SYN3102型铷原子频率标准

合集下载

铷原子的饱和吸收光谱和频率调变光谱

铷原子的饱和吸收光谱和频率调变光谱

Saturated Absorption SpectroscopyandFrequency Modulation Spectroscopyof Rubidium Atoms铷原子的饱和吸收光谱和频率调变光谱Dan LeeGrade 98, School of Physics, Department of Technical Physics摘要在这个实验中,我们测量了85Rb和87Rb原子的饱和吸收光谱和频率调变光谱.在饱和吸收光谱中,87Rb原子的|F=1〉→|F'=0,1,2〉和|F=2〉→|F'=1,2,3〉,85Rb原子的|F=2〉→ |F'=1,2,3〉和|F=3〉→|F'=2,3,4〉以及它们的交错信号都被完全的捕捉住.这里,F表示的是5S1/2基态的超精细能级,而F'则表示的是5P3/2激发态的超精细能级. 87Rb 原子的|F=2〉→|F'=1,2,3〉的谱线则被用于调频技术.AbstractWe have measured Dtransitions of 85Rb and 87Rb atoms with saturated2absorption spectroscopy and frequency modulation spectroscopy. These saturated absorption spectra, |F=1〉→ |F’=0,1,2〉and |F=2〉→ |F’=1,2,3〉of 87Rb atoms, |F=2〉→ |F’=1,2,3〉and |F=3〉→ |F’=2,3,4〉of 85Rb atoms, and their crossover lines are completely resolved, where F indicates the hyperfine level of the 5S1/2 ground state and F’ indicates that of the 5P3/2 excited state. The derivatives of the |F=2〉→|F’=1,2,3〉 spectra of 87Rb atoms are obtained with the technique of frequency modulation.As we know, the Rubidium atom is one kind of boson. It obeys the Bose-Einstein statistics. In 1995, Rubidium atom was successfully used to realize the Bose-Einstein condensation.In the nature, there are two types of isotopes of Rubidium: 87Rb and 85Rb. If we consider the hyperfine structure of the isotopes of 87Rb and 85Rb, we can get the figures for their energy levels. The hyperfine structure is resulted from the spin of the nucleus, which is called Zeeman effect that can lead to the separation of the energy levels in magnetic field.Fig. 1 below shows us the hyperfine structure of the 87Rb.Fig. 1. The hyperfine structure of the energy levels of87RbFig. 2 below shows us the hyperfine structure of theRb.Fig. 2. The hyperfine structure of the energy levels of 85RbThe two figures are similar to each other. The small differencebetween them is that the separation of energy levels of 85Rb is less thanthose of 87Rb. Another difference between the two isotopes is that the spin of the nucleus of 87Rb is 3/2 and that of 85Rb is 5/2.I did such a following experiment to study the main energy level and the spectrum at first. The experimental setup is shown schematically in Fig. 3.Fig. 3. Experimental setup for the absorption spectrum of the RubidiumThe diode laser is driven by the current from the laser diode driver and is controlled by the temperature controller.We choose the diode laser as the laser resource here because it has too many advantages: the inexpensive price, the small line width that is less than 100 kHz , the high output power which can reach more than 10 mW, the large tunable range of wavelength which is more than 20 nm , the high stability and the high sensitivity. All above, the most important merit is that it can provide the laser whose frequency is just what we need in such experiments.In this experiment, we also use a function generator to output a triangular wave with appropriate frequency and amplitude. We input this wave into the laser diode driver and then make the laser current changein a proper range. The amplitude of the triangular wave decides the range. So the wavelength (or frequency) of the laser changes with the triangular wave. The Rubidium atom will absorb some photons from the laser when their frequency is proper. The spectrum is shown in Fig. 4, where the amplitude of the triangular wave is 200 mV and its frequency is 80 MHz.Fig. 4. The absorption spectrum of the RubidiumOne thing that we must emphasize is why we do not choose the square wave or serrated wave but triangular wave. The current from the laser diode driver that drive the laser cannot be changed too drastically. Otherwise the diode laser would be damaged. From the Fig. 4, we can see the four apparent spectra lines. From right to left, we mark them as a, b, c, d.In fact, each line of a, b, c, d contains fine spectra. The a-line contains the spectra lines from 87Rb |5S 1/2,F=2> to |5P 3/2,F’=1,2,3>. Theb-line contains the spectra lines from 85Rb |5S 1/2,F=3> to |5P 3/2,F’=2,3,4>. The c-line contains the spectra lines from 85Rb |5S 1/2,F=2> to |5P 3/2,F’=1,2,3>. The d -line contains the spectra lines from 87Rb |5S 1/2,F=1> to |5P 3/2,F’=0,1,2>.But because of the Doppler broadening effect, we cannot distinguish the fine spectra lines. The reason is interesting. We know that only theatoms can absorb a certain kind of photons whose energy (or frequency) exactly matches the separation of the energy level of the static atom. In fact, all the atoms move in all directions. Due to Doppler effect, the atom can be excited by those photons whose frequency is slightly away from the exact ones; meanwhile the separation among the energy levels of the hyperfine structure of Rubidium is tiny, too. All of above lead to the result that we are not able to distinguish the fine spectra.If we want to distinguish these fine spectra, we can use the method to get the saturated absorption spectrum. The experimental setup is also displayed as a brief outline in Fig. 5.Fig. 5. Experimental setup for the saturated absorption spectrumWhen the laser comes to the BK7, most of it will penetrate the BK7, which is called saturation beam, and only a small part of it will be reflected, which is called probe beam.The saturation beam and the probe beam nearly overlap each other in the opposite directions. As the chopper rotates, it will chop the saturation beam at a certain frequency. If it always covers the saturation beam, we will get the same spectra as the Fig. 4 shows. But that thesaturation beam works or not at a certain frequency will provide a reference signal (one kind of TTL signal) and the lock-in amplifier will deal with the TTL signal and the signal from the probe beam that has passed the Rubidium vapor cell.The detailed spectrum will be shown as following:Fig. 6. The spectrum of a-line in the saturated absorption spectrum experimentThe parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 25 mVFrequency: 100 MHzFig. 6 shows us 6 spectrum lines obviously. From right to left,we mark them as a1, a2, a3, a4, a5 and a6. The a1-line, a3-line, a6-line representthe spectrum lines from 87Rb |5S1/2,F=2> to |5P3/2,F’=1>, from 87Rb |5S1/2,F=2>to |5P3/2,F’=2> and from 87Rb |5S1/2,F=2> to |5P3/2,F’=3>, respectively. Thethree other lines stand for crossover lines, which appear due to the Doppler effect. So there is a crossover line between each two lines of a1, a3 and a6.The parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 80 MHzFig. 7 also shows us 6 spectrum lines obviously. We mark them as b1, b2, b3, b4, b5 and b6 in the same way. The b1-line, b3-line, b6-linerepresent the spectrum lines from 85Rb |5S1/2,F=3> to |5P3/2,F’=2>, from 85Rb|5S1/2,F=3> to |5P3/2,F’=3> and from 85Rb |5S1/2,F=3> to |5P3/2,F’=4>,respectively. The three other lines stand for crossover lines.Fig.8. The spectrum of d-line in the saturated absorption spectrum experimentThe parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 50 MHzFig.8 shows us 5 spectrum lines but not obviously. D1, d2, d3, d4 and d5 are marked in the same way. The d1-line, d2-line, d5-line representthe spectrum lines from 87Rb |5S1/2,F=1> to |5P3/2,F’=0>, from 87Rb |5S1/2,F=1>to |5P3/2,F’=1> and from 87Rb |5S1/2,F=0> to |5P3/2,F’=2>, respectively. Thetwo other lines stand for crossover lines. In my opinion, another crossover line exists but we are just not able to measure it.It is the most difficult to get the saturated absorption spectrum for c-line. Fig.9 shows the experimental result and its appearance is far below that for a-line or b-line.The parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 20 MHzSuch a figure is frustrating. I have tried to find the reason leading to such a bad result. There is no problem with the experimental setup because we can get good spectrum lines for a-line etc. Maybe the reason is that the instruments are not stable as the time goes on. But we can get as the same wonderful figure for a-line as before. Strictly speaking, I do not get success in the saturated absorption spectrum experiment for c-line. But I have to do the further experiment and I am told that only spectrum lines we need to apply to the further experiment are those for a-lines. So I give up making it clear before the fifth week.To make the figure more clearly, we design the experiment below. The experimental setup is given briefly in Fig.10. The left function generator produces sin-wave with high frequency and small amplitude as a referencesignal. The right function generator outputs a triangular wave with relatively low frequency and high amplitude. The former and the later are input into the adder at the scale of 1/10:1. How do they modulate the laser diode driver? We know that the frequency of the laser will oscillate as the current from the driver oscillates and the current is controlled by the input-signal. t f f f t I I I m L L m ωωcos cos 00+=⇒+= Because m f is far less than L f 0, the signal S (m f )that the photo detector receives can be in the form of Tailor expansion as the following:......!2)())((cos ))(()()cos ()(222_+++−−−−−→−+=t Cos f f S df d t f f S df df S t f f S f S m oL L m oL LoL ExpansionTaylor m oL L ωωω Generally speaking, Hz f oL 14108.3⨯≈Hz f m 610≈Hz 4102⨯≈πω1<<oL m f fFig.10. Experimental setup of the differential saturated absorption spectrum of RubidiumSo we can ignore the third item and later ones. The)(oL Lf S df din the second item is just the differential signal that we need. After the lock-in amplifier deal with the S(f L ) signal and the reference signal, we can get the differential signal.Fig. 10 does not show us where the neutral-density filters are. In my opinion, their quantities and their locations are not important because they are just used to adjust the power of the saturation beam and the probe beam in order to get an ideal result revealed in Fig. 11.To summarize, we have demonstrated three kinds of experiments to get the spectrum of Rubidium. All above these help us study the energy level and the structure of the Rubidium better. A5, the most distinguished spectrum line in all, is what we just need to use to lock in the frequency in the experiment of low-temperature-atom spectrum, which is another interesting experiment.AcknowledgementsIn the past four weeks, I spent an ordered and instructive time on such a special subject. It is the first time for me to come to the department of physics, NTHU. Such an experience will be remembered forever.I am grateful to Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (CURE), the Peking University, Beijing and the National Tsing Hua University, Hsinchu, which provide me such an opportunity to have a so precious experience.I am grateful to my instructor, Prof. Yu, an erudite and vigorous man. He is always not only enthusiastic to me but also strict with me. Under his wise guidance, I have such a chance to shoot a glance at the research field of the laser cooling.I also appreciate my elder school-sister Hsin-Ying Chiu and my elder school-brothers: Ying-Cheng Chen, Yean-An Liao, Hsih-Kuang Tung, Yun-Fan Chen, Guan-Qi Pan, Hong-Wen Zhuo, Jun-Jie Liao. They are warm-hearted to help me. They give me many good suggestions on study. I hope they would not mind that my bothering them during the last month.De-Hong Chen is another lab-mate that I must thank to. He provides me with much facility. It is he who makes my life here more convenient.I always hold the view that I can finish my report without a hitch due to the help of all others.Thanks all.References[1] Li-fu Mao, “Development and Study of Dark Magneto-Optical Trap”, the master’s thesis of Tsing Hua University, Hsinchu, Taiwan ,1998.[2] 施宙聪,陈皙墩,《稳频半导体雷射》,科技新知14卷5期, 第30页.[3] M. J. Snadden, R. B. M. Clarke, and E. Riis, “Injection-locking technique for heterodyne optical phase locking of a diode laser”, Opt. Lett. 22, 892 (1997).The Introduction to My Advisor:Ite Albert. Yu(余饴德)Name: Ite Albert, YuResearch Interests: Optics, Atomic & Molecular Physics, Laser (Exp.) E-mail addressAddress: 101 Section 2 Kuang Fu Road, Hsinchu, TaiwanDepartment of Physics, National Tsing Hua University, Hsinchu, Taiwan Telephone: (03)5742539 Fax: (03)5723052Education:1987-1993 Ph.D..1980-1984 B.S. in Physics, National Tsing Hua University,Hsinchu, Taiwan.Employment:1995-present, Associate Professor of Physics, Tsing Hua University, Hsinchu, Taiwan1993-1995, Postdoctral Researcher of Harvard-Smithsonian Center for Astrophysics,Research Interests:Experimental Atomic and Molecular PhysicsLaser Trapping and CoolingBose-Einstein CondensationNonlinear SpectroscopyQuantum OpticsSelected Publications:Selected Papers:Y. C. Chen, C. W. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency", Phys. Rev. A 61, 053805 (2000).Y. C. Chen, Y. W. Chen, J. J. Su, C. Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms for various laser-polarization configurations", Phys. Rev. A 63, 043808 (2001).Other Publications:雷射冷却与低温原子的非线形光谱物理双月刊廿二卷五期 2000年10月 443页443-451 (2000).。

铷原子频率标准

铷原子频率标准

铷原子频标基于铷原子能级跃迁结合光抽运技术形成的铷原子振荡器。

由晶体振荡器(VCO)输出的信号经过倍频综合后得到铷原子谐振器相关的微波激励信号。

谐振器将该信号相关处理(铷原子跃迁判定)后产生误差信号,再经伺服电路反馈给压控晶体振荡器,使压控晶振频率锁定在铷谐振器的中心频率,从而实现以铷原子跃迁为参考的晶体振荡器。

铷原子钟溯源同步到GPS卫星铯原子钟上,输出频率几乎没有漂移,所以不需送上级计量部门进行周期校准,性能接近铯钟,但却远远低于铯钟的价格,而且不存在铯钟那样铯束管寿命短需要高成本更换的问题。

铷原子钟非常适合应用于SDH数字同步网的1,2级节点时钟,为电力、电信、广电、时统、计量校准、雷达设备等提供高精度的时间和频率基准。

主要特点1内置铷振荡器2.日平均频率准确度<2×10P-12P3.时间实时显示4.驯服、保持自动切换5.GPS失锁后依靠铷钟高精度守时6.低相噪频率信号输出7.测频精度<2×10P-12P/天8.具备TRAIM算法的GPS接收机铷频率标准不需要真空系统、致偏磁铁和原子束,因而体积小、质量小、预热时间短、价格便宜,但准确度差、频率漂移比较大,仅能用作二级标准。

铷频率标准可通过GPS进行快速驯服和外秒同步,克服铷振荡器本身的漂移,可被看作是一个基本的同步时钟单元。

通过设计和工艺的改进,产品的可靠性和批量生产也得到保证,现已具备产业化的条件。

可以预计,这种带外秒驯服的高性能小型化铷钟将应用于无人值守等苛刻环境,将大大拓展铷钟的应用领域。

铷原子频率标准常常被分为普通型、军用型、航天型。

SYN3102型铷原子频率标准产品概述SYN3102型铷原子频率标准是是西安同步电子科技有限公司研发生产的一款高性能铷原子频率标准源,选用国外进口的高精度铷原子振荡器,提供精确的频率(量值)信号,能够为计量、通信、国防等部门提供高精度频率标准信号。

产品功能1)提供一路标准的10MHz正弦信号;产品特点a)锁定快;b)低相噪;c)高可靠性;d)可长期连续稳定工作。

一种超小型汽泡铷原子频标

一种超小型汽泡铷原子频标

一种超小型汽泡铷原子频标高伟;睢建平;陈智勇;余钫;盛荣武【摘要】为满足对小型化铷原子频标的需求,设计了一种超小型汽泡铷原子频率标准.介绍了该超小型汽泡铷原子频标的设计.通过全新设计的小型光谱灯和集成腔泡系统,配合优化设计的电路部分,成功地将整机体积减小至140 cm3,重量仅为250 g,稳态功耗7 W.测试结果表明其短期稳定度优于1.5×10-11/√τ(1 s≤τ≤100 s).【期刊名称】《时间频率学报》【年(卷),期】2010(033)002【总页数】6页(P92-97)【关键词】超小型;铷原子频标;热结构;电磁兼容【作者】高伟;睢建平;陈智勇;余钫;盛荣武【作者单位】中国科学院武汉物理与数学研究所,武汉,430071;中国科学院武汉物理与数学研究所,武汉,430071;中国科学院武汉物理与数学研究所,武汉,430071;中国科学院武汉物理与数学研究所,武汉,430071;中国科学院武汉物理与数学研究所,武汉,430071【正文语种】中文【中图分类】TM935.115作为目前应用最为广泛的原子频标,汽泡型铷原子频标一直朝着2个方向不断改进:高性能和小型化。

随着铷原子频标在卫星导航、深空探测、电力、通信等领域的普及应用,对铷原子频标小型化的要求越来越高,不仅要求重量轻、体积小、功耗低,还要求性能高和环境适应性强。

超小型铷原子频标的研制成功,势必进一步拓展铷原子频标的应用范围,尤其是对1 in厚度的高精度小型化铷频标的需求具有重要意义[1]。

图1给出了超小型汽泡铷原子频标的简要原理框图。

整机由2大部分组成:物理系统和电路部分。

物理系统作为量子鉴频器给出误差信号,电路部分与物理系统构成一个频率控制锁定环路,用以将压控晶体振荡器(VCXO)的输出频率锁定在物理系统的原子跃迁频率上[2]。

虽然超小型汽泡铷原子频标的原理与传统汽泡铷原子频标相同,但压缩体积的要求致使设计时必须重点考虑以下3个方面:小型化物理系统的设计、热结构设计和电磁兼容。

铷检测标准

铷检测标准

铷检测标准全文共四篇示例,供读者参考第一篇示例:铷检测标准是指用于确定样品中铷含量的方法和标准。

铷是一种常见的金属元素,在工业生产和科研领域都有着重要的应用价值。

铷检测标准的建立对于保证产品质量、保障人体健康、推动科学研究都具有重要意义。

铷的检测标准主要涉及到检测方法、检测仪器、样品准备、实验操作、质量控制等方面。

在实际的检测过程中,必须严格按照相应的标准要求进行操作,以确保检测结果的准确性和可靠性。

以下将从不同方面对铷检测标准进行详细介绍。

一、检测方法铷的检测方法包括原子吸收光谱法、电感耦合等离子体质谱法、电感耦合等离子体发射光谱法、X射线荧光光谱法等多种方法。

这些方法各有特点,适用于不同的样品类型和检测目的。

选择适合的检测方法是确保检测结果准确性的前提。

在进行铷检测时,还需注意样品的制备方法。

通常需要将样品溶解或分解后进行检测,要求操作规范,避免干扰物质的干扰影响检测结果。

还需控制样品的环境条件,如温湿度等参数,以确保检测过程的稳定性。

二、检测仪器进行铷检测所需的仪器通常包括原子吸收光谱仪、质谱仪、荧光光谱仪等。

这些仪器在检测铷含量时都有各自的优势和适用范围。

在选择仪器时,需要考虑到样品类型、检测要求、质量控制等因素,以确保检测结果的准确性。

仪器的维护和保养也是保证检测准确性的重要环节。

定期检查、校准仪器,保持仪器的稳定性和精准度,对于铷检测的准确性至关重要。

三、质量控制在铷检测中,质量控制是确保检测结果准确性和可靠性的重要手段。

质量控制包括日常质量管理、仪器校准、实验重复性验证、标准品校准等环节。

通过质量控制,可以及时发现和纠正检测过程中存在的问题,确保最终结果的准确性。

还需要建立合理的数据处理和记录体系。

对于每一次检测结果都应该进行详细记录,并进行数据分析和比对。

通过数据的追踪和分析,可以及时发现异常情况,确保检测结果的可靠性。

铷检测标准是确保铷检测结果准确性和可靠性的重要依据。

在进行铷检测时,需要选择合适的检测方法和仪器,严格遵守标准要求,进行质量控制和数据记录,以确保最终的检测结果符合实际需求。

铷钟

铷钟

主要技术指标
频率稳定度 月频率漂移率
频率重现性 频率准确度
频率稳定度是频率偏差的起伏程度,实际上是一种可以用随机过程(平稳的或不平稳的)来研究和处理的问 题。频率稳定度在时域上的数学表征是阿伦标准偏差。
原子频标连续工作时,频率随时间单方向慢变化程度,用最小二乘法估计。通过GPS锁定,可改变铷原子钟 的漂移。铷原子钟的月漂移为:1×10-11~4×10-11。
铷频率标准不需要真空系统、致偏磁铁和原子束,因而体积小、质量小、预热时间短、价格便宜,但准确度 差、频率漂移比较大,仅能用作二级标准。铷频率标准可通过GPS进行快速驯服和外秒同步,克服铷振荡器本身 的漂移,可被看作是一个基本的同步时钟单元。通过设计和工艺的改进,产品的可靠性和批量生产也得到保证, 现已具备产业化的条件。可以预计,这种带外秒驯服的高性能小型化铷钟将应用于无人值守等苛刻环境,将大大 拓展铷钟的应用领域。
●漂移率
频率漂移率是铷原子频标的重要指标之一,通常认为光频移是导致整机频率漂移的主要因素,一般在零光强 频移泡温点,光强频移贡献约为1×10-12/1%,灯光强日漂移一般可达千分之一至万分之几,铷原子频率标准的 月漂移率应在4×10-11-5×10-12范围内。
●价格
选购铷原子钟需要考虑产品的价格范围,铷原子钟的价格取决于许多因素,包括稳定度、漂移率、准确度等。 一般情况下,相同指标的铷原子钟,国产比进口产品价格便宜。
特点
钟具有短期稳定性高,体积小巧,便于携带,价格合适的特点,非常适合于在各个领域使用,但由于铷原子 的原子特性的原因,铷钟并不具有铯钟和氢钟那样优秀的长期稳定度,因而需要校准。为了提高铷钟的长期稳定 度,可以通过使用GPS系统来对铷钟进行控制和校准。
GPS系统通过测量时间差来实现定位测量,为了达到较高的定位精度,GPS系统内部时间测量精度极高。通过 使用GPS系统来对铷钟进行校正,可以很好的提高铷钟的长期稳定度,降低铷钟输出信号的飘移。

gps时钟驯服晶振在南京大学成功案例

gps时钟驯服晶振在南京大学成功案例

gps时钟驯服晶振在南京大学成功案例2017年10月初,西安同步电子科技有限公司自主研发生产的gps 时钟驯服晶振在南京大学投入使用,这套驯服晶振已稳定运行数月,已将我公司纳为合格供应商。

一、时钟驯服晶振简介时钟驯服的基本原理是利用卫星授时接收机提供的固定频率信号,与本地振荡器产生的振荡信号进行比对,获得频率差;再通过对本地振荡器的调节,使振荡频率与卫星的振荡频率基本一致,在频率调整过程中,还需要对本地振荡器的相位进行补偿,使本地振荡器输出的分频秒信号与接收机输出的秒信号差值在一定范围内.卫星授时接收机由于信号传输距离长,易受干扰等特点,其输出的1pps 具有一定的抖动,秒信号包含多种误差成分,如:卫星时钟误差:星历误差:电离层的附加延时误差:对流层的附加延时误差:多路径误差:接收机本身的误差。

采用GPS授时接收机对高稳晶振进行升级改造,研制高精度时间间隔计数器电路,测量GPS平均秒和高稳晶振分频秒之间的时差,采用驯服算法计算晶振的实时准确度,并通过电子频率控制的方式反馈调整高稳晶振的频率信号,从而提高频率信号的准确性和稳定性。

二、GPS驯服晶振利用高精度的时间间隔测量方法测得GPS信号和本地秒信号的相位差,并经计算机处理后转换成频率差,然后通过高稳晶振的压控调谐对高稳晶振输出频率进行调整,由锁相环回路进行控制使高稳晶振锁定到GPS时钟的准确度,从而完成对高稳晶振的驯服校频过程。

对输入本地频标和GPS秒脉冲信号的鉴相,通过高精度时间间隔测量,测量出两信号的相位差,并将转换为电压值。

然后通过压控OCXO端口对高稳晶振进行压控调整,通过锁相环使本地频标锁定到GPS时钟上。

影响误差分析其中主要影响是GPS引入误差。

又可分为以下几方面的误差:1.1与GPS卫星相关的误差1.1卫星星历误差卫星星历误差是指卫星星历给出的卫星空间位置和卫星实际位置间的偏差,由于卫星空间位置是由地面监控系统根据卫星测轨结果计算求得的,所以又称为卫星轨道误差。

铷原子频率标准宣贯

铷原子频率标准宣贯

8.计量器具控制
8.2 检定环境条件
环境温度:可处于18℃~25℃范围内任一点,检定过程中 温度最大允许变化范围±1℃。 环境相对湿度:≤80%。
供电电源:220 (1±10%)V,50(1±2%)Hz。 周围无影响检定正常工作的电磁干扰和机械振动。
9. 检定项目
10. 检定方法
10.1 外观及工作正常性检查 10.2 输出信号 (阻抗50Ω)
用频标比对器测量

10000s、1d频率稳定度
若技术说明书给出的稳定度按哈德玛方差进行评定,频标比对器
测量中存储的原始数据为相对平均频率偏差时 ,按下式计算频率稳定 度。
∑ σ H (τ ) =
1 6(N -
2)
N -2
( yi+2 (τ )
i =1
-
2 yi+1 (τ )
+
yi (τ )) 2
10. 检定方法
PN– 非谐波电平最大值,dBm;
P0-- 基波电平,dBm。 RBW=VBW=1kHz
10.4 开机特性的检定
分别在铷频标锁定一段时间T、1小时 、2小时 、4小时测量其 输出频率的频率准确度,以及给出达到铷频标给定的频率准确度 所经历的时间。
频差倍增测频法 时差法
10. 检定方法
10.4 开机特性的检定
频差倍增测频法
计数器测量频差倍增器 的输出频率F,计数器闸门 时间τ取100s, 连续测量3 次,取算术平均值按下式计 算相对平均频率 偏差。
f
被检铷频标
fr = f 0
参考频标
F
频差倍增器
外标
y(τ ) = f x − f0 = F − F0 = a ×10−n

铷检测标准-概述说明以及解释

铷检测标准-概述说明以及解释

铷检测标准-概述说明以及解释1.引言1.1 概述引言部分主要对整篇文章进行概括和介绍。

在本文中,我们将探讨铷检测标准的重要性、需求以及现有标准的不足。

通过对铷检测标准的制定必要性、制定原则以及建议内容的讨论,旨在为铷检测提供一个更加科学、准确和可靠的标准。

铷作为一种重要的化学元素,广泛应用于各个领域。

在工业生产中,铷在材料科学、电子工业、催化剂制备等方面扮演着重要的角色。

同时,铷的检测对于环境保护、食品安全以及医疗检测也具有重要意义。

然而,当前铷检测领域存在一些问题,如检测方法不统一、检测结果不准确等,这些问题制约着铷检测技术的发展和应用。

针对目前铷检测领域的问题,制定一套科学合理的铷检测标准显得尤为重要。

首先,铷检测标准的制定将有助于规范铷检测行为,提高检测的准确性和可靠性。

其次,铷检测标准的制定原则需要充分考虑不同领域的需求,尊重科学的客观性和严谨性。

最后,铷检测标准的建议内容应囊括各个环节,如样品采集、检测方法、结果评估等,以保证整个检测过程的科学可靠性和可操作性。

通过本文对铷检测标准的研究和讨论,希望能够为铷检测领域的专业人士和相关机构提供参考,推动铷检测标准的制定和应用。

只有建立科学合理的铷检测标准,才能更好地推动铷检测技术的发展,促进相关领域的研究和应用水平的提升。

1.2文章结构1.2 文章结构本文将按照以下结构进行叙述和讨论:第一部分为引言部分。

首先概述了本文的主题,即关于铷检测标准的讨论。

接着介绍了文章的结构,方便读者了解整个文章的布局和内容。

最后明确了本文的目的,即探讨铷检测标准的制定与需求。

第二部分为正文部分。

首先,详细阐述了铷的重要性,强调了其在某些领域中的广泛应用和意义。

然后,探讨了铷检测的需求,包括为什么需要开展铷检测以及相关行业的实际需求。

最后,分析了现有铷检测标准的不足之处,指出了其存在的问题和亟待解决的挑战。

第三部分为结论部分。

首先,阐述了制定铷检测标准的必要性,强调了规范和统一铷检测流程的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SYN3102型铷原子频率标准
产品概述
SYN3102型铷原子频率标准是我公司研发的一款高性能铷原子频率标准源,选用国外进口的高精度铷原子振荡器,提供精确的频率(量值)信号,能够为计量、通信、国防等部门提供高精度频率标准信号。

产品功能
1)提供一路标准的10MHz正弦信号;
产品特点Array
a)锁定快;
b)低相噪;
c)高可靠性;
d)可长期连续稳定工作。

典型应用
1)时频计量标准器具;
2)航空航天、飞行器跟踪与测控、通信、天文、气象;
3)同步广播、数字电视、单频网系统、同步采集系统。

技术指标。

相关文档
最新文档