半导体制冷器的高精度温度控制系统
半导体制冷片工作原理 电路

半导体制冷片工作原理电路
半导体制冷片工作原理电路
本文介绍了半导体制冷片的工作原理及其关联的电路。
一、原理
半导体制冷片是一种制冷片,其工作原理是将一定量的电源转换成可以使热耦合物排出的热能。
半导体制冷片有两种工作模式,即自动模式和手动模式,在这两种模式下,工作原理是一样的。
1、自动模式
在自动模式下,半导体制冷片是依靠电子控制系统来控制它的工作,它可以根据温度传感器获取的信息自动调节它的芯片。
芯片与电源相连,电源通过一定的控制电路和控制器来控制电流的大小和时间。
当电流通过芯片时,芯片会发出热能,这热能会使热耦合物排出,从而达到制冷的效果。
2、手动模式
在手动模式下,半导体制冷片是通过用户控制控制板来控制其工作的,控制板上设有一个旋钮,用户可以根据实际情况调节旋钮上的时间,时间越长,则电流越大,从而控制到芯片发出的热能越大,从而达到制冷效果。
二、关联电路
1、自动模式
自动模式下的关联电路如下图所示:
2、手动模式
手动模式下的关联电路如下图所示:
综上所述,半导体制冷片的工作原理主要为将一定量的电源转换成可以使热耦合物排出的热能,在不同的工作模式下,其关联电路也有所不同。
半导体制冷是啥

半导体制冷是啥
半导体制冷技术是一种利用半导体材料的热电效应来实现制冷的技术。
在半导
体材料中,当一个电流通过时,会产生热量,同时也会在材料的一端产生冷量,这就是热电效应。
通过合理设计半导体制冷器件的结构,可以利用这种热电效应将热量从一个一边传递到另一边,实现制冷的效果。
半导体制冷技术相比传统的压缩式制冷技术具有许多优点。
首先,半导体制冷
器件体积小巧轻便,可以实现微型化制冷装置,适用于一些对体积和重量要求较高的场合。
其次,由于半导体制冷技术无需使用制冷剂,能够减少环境污染,更加环保。
此外,半导体制冷技术响应速度快,制冷效率高,对温度波动的响应能力强,适用于一些对温度控制要求精确的场合。
在实际应用中,半导体制冷技术已经被广泛应用于微型冰箱、车载制冷装置、
医疗设备和激光系统等领域。
未来随着半导体材料技术的发展和完善,半导体制冷技术有望在更多领域得到应用,为人类创造更多便利和舒适的生活环境。
总的来说,半导体制冷技术利用半导体材料的热电效应实现制冷,具有体积小、环保、高效等优点,已经在各个领域得到广泛应用,未来发展潜力巨大。
《半导体制冷》课件

冷端散热器
将半导体组件的冷端热 量散发到环境中,保持
低温状态。
电源和控制模块
提供工作电压和电流, 控制半导体制冷系统的
运行状态。
半导体制冷系统的工作流程
热端散热器将热量散发到环境中,维持热平衡 。
通过电源和控制模块调节电流大小和方向,可以控制 半导体制冷系统的制冷量和温度。
通电后,电流通过半导体组件,产生珀尔贴效 应,即热量从热端通过半导体组件传递到冷端 。
03
半导体制冷系统的设计
BIG DATA EMPOWERS TO CREATE A NEW
ERA
半导体制冷系统的设计原则
高效性
确保系统在运行过程中能够高效地转换电能 ,实现快速制冷。
安全性
设计时应充分考虑系统的安全性能,防止过 热、过流等潜在风险。
稳定性
系统应具备稳定的运行状态,保证制冷效果 的一致性和可靠性。
科研领域
用于精密测量和实验设备的制 冷和温度控制,如光刻机、质
谱仪等。
BIG DATA EMPOWERS TO CREATE A NEW ERA
02
半导体制冷系统的组成和工作流程
半导体制冷系统的组成
热端散热器
用于将半导体产生的热 量散发到环境中,保持
系统正常工作温度。
半导体组件
由许多单体半导体元件 串联或并联组成,实现
半导体制冷系统的挑战和机遇
技术成熟度
目前半导体制冷技术尚未完全成熟,仍存在效率、稳 定性等方面的问题,需要进一步研究和改进。
成本问题
半导体制冷系统的制造成本较高,限制了其在一些低 端市场的应用。
政策支持
政府可以出台相关政策,鼓励企业加大半导体制冷技 术的研发和应用投入,推动产业发展。
半导体电冰箱工作原理

半导体电冰箱工作原理一、半导体制冷原理半导体制冷,也称为热电制冷或温差电制冷,是基于帕尔帖效应的一种制冷技术。
帕尔帖效应是法国物理学家帕尔帖在1834年发现的,当电流通过不同导体组成的回路时,除产生焦耳热外,在不同导体的接头处,根据异质结的温差和电流方向,会产生吸热或放热现象,从而实现制冷或制热的效果。
二、Peltier效应Peltier效应是半导体制冷技术中的核心原理,当直流电通过由两种不同导体的接头组成的电路时,由于帕尔帖效应,在接头处会产生吸热或放热现象。
通过改变电流方向,可以实现在同一部位产生热量交换,从而达到制冷或制热的目的。
三、半导体热电转换半导体热电转换是半导体制冷技术的关键过程,通过利用半导体材料的热电效应实现热能与电能之间的相互转换。
当温度梯度存在于半导体材料中时,由于塞贝克效应或皮尔兹效应,会在材料中产生电压或电流,从而实现热能转换为电能。
四、制冷循环原理半导体电冰箱的制冷循环包括吸热、放热和散热三个过程。
在吸热过程中,通过半导体制冷片吸收冰箱内部的热量;在放热过程中,将吸收的热量传递到冰箱外部;在散热过程中,通过通风或散热器将热量散发到环境中。
五、温度控制原理半导体电冰箱的温度控制主要通过调节电流大小来控制半导体制冷片的制冷效果,从而实现冰箱内部温度的调节。
温度传感器检测冰箱内的温度,控制器根据设定的温度与实际温度的差异,调节电流大小,从而控制半导体制冷片的制冷效果,以保持冰箱内的温度恒定。
六、制冷效率与能耗半导体电冰箱的制冷效率与能耗与其采用的半导体材料、制冷片的设计和制作工艺、散热方式等因素有关。
高效的散热系统和合理的控制策略可以提高制冷效率并降低能耗。
相对于传统压缩式冰箱,半导体电冰箱具有较高的能效比(COP)和较小的体积,但制造成本较高。
七、系统集成与优化为了实现高效的制冷效果和稳定的运行状态,需要对半导体电冰箱的各个系统进行集成和优化。
这包括合理的散热设计、高效的热交换器、稳定的电源供应、精确的温度控制等。
半导体制冷技术

半导体制冷技术实物图半导体制冷又称电子制冷,或者温差电制冷,是从50年代发展起来的一门介于制冷技术和半导体技术边缘的学科,它利用特种半导体材料构成的P-N结,形成热电偶对,产生珀尔帖效应,即通过直流电制冷的一种新型制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。
1834年,法国物理学家帕尔帖在铜丝的两头各接一根铋丝,再将两根铋丝分别接到直流电源的正负极上,通电后,他惊奇的发现一个接头变热,另一个接头变冷;这个现象后来就被称为"帕尔帖效应"。
"帕尔帖效应"的物理原理为:电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,就会释放出多余的热量。
反之,就需要从外界吸收热量(即表现为制冷)。
所以,"半导体制冷"的效果就主要取决于电荷载体运动的两种材料的能级差,即热电势差。
纯金属的导电导热性能好,但制冷效率极低(不到1%)。
半导体材料具有极高的热电势,可以成功的用来做小型的热电制冷器。
但当时由于使用的金属材料的热电性能较差,能量转换的效率很低,热电效应没有得到实质应用。
直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于1945年前发表了研究成果,表明碲化铋化合物固溶体有良好的致冷效果。
这是最早的也是最重要的热电半导体材料,至今还是温差致冷中半导体材料的一种主要成份。
约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体致冷材料的优值系数,达到相当水平,才得到大规模的应用。
80年代以后,半导体的热电制冷的性能得到大幅度的提高,进一步开发热电制冷的应用领域。
二、半导体制冷片制冷原理原理图半导体制冷片(TE)也叫热电制冷片,是一种热泵,它的优点是没有滑动部件,应用在一些空间受到限制,可靠性要求高,无制冷剂污染的场合。
半导体制冷片的工作运转是用直流电流,它既可制冷又可加热,通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理,上图就是一个单片的制冷片,它由两片陶瓷片组成,其中间有N型和P型的半导体材料(碲化铋),这个半导体元件在电路上是用串联形式连接组成. 半导体制冷片的工作原理是:当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。
基于半导体制冷片的温度采集控制系统的设计

De s i g n o f t e mp e r a t ur e a c qu i s i t i o n a n d c o nt r o l s y s t e m ba s e d o n s e mi c o ndu c t o r c hi l l i ng pl a t e
Ab s t r a c t : Ac c o r d i n g t o t h e i n h e r e n t a d v a n t a g e o f s e mi c o n d u c t o r c h i l l i n g p l a t e ,t h e t e mp e r a t u r e a c q u i s i t i o n a n d
a c q u i s i t i o n mo d u l e a n d s e mi c o n d u c t o r d i r v e r c i r c u i t .T e mp e r a t u r e a c q u i s i t i o n mo d u l e i s c o n s t i t u t e d b y P T I O 0 a n d i t s mo d u l a t o r c i r c u i t a n d A/ D c o n v e r s i o n c i r c u i t .I R2 1 1 0 a n d I RF Z 4 4 N c o mp is r e d t h e s e mi c o n d u c t o r d r i v e r c i r c u i t ;
基 于半 导体 制冷 片 的 温 度 采集 控 制 系统 的设计
李会冬 ,张建 民,王浩 州
半导体制冷器原理及应用研究

半导体制冷器原理及应用研究摘要:本文介绍了半导体制冷器的基本工作原理、优点、缺点和随后对半导体的相关公式进行了推导。
最后根据半导体的研究现状,提出了半导体制冷器的主要性能参数,为今后的半导体制冷技术研究提供借鉴。
关键词:半导体制冷器;原理;应用研究1.引言目前,能源消耗问题是国际学术研究的热点,而中国作为能源消耗大国,因此研究如何降低能源消耗,实现可持续发展具有非常重大的现实意义。
半导体制冷器作为一种新型的制冷技术,具好广阔的应用前景。
半导体制冷器具有体积小、功耗低、无污染、降温快等诸多优点,符合环境保护以及低功耗的要求,在许多行业得到了广泛的应用。
虽然半导体制冷器的制冷量不大,但是降温速度非常快,非常适用于对制冷器的尺寸有严格要求的场所。
2.半导体制冷器的工作原理2.1 半导体制冷的物理基础半导体制冷又称为热电制冷(Thermoelectric cooler)或温差电制冷。
当直流电流通过具有热电转换特性的导体组成的回路时具有制冷功能,这就是所谓的热电致冷,由于半导体材料具有非常好的热电能量转换持性,因此,热电制冷又称为半导体制冷。
半导体制冷是基于帕尔贴效应、塞贝克效应、焦尔效应、汤姆逊效应和傅里叶效应五种效应建立起来的新型制冷技术。
(1)帕尔贴效应当电流通过由不同材料导体组成的回路时,在导体的连接处,会发生吸热和放热现象。
这时吸收和放出的热量就是帕尔贴热。
回路的一端为吸热,而另一端为放热。
(2)塞贝克效应将两种不同的材料和温度的导体相连接并组成回路时,这个回路之中就会产生电流,这就叫做塞贝克效应,这与帕尔贴效应是相逆的。
(3)焦尔效应焦尔效应是指当通过电流时,金属导体内部的热量与通过金属导体的电流平方成正比。
(4)汤姆逊效应当不同金属材料组成的闭合回路接入电流时,不仅会有赛贝尔效应和帕尔帖效应,还会产生一种汤姆逊效应,产生的热为汤姆逊热。
(5)傅里叶效应在金属材料中,沿着某固定方向的热传导过程叫做傅里叶效应,热传导是不可逆的,且垂直方向的面积与垂直方向上温度差的乘积成正比。
半导体制冷

早在一百多年前,人们就发现了塞贝克效应,即在两种不同导体组成的闭合电路中,当两个结点的温度不同时,导体回路就会产生电动势。
1834年,法国科学家珀尔帖做了一个相反的实验:向两种不同导体组成的环路通以直流电,在连接处出现冷热现象,这种冷热现象称为珀尔帖效应。
它是塞贝克效应的逆效应。
利用这种热电效应可以进行制冷和制热。
但是,由于金属导体的珀尔帖效应很微弱,故一度未能引起人们的重视。
随着科学技术的进步,半导体冶金技术不断提高,人们研制出各种优质半导体材料,并且发现,半导体材料的珀尔帖效应比金属导体强得多,于是,半导体制冷技术迅速发展起来。
由于半导体制冷比其它传统制冷有许多优点,所以,很快研制出新型的半导体制冷器,并进入了市场。
一. 半导体制冷(热)的物理原理半导体制冷(热)是利用固体材料的珀尔帖效应,下面我们分析产生这种效应的基本原理。
不同的固体材料,具有不同的原子能级,因而载流子在不同固体材料中的势能不同。
在外加电场作用下,载流子越过势垒由低势能材料流向高势能材料时,必须吸取热量(能量),在两种材料的连结处出现致冷现象。
反之,当载流子由高势能材流向低势能材料时,会放出热量(能量),在连结处出现致热现象。
研究表明:载流子在半导体中的势能高于在金属导体中的势能,因而从金属材料流向半导体材料时,吸收热量。
反之,放出热量。
图19-1是半导体制冷(热)的Array原里图。
它是由三块金属板1、2、3和一块N型半导体(电子导体)以及一块P型半导体(空穴导电)组成的热电偶。
当通以如图19-1所示的电流时,电子由金属板1通过结点a 流向N型半导体,电子势能增大,并从金属板1吸热,使之变冷。
当N型半导体中的电子通过结点d 进入金属板3时,势能由大变小,于是放出热量(能量),使金属板3变热。
同理,当电流由金属板1流向P型半导体时,空穴由金属板1通过结点b 流入P型半导体,势能增大,并从金属吸收热量(能量),使之变冷;随之,空穴通过结点C到达金属板2时,势能由大变小,放出热量(能量),使金属板2变热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着信息时代的到来,传感器技术得到了快速发展,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。
随着人们生活水平的提高,智能化的液体加热制冷类家电越来越多地出现在人们的日常生活中,这些产品大多采用发热管或PTC热敏电阻进行加热,仅仅具有加热功能;而使用半导体制冷片可以具备加热和制冷双重功能, 但缺陷是传统的半导体制冷片的方向控制大多使用继电器来完成,继电器属于机械式开关,当频繁导通或关断时不仅会发出噪音,而且还会降低其使用寿命。
因此,有必要探索一种高效、静噪、安全的半导体制冷片控制方法。
本设计将H桥驱动电路引入半导体制冷片进行控制,通过控制H桥的通断方向来控制半导体制冷片的加热和制冷,从而实现控温。
关键词:传感器;TEC;H桥1、系统方案设计本系统分为MCU ,温度显示,温度控制,温度采集,本系统采用STC12C5A16S2作为核心芯片,使用TEC1—12706半导体制冷片作为核心加热制冷与案件,采用DS18B20温度传感器采集温度,通过上位机和单片机通讯,上位机可以显示实时温度值,并且可以进行温度设置,半导体制冷片控制部分采用H 桥驱动控制电路进行电压翻转,H 桥的导通和截止采用三极管开关电路进行控制,从而达到加热和制冷的自动控制目的。
PC 机显示温度、 温度控制 设置温度 RS232 PWM·······加热制冷 温度采集图1 系统结构1。
1微型控制单元MCU 采用宏晶STC12系列单片机,其工作电压为5。
5—3.5V ,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍,本单片机晶振频率为22.184MHz ,本系统PWM 的时钟源是Fosc,不用Timer,PWM 的频率为Fosc/2,此单片机完全能够满足本系统的设计要求。
1.2 TEC12706半导体制冷片TEC(Themoelectric cooling modules)即半导体制冷器,它的工作原理是基于珀尔贴效应(J.C 。
A 。
Peltier 在1834年发现),即当电流以不同方向通过双金属片 STC12C5A16S2 DS18B20 TEC H 桥所构成的结时能对与其接触的物体制冷或加热。
两个电偶臂分别用P型和N型半导体材料制成,然后上下分别用金属桥连接,由于电子在金属中的能量要低于在N型半导体中的能量,故在P型电偶臂和N型电偶臂两端加上电压后,电子从金属流到N型半导体需吸收能量,而从N型半导体流到金属中需放出能量,这样a端是电子从金属流向N型半导体,故为吸热端,而b端是电子从N型半导体流向金属故为放热端;反之,当在电偶臂两端加上反向电压时,此时a端则为放热端,而b端则为吸热端.由此可知,若将a端与某物体接触,通过改变回路中电压极性和电流的大小即可以实现对物体的制冷与加热。
图2 TEC结构1.3 DS18B20数字温度传感器DS18B20温度传感器是DALLAS公司生产的1-Wire,即单总线器件,只需要一条口线通信,多点能力,简化了分布式温度传感应用,无需外部元件,可用数据总线供电,电压范围为3。
0 V至5。
5 V,无需备用电源,测量温度范围为-55 ° C 至+125 °C,—10 ° C至+85 °C范围内精度为±0。
5 °C。
温度传感器可编程的分辨率为9~12位,温度转换为12位数字格式最大值为750毫秒,用户可定义的非易失性温度报警设置,应用范围包括恒温控制,工业系统,消费电子产品温度计,或任何热敏感系统。
2、硬件设计2。
1硬件功能划分执行机构控制器通讯 被控 对象检测机构图3 硬件功能划分 2.2温度采集本系统采用单片机P2.6口作为DS18B20的数据输入端口图4 DS18B20的外部电源供电方式在外部电源供电方式下,DS18B20工作电源由VCC 引脚接入,此时I/O 线 PC 机 STC12单片机 TEC 制冷片驱动电路 检测电路不需要强上拉,不存在电源电流不足的问题,可以保证转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。
注意:在外部供电的方式下,DS18B20的GND引脚不能悬空,否则不能转换温度,读取的温度总是85℃.根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。
复位要求主CPU将数据线下拉500微秒,然后释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功.DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点.2。
3驱动电路图5 驱动电路H 桥功率驱动电路可应用于步进电机、交流电机及直流电机等的驱动。
永磁步进电机或混合式步进电机的励磁绕组都必须用双极性电源供电,也就是说绕组有时需正向电流,有时需反向电流,这样绕组电源需用H 桥驱动。
本系统将H 桥驱动电路引入对半导体制冷片进行控制.H 桥采用一对IRF9540P 型MOSFET 管和一对IRF540N 型MOS 管。
根据MOS 管导通原理,对于N 沟道MOS 管,当栅-源之间不加电压时,漏—源之间只是两只背向的PN 结,不存在导电沟道,因此即使漏—源之间加电压,也不会有漏极电流.当栅—源电压GS u 大于开启电压)(th GS U ,漏-源之间形成导电沟道,GS u 愈大,导电沟道电阻愈小。
当GS u 是大于一个确定值时,若在漏—源之间加正向电压,则将产生一定的漏级电流。
与N 沟道MOS 管相对应,P 沟道MOS 管的开启电压)(th GS U <0,GS u 〈)(th GS U 时,管子才导通,漏—源之间应加负电源电压。
本设计使用NPN 三极管进行开关电路可行性:三极管有一个特性,就是有饱和状态与截止状态,正是因为有了这两种状态,使其应用于开关电路成为可能.必要性:假设我们在设计一个系统电路中,有些电压、信号等等需要在系统运行过程中进行切断,但是又不能通过机械式的方式切断,此时就只能通过软件方式处理,这就需要有三极管开关电路作为基础了。
如下图就是一个最基本的三极管开关电路,NPN 的基极需连接一个基极电阻R2、集电极上连接一个负载电阻R1。
首先我们要清楚当三极管的基极没有电流时候集电极也没有电流,三极管处于截止状态,即断开;当基极有电流时候将会导致集电极流过更大的放大电流,即进入饱和状态,相当于关闭。
当然基极要有一个符合要求的电压输入才能确保三极管进入截止区与饱和区。
图6 NPN开关电路本系统设计P1。
3为PWM波输出端口,P1.1为加热、制冷控制端口,P1.3接开关电路PWM1,P1。
1接开关电路PWM2。
P1.1为0时,驱动电路为加热状态,P1。
1为1时,驱动电路为制冷状态.(1)当P1.1为0时,三极管开关电路Q6不导通,此时H桥右半边相当于电源电压,并且Q2MOS管IRF9540两端所加电压为0,Q2不导通,Q4MOS管IRF540两端所加电压为正,Q4导通。
1)当P1。
3输出为PWM波高电平时,三极管开关电路Q5导通,H桥左半边相当于接地,此时Q1MOS管IRF9540两端所加电压为负,Q1导通,Q3MOS管两端所加电压为0,Q3不导通,此时电流方向经过Q1和Q4,从左流至右,半导体制冷片处于加热状态;2)当P1.3输出为PWM波低电平时,三极管开关电路Q5截止,H桥左半边相当于电源电压,此时Q1MOS管IRF9540两端所加电压为0,Q1不导通,Q3MOS 管两端所加电压为正,Q3导通,由于没有对角的一对MOS管导通,所以H桥不导通,半导体制冷片处于不加热状态;(2)当P1。
1为1时,三极管开关电路Q6导通,此时H桥右半边相当于接地,并且Q2MOS管IRF9540两端所加电压为负,Q2导通,Q4MOS管IRF540两端所加电压为0,Q4不导通。
1)当P1。
3输出为PWM波高电平时,三极管开关电路Q5导通,H桥左半边相当于接地,此时Q1MOS管IRF9540两端所加电压为负,Q1导通,Q3MOS 管两端所加电压为0,Q3不导通,由于没有对角的一对MOS管导通,所以H 桥不导通,半导体制冷片处于制冷状态;2)当P1.3输出为PWM波低电平时,三极管开关电路Q5截止,H桥左半边相当于电源电压,此时Q1MOS管IRF9540两端所加电压为0,Q1不导通,Q3MOS 管两端所加电压为正,Q3导通,此时电流方向经过Q2和Q3,从右流至左,半导体制冷片处于制冷状态;通过调整PWM波的占空比,可以得到想要得加热和制冷效果.本设计驱动电路的电源采用外加电源,根据MOS管的导通原理,三极管的电源和H桥的电源需一致。
2.4串口通讯MAX232通过内部电压倍增及电压反相电路,把TTL电平与RS232电平互换,实现单片机与PC机的串口通信。
图7 串口通讯电路2.5系统原理图及元件清单图8 原理图元件名称规格型号数量电阻5K 210K 2P沟道MOSFET IRF9540 2N沟道MOSFET IRF540 2 NPN三极管C8050 2 半导体制冷片TEC1—12706 1表1 元件清单 3、软件设计3。
1软件功能模块软件设计中一个重要的思想就是采用模块化设计,把一个大的任务分解成若干个小任务,分别编制实现这些小任务的子程序,然后将子程序按照总体要求组装起来,就可以实现这个大任务了。
这种思路对于可重复使用的子程序显得尤为优越,因为不仅程序结构清晰,而节约程序存储空间。
根据系统设计要求,软件设计采用了结构程序模块化设计。
半导体温度控制仪的软件系统包括下位机程序和上位机程序两部分。
下位机程序又包括主程序、温度采集模块、PWM 控制模块、串口通讯模块、等几个模块。
上位机程序主要是通过串口口实现对系统温度的控制,并且可以接收下位机的数据并实时显示温度曲线。
图9 软件功能划分3.2主程序流程图10 主程序流程3。
2温度采集模块温度采集模块是利用DS18B20和单片机进行串行总线通信的方式实现的。
DS18B20是数字传感器,因此不需要A/D转换,省去许多硬件电路。
但是由于硬件的减少,DS18B20对软件要求就提高不少。
它有着严格的时序要求,否则传感器将不工作。
读取温度流程如下:图11 温度采集流程3。
3 PWM控制模块本设计PWM输出采用STC12C5A16S2自带PWM产生模块,设置为8位无中断PWM输出,产生PWM经P1.3端口输出截止驱动电路的PWM1端.PWM控制流程如下:图12 PWM控制流程3。