experiment below. The experimental setup is given briefly in Fig.10. The left function generator produces sin-wave with high frequency and small amplitude as a referencesignal. The right function generator outputs a triangular wave with relatively low frequency and high amplitude. The former and the later are input into the adder at the scale of 1/10:1. How do they modulate the laser diode driver? We know that the frequency of the laser will oscillate as the current from the driver oscillates and the current is controlled by the input-signal. t f f f t I I I m L L m ωωcos cos 00+=⇒+= Because m f is far less than L f 0, the signal S (m f )that the photo detector receives can be in the form of Tailor expansion as the following:......!2)())((cos ))(()()cos ()(222_+++−−−−−→−+=t Cos f f S df d t f f S df df S t f f S f S m oL L m oL LoL ExpansionTaylor m oL L ωωω Generally speaking, Hz f oL 14108.3⨯≈Hz f m 610≈Hz 4102⨯≈πω1<<oL m f fFig.10. Experimental setup of the differential saturated absorption spectrum of RubidiumSo we can ignore the third item and later ones. The)(oL Lf S df din the second item is just the differential signal that we need. After the lock-in amplifier deal with the S(f L ) signal and the reference signal, we can get the differential signal.Fig. 10 does not show us where the neutral-density filters are. In my opinion, their quantities and their locations are not important because they are just used to adjust the power of the saturation beam and the probe beam in order to get an ideal result revealed in Fig. 11.To summarize, we have demonstrated three kinds of experiments to get the spectrum of Rubidium. All above these help us study the energy level and the structure of the Rubidium better. A5, the most distinguished spectrum line in all, is what we just need to use to lock in the frequency in the experiment of low-temperature-atom spectrum, which is another interesting experiment.AcknowledgementsIn the past four weeks, I spent an ordered and instructive time on such a special subject. It is the first time for me to come to the department of physics, NTHU. Such an experience will be remembered forever.I am grateful to Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (CURE), the Peking University, Beijing and the National Tsing Hua University, Hsinchu, which provide me such an opportunity to have a so precious experience.I am grateful to my instructor, Prof. Yu, an erudite and vigorous man. He is always not only enthusiastic to me but also strict with me. Under his wise guidance, I have such a chance to shoot a glance at the research field of the laser cooling.I also appreciate my elder school-sister Hsin-Ying Chiu and my elder school-brothers: Ying-Cheng Chen, Yean-An Liao, Hsih-Kuang Tung, Yun-Fan Chen, Guan-Qi Pan, Hong-Wen Zhuo, Jun-Jie Liao. They are warm-hearted to help me. They give me many good suggestions on study. I hope they would not mind that my bothering them during the last month.De-Hong Chen is another lab-mate that I must thank to. He provides me with much facility. It is he who makes my life here more convenient.I always hold the view that I can finish my report without a hitch due to the help of all others.Thanks all.References[1] Li-fu Mao, “Development and Study of Dark Magneto-Optical Trap”, the master’s thesis of Tsing Hua University, Hsinchu, Taiwan ,1998.[2] 施宙聪,陈皙墩,《稳频半导体雷射》,科技新知14卷5期, 第30页.[3] M. J. Snadden, R. B. M. Clarke, and E. Riis, “Injection-locking technique for heterodyne optical phase locking of a diode laser”, Opt. Lett. 22, 892 (1997).The Introduction to My Advisor:Ite Albert. Yu(余饴德)Name: Ite Albert, YuResearch Interests: Optics, Atomic & Molecular Physics, Laser (Exp.) E-mail addressAddress: 101 Section 2 Kuang Fu Road, Hsinchu, TaiwanDepartment of Physics, National Tsing Hua University, Hsinchu, Taiwan Telephone: (03)5742539 Fax: (03)5723052Education:1987-1993 Ph.D..1980-1984 B.S. in Physics, National Tsing Hua University,Hsinchu, Taiwan.Employment:1995-present, Associate Professor of Physics, Tsing Hua University, Hsinchu, Taiwan1993-1995, Postdoctral Researcher of Harvard-Smithsonian Center for Astrophysics,Research Interests:Experimental Atomic and Molecular PhysicsLaser Trapping and CoolingBose-Einstein CondensationNonlinear SpectroscopyQuantum OpticsSelected Publications:Selected Papers:Y. C. Chen, C. W. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency", Phys. Rev. A 61, 053805 (2000).Y. C. Chen, Y. W. Chen, J. J. Su, C. Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms for various laser-polarization configurations", Phys. Rev. A 63, 043808 (2001).Other Publications:雷射冷却与低温原子的非线形光谱物理双月刊廿二卷五期 2000年10月 443页443-451 (2000).。

铷铯及其化合物概况

铷铯及其化合物概况

铷/铯及其化合物概况1.1 铷/铯的基本概况1.1.1 铷的基本概况铷英文名称:Rubidium。

性质:第1族(IA)(碱金属)元素。

原子序数37。

铷在1861年由德国Bunsen R W和Kirchhoff G R共同发现。

有稳定的85Rb 和放射性的87Rb两种天然同位素;24种人工合成同位素。

铷是一种银白色稀有碱金属,CAS No.:7440-17-7。

熔点很低(38.8℃),沸点为688℃,密度为1.53克/厘米3。

铷质软,有延展性,化学性质极活泼,在空气中能自燃与水利用强烈在常温下能引起燃烧和爆炸,甚至同-100℃的冰亦能猛烈反应。

在光的作用下,铷易放出电子,由于铷的活性大,生产、使用、贮存和运输中,必须将其放在严密隔绝空气的装置中。

铷在自然界分布很广,但至今尚未发现单纯的铷矿物,而常在锂云母、黑云母、光卤石等矿物中存在。

盐湖卤水和海水中也含有较多的铷。

目前,锂云母、盐湖卤水是提取铷的主要资源。

铷的用途铷是制造光电管的主要感光材料,使用光波范围广、灵敏度高(稍逊于铯)、稳定。

铷原子钟的特点是需要的功率小、体积小、重量轻,准确度可达万亿分之一。

铷极易电离,可用作固体电池的电介质。

目前正在大力开展铷在离子发动机、磁流发电机及热电前正在大力开展铷在离子发动机、磁流发电机及热电换能器等方面的研究工作。

1.1.2 铯的基本概况铯是碱金属族的一种银白色、质软、易展性的金属元素,铯的熔点( 28.55 ℃) ;沸点(679℃) ;蒸气压最高,密度最大,正电性最强,电离势和电子逸出功最小。

金属铯的活性很强,在空气中燃烧会喷溅,产生浓密的碱性烟雾,伤害眼睛、呼吸系统和皮肤。

因此在生产、贮存及运输时必须严格防止金属铯同空气或水接触。

铯的主要化工产品是硫酸铯、硝酸铯、碳酸铯、氯化铯、碘化铯、铬酸铯等盐类及金属铯。

铯特性与铷相似,铯的用途与铷相同外。

铯的氧化物亦可作高能固体燃料,铯可制造人工铯离子云、铯离子加速器,以及反作用系统材料与烟火制造材料。

铷原子频率标准宣贯

铷原子频率标准宣贯

8.计量器具控制
8.2 检定环境条件
环境温度:可处于18℃~25℃范围内任一点,检定过程中 温度最大允许变化范围±1℃。 环境相对湿度:≤80%。
供电电源:220 (1±10%)V,50(1±2%)Hz。 周围无影响检定正常工作的电磁干扰和机械振动。
9. 检定项目
10. 检定方法
10.1 外观及工作正常性检查 10.2 输出信号 (阻抗50Ω)
用频标比对器测量

10000s、1d频率稳定度
若技术说明书给出的稳定度按哈德玛方差进行评定,频标比对器
测量中存储的原始数据为相对平均频率偏差时 ,按下式计算频率稳定 度。
∑ σ H (τ ) =
1 6(N -
2)
N -2
( yi+2 (τ )
i =1
-
2 yi+1 (τ )
+
yi (τ )) 2
10. 检定方法
PN– 非谐波电平最大值,dBm;
P0-- 基波电平,dBm。 RBW=VBW=1kHz
10.4 开机特性的检定
分别在铷频标锁定一段时间T、1小时 、2小时 、4小时测量其 输出频率的频率准确度,以及给出达到铷频标给定的频率准确度 所经历的时间。
频差倍增测频法 时差法
10. 检定方法
10.4 开机特性的检定
频差倍增测频法
计数器测量频差倍增器 的输出频率F,计数器闸门 时间τ取100s, 连续测量3 次,取算术平均值按下式计 算相对平均频率 偏差。
f
被检铷频标
fr = f 0
参考频标
F
频差倍增器
外标
y(τ ) = f x − f0 = F − F0 = a ×10−n

铷

铷及其研究概况一、铷的相关性质元素符号Rb,银白色稀有碱金属,在元素周期表中属IA族,原子序数37,原子量85.4678,立方晶体,常见化合价为+1。

铷是银白色金属,质软,可用小刀切割。

熔点38.89℃,沸点686℃,密度1.532克/厘米3(20℃) 。

化学性质比钾还要活泼,在室温和空气中能自燃,因此必须在严密隔绝空气情况下保存在液体石蜡中。

铷与水,甚至是与温度低到-100℃的冰相接触时,也能发生猛烈反应,生成氢氧化铷和氢气。

与有限量氧气作用,生成氧化铷,在过量氧气中燃烧,生成超氧化物。

铷也能与卤素反应。

氧化态为+1,只生成+1 价化合物。

铷离子能使火焰染成紫红色,可用焰色反应和火焰光度计检测。

铷在地壳中的含量为0.028 %,但极其分散,至今尚未发现单纯的铷矿物,而是存在于其他矿物中,铷在锂云母中的含量为3.75%;铷在光卤石中的含量虽不高,但储量很大;海水中含铷量为0.121 克/吨,很多矿泉水、盐湖卤水中也含有较多的铷。

中国宜春锂云母含Rb2O 1.2~1.4%,四川自贡地下卤水也含有铷。

铷有两种天然同位素:铷85和铷87,后者具有放射性。

二、铷的应用人们最先发现铯和铷的重要的性质,是因为它们是“长眼睛”的金属——具有优异的光电性能。

由于碱金属的晶体中有活动性很强的自由电子,因而它们具有良好的导电性、导热性。

在一定波长光的作用下,铯和铷的电子可获得能量从金属表面逸出而产生光电效应。

将碱金属的真空光电管安装在宾馆或会堂的自动开关门上,当光照射时,由光电效应产生电流,通过一定装置形成的电流使门关上。

当人走在自动门附近时,遮住了光,光电效应消失,电路断开,门就会自动打开。

光线越强,光电流越大。

碱金属中铯和铷是制造光电管、光电池的最好材料。

铯和铷又是红外技术的必需材料,利用这些光电管、光电池可以实现一系列自动控制。

如铯在雾中或夜间有吸收红外线的能力,铯作成的光学仪器上装上红外线辐射光源,当飞机的影子落在光学元件的瞬间,能立即停止工作,故可作防空设备,还可制成红外望远镜,用于军事侦察、边防巡逻,军舰夜航等。

WR-1011铷原子频率标准技术说明书

WR-1011铷原子频率标准技术说明书

WR-1011铷原子频率标准技术说明书目 录1、概述2、技术指标3、结构特征4、连接端口及通信协议5、/A抗振加固型说明1、概述1.1 主要特性☆ 宽温度范围☆ 短期稳定度好☆ 低漂移率☆ 低功耗☆ 快速启动☆ 小体积☆ 长使用寿命☆ 标准接口输出☆ RS232通讯接口☆ 抗振动(/A选项)1.2 主要应用☆ 同步光网络☆ 移动通信、有线数字通信☆ 供电网运行监测系统、广播电视系统☆ 舰载、车载、机载及其他振动环境(/A选项)2、技术指标指标项技术要求/T、/D选项电气特征输出频率10MHz(5MHz、20 MHz可选)输出路数1路(**2路可选)频率稳定度3×10-11/1s(**1.5×10-11/1s)1×10-11/10s(**5×10-12/10s)3×10-12/100s(**1.5×10-12/100s)相位噪声(10MHz)-70dBc/Hz at 1Hz(**-80dBc/Hz at 1Hz)-80dBc/Hz at 10Hz(**-100dBc/Hz at 10Hz)-115dBc/Hz at 100Hz(**-130dBc/Hz at 100Hz)-135dBc/Hz at 1KHz(**-140dBc/Hz at 1KHz)-140dBc/Hz at10KHz(**-145dBc/Hz at 10KHz)频率漂移率(无秒脉冲同步)±1.2×10-11/天(通电1天后)±5×10-11/月(通电1月后)±5×10-10/年(通电1年后)频率数字调节范围细调1.27×10-9(±10%)粗调1.27×10-7(±10%)频率数字调节精度细调1×10-11(±10%)粗调1×10-9(±10%)精细调节6.8×10-13(±10%)频率模拟调节范围>±1×10-9(依客户要求有此功能)/频率同步精度/ <5×10-12(秒脉冲同步12小时后)1PPS同步精度/ ±50ns(秒脉冲同步8小时后)1PPS波形/ 正极性脉冲,宽度:10ms±20ns 1PPS上升沿宽度/ ≤10ns1PPS输出方式/ 3.3V TTL输入PPS电平/ 3.3V TTL输入PPS占空比/ ≤0.6时间保持能力(无秒脉冲同步时)/ <1 us/天(通电1天后)频率复现性±5×10-11锁定/预热特性<10分钟锁定(常温)15分钟<5×10-10(常温)出厂准确度±1×10-10输出波形正弦波输出幅度>+5dBm|50Ω谐波抑制>40dBc杂波抑制(f0±100k)>100dBc锁定指示信号 3.3V TTL——Lo:未锁Hi:锁定(电平提升方法见4.3)供电电源单直流+24V(±5%) 可选单直流+12V(11~17V)启动功率≤36W稳态功率≤12W(常温)环境特性地磁场敏感度±2×10-11(X、Y、Z三个方向)储存温度[1]-40~+80℃(**-55~+85℃[2]可选)工作温度[1]-25~+60℃(**-45~+70℃[2]可选)频率温度特性<5×10-10|工作温度范围力学环境符合GJB367A-2001有关条款物理特征主体尺寸77×75.5×36.5mm3(±0.5)重量<350g体积0.212L(±5%)对外接口DB9(9针)+SMA可选**DB9(9针)+2×SMA可靠性MTB F:100,000小时注:[1]环境温度,空气对流;[2]特殊订制;**项目为优选或特制型,将产生额外费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铷原子频率基于铷原子能级跃迁结合光抽运技术形成的铷原子振荡器。

由晶体振荡器(VCO)输出的信号经过倍频综合后得到铷原子谐振器相关的微波激励信号,谐振器将该信号相关处理(铷原子跃进判定)后产生误差信号,在经过伺服电路反馈给亚控晶体振荡器,使压控晶振频率锁定在铷谐振器的中心频率,从而实现以铷原子跃迁为参考的晶体振荡器。

铷原子钟由铷量子部分和压控晶体振荡器组成。

压控晶体振荡器的频率经过倍频和频率合成,送到量子系统与铷原子跃迁频率进行比较。

误差信号送回到压控晶体振荡器,对其频率进行调节,使其锁定在铷原子特有的能级跃迁所对应的频率上。

铷原子频标短期稳定度最高可达到10-12量级,准确度为±5×10-11,在分类上常分为:普通型、军用型、航天型等。

由于它体积小、精度高,所以应用最广。

SYN3104型铷原子频率标准
产品概述
SYN3104型铷原子频率标准是西安同步电子科技有限公司研发生产的一款高性能铷原子频率标准源,选用国外进口的高精度铷原子振荡器,提供精确的频率(量值)信号,能够为计量、通信、国防等部门提供高精度频率标准信号。

产品功能
1)提供4路标准的10MHz正弦信号;
2)提供4路1PPS脉冲信号。

产品特点
a)锁定快;
b)低相噪;
c)高可靠性;
d)可长期连续稳定工作。

典型应用
1)时频计量标准器具;
2)航空航天、飞行器跟踪与测控、通信、天文、气象;
3)同步广播、数字电视、单频网系统、同步采集系统。

技术指标
铷气泡型原子频标是使用数量最多的原子频标,随着电路技术及工艺水平的发展,其造价越来越低、体积越来越小,有望在许多场合下代替高温精度的晶体振荡器,以获得更高的精度,主要为导航定位卫星时间系统提供频率基准,广泛应用于守时、授时、导航定位、电力、铁路、测速、测距、时间同步和通信等军
用和商用领域,还可以在晶振生产中用作频率基准。

相关文档
最新文档