江苏省无锡市惠山区钱桥中学2021届九年级上学期月考试数学试卷

合集下载

2021秋江苏省九年级数学上学期第9月月考试卷2套(含答案).docx

2021秋江苏省九年级数学上学期第9月月考试卷2套(含答案).docx

汰豕窟花环级徵修上辩第一次月考就原注意事项:1.本试卷考试时间为100分钟,试卷满分120分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0. 5毫米黑色墨水签字笔填写在试卷及答题卡上.一、填空题(共12小题,每小题2分,共24分)1.已知方程x2-3x+m = 0的一个根是1,则0的值是2.已知为,X2是方程X2 -2x-4 =。

的两个根,则x, +x2-x l x2=k..3.已知一元二次方程/ 一8x + 12 = 0的两个根恰好是等腰的两条边长,则的周长为4.若关于x的一元二次方程ax2 +x-l =。

有实数根,则a的取值范围是▲.5.若正实数a、力满足(4。

+ 4》)(4“ + 48 — 2)— 8 = 0,贝Ja + &= A.第7题第8题6.将量角器按如图所示的方式放置在三角形纸片上,使点。

落在半圆上,若点/、W处的读数分别为86°、30°,则必的大小为A.7.如图,A. B、。

为。

上三点,且ZABO=70° ,贝以?O的度数为些.8.如图,在。

中,半径宽垂直于弦垂足为G 独13, /步24,则必A.9.如图,在。

的内接四边形ABCD^, AB=AD, /时=140°.若点E在AB上,则Z^A° -15. 已知。

1=4如 以。

为圆心,r 为半径作。

,若使点/在。

内,则r 的值可以是(▲)17. 设是方程,r+A -2017 = 0的两个实数根,则a 2+2a + b 的值为(▲) B18. 如图,平行四边形,列的顶点K 、B 、〃在。

上,顶点。

在。

的直 径BE 上,连接曲,/步36° ,则/ADC 的度数是(▲)10.的半径为5cm,靠AB 〃 CD,且』步8s, CM cm,则如与之间的距离为人.11.对于实数a, b,定义运算“*”:。

*力=2a -ab(a >b),4*2 = 42-4x2 = 8.若xi,丞是一元二次方程x 2-2x-3 = 0的两个根,则12. 如图,AB 、是半径为5的GW 的两条弦,AB=8, CD=6,洌是直径,ABLMN 于点 oa 枷于点F, P 为EF 上的任意一点,则四+花的最小值为A. 二、选择题(共8小题,每小题3分,共24分). 13. 下列方程中是一元二次方程的是(▲) A. — + %2 =1 B. 2x + 1 = 0C. y 2+ y = 1 D. x 2 +1 = 0x14. 用配方法解一元二次方程.r-6x + 4 = 0,下列变形正确的是(▲) A. (x — 3)2=13B. (x-3)2 =5C. (x — 6)2=13D. (x-6)2 =5A. 2cmB. 3cmC. 4cmD. 5cm 16.下列命题中,其中真命题的个数是 (▲)① 平面上三个点确定一个圆 ② 等弧所对的圆周角相等③平分弦的直径垂直于这条弦 ④方程r +3x + l = 0的两个实数根之积为1 A. 1 B. 2 C. 3D. 4A. 2015B. 2016C. 2017D. 2018A. 54°B. 64°C. 72°D. 82°A第9题19.某城市2014年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2016 年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是(▲)A. 300(1+ x) = 363B. 300(1 +A)2 =363C. 300 + 300(1 + x) + 300(1 + %)2 = 363D. 300(1 + 2x) = 36320.已知半径为5的。

初中数学江苏省无锡市惠山区九年级上第一次月考数学考试题及答案

初中数学江苏省无锡市惠山区九年级上第一次月考数学考试题及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:方程x2+2x-4=0的两根为x1,x2,则x1+x2的值为()A.2 B.﹣2 C.4 D.﹣4试题2:已知在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为()A. B. C. D.试题3:在中,,如果把的各边的长都缩小为原来的,则的正切值()A.缩小为原来的B.扩大为原来的4倍C.缩小为原来的D.没有变化试题4:方程y2-y+=0的两根的情况是()A.没有实数根;B.有两个不相等的实数根C.有两个相等的实数根D.不能确定试题5:如图,DE是ΔABC的中位线,则ΔADE与ΔABC的面积之比是()A.1:1 B.1:2 C.1:3 D.1:4试题6:如图,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD·AB.其中能够单独判定△ABC∽△ACD的条件个数为 ( )A.1 B.2 C.3 D.4试题7:方程的左边配成一个完全平方式后,所得的方程为( )A. B. C.D.试题8:三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D.11或13 试题9:某商品连续两次降价,每次都降20﹪后的价格为元,则原价是()A. 元B. 1.2元C. 元D. 0.82元试题10:如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有()A.1个B.2个C.3个D.4个试题11:已知x=m是方程x2-2x-3=0的一个解,则代数式m2-2m的值为.试题12:如图,在△ABC中,DE∥BC,若,DE=4,则BC= .试题13:如图,在△ABC中,∠A =45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为.试题14:已知点P是线段AB的黄金分割点,AP>PB,如果AB=2,那么AP的长为.试题15:要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,若设参赛球队的个数是x,则列出方程为.试题16:如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是__ __米.试题17:.如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tan ∠ADN= .试题18:将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,则BF=_ __.试题19:1) (-)−1-+4cos30°−试题20:试题21:试题22:试题23:如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1).(1) 请在网格图形中画出平面直角坐标系;(2) 以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;(3) 写出△A′B′C′各顶点的坐标:A′____,B′____,C′ ___;试题24:如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?(参考数据:tan400=0.84, sin400=0.64, cos400=)试题25:如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点,(1)求证:AC2=AB•AD;(2)若AD=4,AB=6,求的值.试题26:已知关于x的一元二次方程的两个实数根分别为,.(1)求证:该一元二次方程总有两个实数根;(2)若,判断动点P(m,n)所形成的函数图象是否经过点A(4,5),并说明理由.试题27:小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?试题28:已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.试题29:如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;并说明四边形PQCB 面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(3)当t为何值时,△AEQ为等腰三角形?(直接写出结果)试题30:已知Rt△ABC中,AC=BC=2.一直角的顶点P在AB上滑动,直角的两边分别交线段AC,BC于E.F两点(1)如图1,当=且PE⊥AC时,求证:=;(2)如图2,当=1时(1)的结论是否仍然成立?为什么?(3)在(2)的条件下,将直角∠EPF绕点P旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF的周长等于2+时,请直接写出α的度数.试题1答案:B试题2答案:A试题3答案:D试题4答案:C试题5答案:D试题6答案:C试题7答案:B试题8答案:C试题9答案:A试题10答案: C试题11答案: 3试题12答案: 12试题13答案: 1+试题14答案:﹣1试题15答案:=28 试题16答案: 5.6试题17答案:试题18答案:或2试题19答案:—4+试题20答案:3+试题21答案:;试题22答案:3、-1;试题23答案:解:(1)1分;(2)2分;(3)A′(-2,0),B′(-4,2),C′(-6,-2)各1分;试题24答案:解:(1)在Rt△BCD中,,∴≈6.7;(3分)(2)在Rt△BCD中,BC=5,∴BD=5tan40°=4.2.(4分)过E作AB的垂线,垂足为F,在Rt△AFE中,AE=1.6,∠EAF=180°﹣120°=60°,AF==0.8(6分)∴FB=AF+AD+BD=0.8+2+4.20=7米.(7分)答:钢缆CD的长度为6.7米,灯的顶端E距离地面7米.(8分)试题25答案:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(3分)(2)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.(6分)试题26答案:解:(1)∵△=(m+6)2﹣4(3m+9)=m2+12m+36﹣12m﹣36=m2≥0,(2分)∴该一元二次方程总有两个实数根;(3分)(2)动点P(m,n)所形成的函数图象经过点A(4,5);(4分)理由:∵x1+x2=m+6,n=x1+x2﹣5,∴n=m+1,(5分)∵当m=4时,n=5,∴动点P(m,n)所形成的函数图象经过点A(4,5).(6分)试题27答案:解:(1)设返回时A,B两地间的路程为x米,由题意得:,(2分)解得x=1800.答:A、B两地间的路程为1800米;(4分)(2)设小明从A地到B地共锻炼了y分钟,由题意得:25×6+5×10+[10+(y﹣30)×1](y﹣30)=904,(6分)整理得y2﹣50y﹣104=0,解得y1=52,y2=﹣2(舍去).答:小明从A地到C地共锻炼52分钟.(8分)试题28答案:解:(1)B(1,3),(1分)(2)如图1,过点B作BD⊥AB,交x轴于点D,在Rt△ABC和Rt△ADB中,∵∠BAC=∠DAB,∴Rt△ABC∽Rt△ADB,∴D点为所求,又tan∠ADB=tan∠ABC=,∴CD=BC÷tan∠ADB=3÷,∴OD=OC+CD=1+=,∴D(,0);(4分)(3)这样的m存在.在Rt△ABC中,由勾股定理得AB=5,如图1,当PQ∥BD时,△APQ∽△ABD,则=,解得m=,(6分)如图2,当PQ⊥AD时,△APQ∽△ADB,则=,解得m=. (9分) 故存在m的值是或时,使得△APQ与△ADB相似.(10分)试题29答案:解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2分)(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA ∴y=×6×8﹣×(10﹣2t)•2t•=24﹣t(10﹣2t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(4分)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(6分)(3)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;(8分)②如果EA=EQ,那么(10﹣2t)×=t,解得t=;(10分)③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.(12分)试题30答案:解:(1)如图1,∵PE⊥AC,∴∠AEP=∠PEC=90°.又∵∠EPF=∠ACB=90°,∴四边形PECF为矩形,∴∠PFC=90°,∴∠PFB=90°,∴∠AEP=∠PFB.∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴∠FPB=∠B=45°,△AEP∽△PFB,∴PF=BF,=,∴==;(3分)(2)(1)的结论不成立,理由如下:连接PC,如图2.∵=1,∴点P是AB的中点.又∵∠ACB=90°,CA=CB,∴CP=AP=AB.∠ACP=∠BCP=∠ACB=45°,CP⊥AB,∴∠APE+∠CPE=90°.∵∠CPF+∠CPE=90°,∴∠APE=∠CPF.在△APE和△CPF中,,∴△APE≌△CPF,∴AE=CF,PE=PF.故(1)中的结论=不成立;(6分)(3)当△CEF的周长等于2+时,α的度数为75°或15°.提示:在(2)的条件下,可得AE=CF(已证),∴EC+CF=EC+AE=AC=2.∵EC+CF+EF=2+,∴EF=.设CF=x,则有CE=2﹣x,在Rt△CEF中,根据勾股定理可得x2+(2﹣x)2=()2,整理得:3x2﹣6x+2=0,解得:x1=,x2=.①若CF=,如图3,过点P作PH⊥BC于H,易得PH=HB=CH=1,FH=1﹣=,在Rt△PHF中,tan∠FPH==,∴∠FPH=30°,∴α=∠FPB=30+45°=75°;(9分)②若CF=,如图4,过点P作PG⊥AC于G,同理可得:∠APE=75°,∴α=∠FPB=180°﹣∠APE﹣∠EPF=15°.。

无锡市惠山区九校2021届九年级上学期期中考试数学试题(含答案)

无锡市惠山区九校2021届九年级上学期期中考试数学试题(含答案)

九年级数学期中试卷 2020.11注意事项:1. 本卷满分130分,考试时间为120分钟;2.试卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果. 3.请把试题的答案写在答卷上。

一、选择题(每题3分,共30分) 1.下列方程为一元二次方程的是( ▲ )A .x2-3=x(x +4)B .x2-1x =3 C .x2-10x =-5 D .4x +6xy =332.一元二次方程x2=x 的根是( ▲ ) A .x1=x2=0B .x1=0,x2=1C .x1=0,x2=﹣1D .x1=x2=13.若△ABC ∽ △A'B'C',∠A =30°,∠C =110°,则∠B' 的度数为 ( ▲ ) A .30° B .50° C .40° D .70°4.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为( ▲ ) A .20cm B .10cmC .8cmD .3.2cm第4题图 第6题图5.已知m ,n 是方程x2-2x -5=0的两个不同的实数根,则m+n 的值为( ▲ )A .﹣2B .2C .﹣5D .56.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ▲ ) A .2 B .3C .4D .57.以下命题:①经过三点一定可以作一个圆; ②优弧一定大于劣弧 ③相等的弦所对的弧也相等; ④三角形的外心到三角形三个顶点的距离相等;其中正确的个数是( ▲ ) A .4 B .3 C .2 D .18.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ▲ ) A .1185x2=580 B .1185(1﹣x2)=580 C . 1185(1﹣x )2=580D .580(1+x )2=11859.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为( ▲ ) A .2 B .5 C .3 D .6第9题图第10题图10.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,点D是BC上的一点,BD=1,点P是AC 上的一个动点,连接DP,将线段DP绕点D顺时针旋转90°得到线段BQ,连接BQ,则线段BQ 长的最小值是( ▲)A.1 B.2 C.355D.5二、填空题(每空2分,共16分)11.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为▲千米.12.若圆O的半径是5,圆心的坐标是(0,0),点P的坐标是(-4,3),则点P与⊙O的位置关系是:点P在⊙O ▲.13.已知32=yx,则yxyx+-=▲.14.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为▲.第14题图第15题图第16题图15.在平行四边形ABCD中,E为靠近点D的AD的三等分点,连结BE,交AC于点F,AC=12,则AF为▲.16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是▲.17.如图,在矩形ABCD中,AB=5,AD=8,点E是AB边上的一个动点,点M是CE的中点,将线段EM绕点E逆时针旋转90°得到线段EF,连接DE、DF.当DF⊥EF时,AE的长为____▲___;第17题图 第18题图18.如图,在平行四边形ABCD 中,∠BAD=120°,E 为AB 中点,若AB=6,AD=2,点F 在射线BC 上且满足∠ADE=∠BAF ,则CF 的长为 ▲ . 三、解答题(本大题共10小题,共84分) 19.(本题满分8分)解方程:(1)2x2﹣5x+1=0 (2)(x+2)2=3x+6. 20.(本题满分8分)计算:(1)︒+︒+︒45tan 60cos 330sin 2 (2)2)31(45cos 221--+︒--21.(本题满分8分)如图,在△ABC 中,BC =6,sinA =,∠B =30°,求AC 和AB 的长.22.(本题满分7分) 已知关于x 的方程x2+ax+a ﹣1=0. (1)若方程有一个根为1,求a 的值及该方程的另一个根; (2)求证:不论a 取何实数,该方程都有实数根.23 .(本题满分7分).如图,AB 是⊙O 的直径,C 、D 为⊙O 上的点,且AD 平分∠CAB ,作DE ⊥AB 于点E . (1)求证:AC ∥OD ; (2)若OE =4,求AC 的长.24.(本题满分8分).MDFADEBCF在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.25. (本题满分8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?26.(本题满分8分)无锡市某校数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得正前方河流的左岸C处的俯角为α,无人机沿水平线AF方向继续飞行50米至B处,测得正前方河流右岸D处的俯角为30°.线段AM的长为无人机距地面的铅直高度,点M、C、D在同一条直线上.其中tanα=2,MC=50米.(1)求无人机的飞行高度AM;(结果保留根号)(2)求河流的宽度CD.(结果精确到1米,参考数据≈1.41,≈1.73)27.(本题满分10分)我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG 的面积为2,求FH的长.28.(本题满分12分)如图1和图2,在△ABC中,AB=AC,BC=8,3tan4C=.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接写出点K被扫描到的总时长.九年级数学期中试卷答案及评分标准 (2020.11) 一、选择题(每题3分) CBCAB DDCAD 二、填空题(每题2分)11. 26 12. 上 13. -15 14. 415. 245 16. 10 17. 1 18. 85三、解答题19. (1)12517517,x x +-== (2)12x =-,21x =(每小题4分,每个解得2分)20. (1) = 112+3+122⨯⨯………(3分) (2) 22-1-2+92⨯……(3分)=72 ………(4分); =8 …….(4分)21. AC=5……(3分); AB=4+33……(6分) 22.(1)解:(1)a =0,………………………………..(2分)方程的另一个根为﹣1.………………(4分)(2)∵a2﹣4(a ﹣1)=a2﹣4a+4=(a ﹣2)2≥0,∴无论a 为何值,此方程都有实数根.…….(7分)23.(1)证明:∵AD 平分∠CAB ,∴∠CAD =∠DAO .…..(1分) ∵OA =OD ,∴∠DAO =∠ADO ,…(2分) ∴∠CAD =∠ADO , ∴AC ∥OD .………….(3分)24. 解:(1)如图1,M 点就是所求作的点;(4分,结论不写不扣分)(2)如图2,点N 就是所求作的点。

初中数学江苏省无锡市惠山区九年级上期末数学考试卷含答案解析

初中数学江苏省无锡市惠山区九年级上期末数学考试卷含答案解析

xx学校xx 学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx 题评卷人得分(每空xx 分,共xx分)试题1:若=,则的值为()A. B. C.1 D.试题2:下列方程有实数根的是()A.x2+10=0 B.x2+x+1=0 C.x2﹣x﹣1=0 D.x2﹣x+1=0试题3:已知:在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A. B. C. D.试题4:小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分 B.84分 C.84.5分 D.86分试题5:某圆锥的母线长为6cm,其底面圆半径为3cm,则它的侧面积为()A.18πcm2 B.18cm2 C.36πcm2 D.36cm2试题6:已知:⊙O是△ABC的外接圆,∠OAB=40°,则∠ACB的大小为()A.20° B.50° C.20°或160° D.50°或130°试题7:将一副三角板按图叠放,则△AOB与△COD的面积之比为()A.1: B.1:3 C.1: D.1:2试题8:如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A.6个 B.8个 C.10个 D.12个试题9:如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A. B. C. D.试题10:如图,二次函数y=ax2+c的图象与一次函数y=kx+c的图象在第一象限的交点为A,点A的横坐标为1,则关于x的不等式ax2﹣kx<0的解集为()A.0<x<1 B.﹣1<x<0 C.x<0或x>1 D.x<﹣1或x>0试题11:方程2x2+4x﹣1=0的两根为x1,x2,则x1+x2= .试题12:若△ABC∽△ACD,AB=1,AD=4,则AC= .试题13:在等腰Rt△ABC中,AB=AC,则tanB= .试题14:如图,AB为⊙O的弦,AB=8,OA=5,OP⊥AB于P,则OP= .试题15:将二次函数y=x2﹣2x+3的图象先向上平移2个单位,再向右平移3个单位后,所得新抛物线的顶点坐标为.试题16:已知二次函数y=﹣x2+bx+c,当2<x<5时,y随x的增大而减小,则实数b的取值范围是.试题17:如图,扇形OMN与正方形ABCD,半径OM与边AB重合,弧MN的长等于AB的长,已知AB=2,扇形OMN沿着正方形ABCD逆时针滚动到点O首次与正方形的某顶点重合时停止,则点O经过的路径长.试题18:已知:等边△ABC的边长为2,点D为平面内一点,且BD=AD=2,则CD= .试题19:(﹣)2+|﹣2|﹣(﹣2)0;试题20:(x+2)2﹣2(x+2).试题21:解不等式:3(x+2)<5x;试题22:解方程:x2﹣2x﹣1=0.试题23:甲、乙两支仪仗队各10名队员的身高(单位:cm)如下表:甲队179 177 178 177 178 178 179 179 177 178乙队178 178 176 180 180 178 176 179 177 178(1)甲队队员的平均身高为cm,乙队队员的平均身高为cm;(2)请用你学过的统计知识判断哪支仪仗队的身高更为整齐呢?试题24:在一个不透明的口袋中,放有三个标号分别为1,2,3的质地、大小都相同的小球.任意摸出一个小球,记为x,再从剩余的球中任意摸出一个小球,又记为y,得到点(x,y).(1)用画树状图或列表等方法求出点(x,y)的所有可能情况;(2)求点(x,y)在二次函数y=ax2﹣4ax+c(a≠0)图象的对称轴上的概率.试题25:已知:如图,AB是⊙O的直径,AB=6,点C,D在⊙O上,且CD平分∠ACB,∠CAB=60°.(1)求BC及阴影部分的面积;(2)求CD的长.试题26:如图,铜亭广场装有智能路灯,路灯设备由灯柱AC与支架BD共同组成(点C处装有安全监控,点D处装有照明灯),灯柱AC为6米,支架BD为2米,支点B到A的距离为4米,AC与地面垂直,∠CBD=60°.某一时刻,太阳光与地面的夹角为45°,求此刻路灯设备在地面上的影长为多少?试题27:某公司销售一种进价为20 (元/个)的计算器,其销售量y (万个)与销售价格x (元/个)之间为一次函数关系,其变化如下表:价格x (元/个)…30 50 …销售量y (万个)… 5 3 …同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额﹣总进价﹣其他开支)试题28:如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN的包装盒,设AE=x (cm).(1)求线段GF的长;(用含x的代数式表示)(2)当x为何值时,矩形GHPF的面积S (cm2)最大?最大面积为多少?(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.试题29:如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q的纵坐标;(用含m的代数式表示)②若点P是⊙A上一动点,求PQ的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.试题30:如图,在平面直角坐标系中,O是坐标原点,二次函数y=x2+c的图象抛物线交x轴于点A,B(点A在点B的左侧),与y 轴交于点C(0,﹣3).(1)求∠ABC的度数;(2)若点D是第四象限内抛物线上一点,△ADC的面积为,求点D的坐标;(3)若将△OBC绕平面内某一点顺时针旋转60°得到△O′B′C′,点O′,B′均落在此抛物线上,求此时O′的坐标.试题1答案:B【考点】比例的性质.【分析】根据等式的性质,可用x表示y,根据分式的性质,可得答案.【解答】解:由=,得y=x.===,故选:B.【点评】本题考查了比例的性质,利用等式的性质得出y=x是解题关键,又利用了分式的性质.试题2答案:C【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根,分别进行判断即可.【解答】解:A、因为方程x2+10=0,所以x2=﹣10,没有实数根,故本选项错误;B、△=1﹣4<0,方程没有实数根,故本选项错误;C、△=1+4>0,方程有实数根,故本选项正确;D、△=2﹣4<0,方程没有实数根,故本选项错误;故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.试题3答案:B【考点】互余两角三角函数的关系.【分析】根据一个角的正弦等于它余角的余弦,可得答案.【解答】解:在Rt△ABC中,∠C=90°得∠B+∠A=90°.由一个角的正弦等于它余角的余弦,得cosB=sinA=,故选:B.【点评】本题考查了互余两角三角函数的关系,利用一个角的正弦等于它余角的余弦是解题关键.试题4答案:D【考点】加权平均数.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选D【点评】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.试题5答案:A【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算.【解答】解:圆锥的侧面积=×2π×3×6=18π(cm2).故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.试题6答案:D【考点】圆周角定理.【专题】分类讨论.【分析】由OA=OB,可求得∠OBA=∠OAB=40°,继而求得∠AOB的度数,然后由圆周角定理,求得答案.【解答】解:∵OA=OB,∴∠OBA=∠OAB=40°,∴∠AOB=180°﹣∠OAB﹣∠OBA=100°,∴∠ACB=∠AOB=50°.当点C在点C′的位置时,∠AC′B=180°﹣50°=130°.故选D.【点评】本题考查的是圆周角定理,根据题意画出图形,利用数形结合求解是解答此题的关键.试题7答案:B【考点】相似三角形的判定与性质.【分析】结合图形可推出△AOB∽△COD,只要求出AB与CD的比就可知道它们的面积比,我们可以设BC为a,则AB=a,根据直角三角函数,可知DC=a,即可得△AOB与△COD的面积之比.【解答】解:∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放∴∠D=30°,∠A=45°,AB∥CD∴∠A=∠OCD,∠D=∠OBA∴△AOB∽△COD设BC=a∴CD= a∴S△AOB:S△COD=1:3故选B.【点评】本题主要考查相似三角形的判定及性质、直角三角形的性质等,本题关键在于找到相关的相似三角形.试题8答案:C【考点】正多边形和圆.【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【解答】解:如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,△ABC是直角三角形的个数有6+4=10个.故选:C.【点评】本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.试题9答案:D【考点】勾股定理;等腰三角形的判定与性质;矩形的性质;锐角三角函数的定义.【分析】首先根据以B为圆心BC为半径画弧交AD于点E,判断出BE=BC=5;然后根据勾股定理,求出AE的值是多少,进而求出DE的值是多少;再根据勾股定理,求出CE的值是多少,再根据BC=BE,BF⊥CE,判断出点F是CE的中点,据此求出CF、BF的值各是多少;最后根据角的正切的求法,求出tan∠FBC的值是多少即可.【解答】解:∵以B为圆心BC为半径画弧交AD于点E,∴BE=BC=5,∴AE=,∴DE=AD﹣AE=5﹣4=1,∴CE=,∵BC=BE,BF⊥CE,∴点F是CE的中点,∴CF=,∴BF==,∴tan∠FBC=,即tan∠FBC的值为.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰三角形的判定和性质的应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确一个角的正弦、余弦、正切的求法.(4)此题还考查了矩形的性质和应用,以及直角三角形的性质和应用,要熟练掌握.试题10答案:A【考点】二次函数与不等式(组).【分析】ax2﹣kx<0即二次函数的值大于一次函数的值,即二次函数的图象在一次函数的图象的上边,求自变量x的范围.【解答】解:ax2﹣kx<0即ax2+c<kx+c,即二次函数的值大于一次函数的值.则x的范围是:0<x<1.故选A.【点评】本题考查了二次函数与不等式的解集的关系,理解ax2﹣kx<0即二次函数的值大于一次函数的值时求自变量的取值是关键.试题11答案:﹣2 .【考点】根与系数的关系.【分析】直接根据根与系数的关系求解.【解答】解:由原方程知,方程的二次项系数a=2,一次项系数b=4,∴x1+x2=﹣=﹣2.故答案为:﹣2.【点评】本题主要考查了根与系数的关系的知识,解答本题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=,x1•x2=.试题12答案:2 .【考点】相似三角形的性质.【分析】由△ABC∽△ACD,根据相似三角形的对应边成比例,可得AB:AC=AC:AD,结合已知条件即可求得AC的长.【解答】解:∵△ABC∽△ACD,∴AB:AC=AC:AD,∵AB=1,AD=4,∴1:AC=AC:4,∴AC=2.故答案为2.【点评】此题考查了相似三角形对应边的比相等的性质.难度不大,也考查了相似比的定义.试题13答案:1 .【考点】特殊角的三角函数值.【分析】根据等腰直角三角形的性质,可得∠B,根据特殊角三角函数值,可得答案.【解答】解:由等腰Rt△ABC中,AB=AC,得∠B=45°.tanB=tan45°=1,故答案为:1.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.试题14答案:3 .【考点】垂径定理;勾股定理.【分析】根据垂径定理求出AP=AB,根据勾股定理求出OP即可.【解答】解:∵OP⊥AB,OP过O,∴∠OPA=90°,AP=AB,∵AB=8,∴AP=4,由勾股定理得:OP===3,故答案为:3.【点评】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出AP是解此题的关键,垂直于弦的直径平分这条弦.试题15答案:(4,4).【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律解答.【解答】解:二次函数y=x2﹣2x+3=(x﹣1)2+2的图象的顶点坐标是(1,2),则先向上平移2个单位,再向右平移3个单位后的函数图象的顶点坐标是(4,4).故答案是:(4,4).【点评】考查了抛物线平移问题,实际上就是两条抛物线顶点之间的问题,找到了顶点的变化就知道了抛物线的变化.试题16答案:b≤4 .【考点】二次函数的性质.【分析】先利用二次函数的性质求出抛物线的对称轴为直线x=b,则当x>b时,y的值随x值的增大而减小,由于x>1时,y的值随x值的增大而减小,于是得到b≤1.【解答】解:抛物线的对称轴为直线x=﹣=b,因为a=﹣1<0,所以抛物线开口向下,所以当x>b时,y的值随x值的增大而减小,而2<x<5时,y随x的增大而减小,所以b≤2.所以b≤4.故答案为b≤4.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x﹣时,y取得最大值,即顶点是抛物线的最高点.试题17答案:2+4π.【考点】轨迹;弧长的计算.【分析】首先求得扇形绕B旋转时O的路径长,然后求得弧MN与BC重合时O经过的路径长,再求得扇形绕C旋转时O的路径长,然后求和即可.【解答】解:当扇形绕B旋转时,路径长是=2π,当弧NM在BC上时,O经过的路径长是2;当扇形绕C旋转时,路径长是=2π;则点O经过的路径长2+2π+2π=2+4π.故答案是:2+4π.【点评】本题考查了图形的旋转和弧长的计算公式,理解O经过的路径是本题的关键.试题18答案:2或4 .【考点】三角形的外接圆与外心.【专题】分类讨论.【分析】①根据等腰三角形的性质,可得DE的长,根据正弦函数,可得∠CAD的度数,根据等边三角形,可得CD的长;②根据等腰三角形的性质,可得DE的长,根据正弦函数,可得∠EAD的度数,根据角的和差,可得A、C、D在同一条直线上,根据线段的和差,可得答案.【解答】解:如图1:由BD=AD=2,得AD=AB=AC=2.由等腰三角形的性质,得DE=.sin∠DAE=,∠DAE=60°,△ACD是等边三角形,CD=AC=2;如图2:,由BD=AD=2,得AD=AB=AC=2.由等边三角形的性质,得DE=,∠DAE=∠BAE.sin∠DAE=,∠DAE=∠BAE=60°,AD与AC在同一条直线上,CD=AC=2;CD=AD+AC=2+2=4.故答案为:2或4.【点评】本题考查了三角形的外心,利用等腰三角形的性质得出DE=,∠DAE=∠BAE是解题关键.试题19答案:(﹣)2+|﹣2|﹣(﹣2)0=3+2﹣1=4.试题20答案:(x+2)2﹣2(x+2)=x2+4x+4﹣2x﹣4=x2+2x.试题21答案:3x+6<5x,∴不等式的解集为x>3;试题22答案:这里a=1,b=﹣2,c=﹣1,△=(﹣2)2﹣4×1×(﹣1)=8>0,∴x=,∴x1=1+,x2=1﹣.试题23答案:【考点】方差;加权平均数.【分析】(1)根据平均数的计算公式进行计算即可;(2)根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.【解答】解:(1)甲队的平均身高是:(179×3+177×3+178×4)÷10=178(cm);乙队的平均身高是:(179+178×4+180×2+176×2+177)÷10=178(cm);故答案为:178,178;(2)甲仪仗队更为整齐,理由如下:S甲2=×[3(177﹣178)2+4(178﹣178)2+3(179﹣178)2]=0.6;S乙2=×[2(176﹣178)2+(177﹣178)2+4(178﹣178)2+(179﹣178)2+2(180﹣178)2]=1.8;∵0.6<1.8,∴甲仪仗队更为整齐.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.试题24答案:【考点】列表法与树状图法;二次函数的性质.【专题】计算题.【分析】(1)利用树状图展示所有6种等可能的情况;(2)先利用二次函数的性质求出抛物线的对称轴方程,再在上述6种可能的结果数中找出点落在对称轴上的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有6种等可能的情况,分别为(1,2),(1,3),(2,1),(2,3),(3,1),(3,2);(2)抛物线的对称轴为直线x=﹣=2,共有6种等可能的情况,其中点在对称轴上的情况有2种,分别为(2,1),(2,3),∴P(点(x,y)在对称轴上)==.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B 的结果数目m,求出概率.也考查了二次函数的性质.试题25答案:【考点】圆周角定理;扇形面积的计算;解直角三角形.【分析】(1)根据圆周角定理得出∠ACB=90°,再由锐角三角函数的定义求出BC的长,连接OC,过点C作CE⊥x轴于点E,则可得出CE的长,由阴影部分的面积=S扇形OBC﹣S△OBC即可得出结论;(2)连接AD,由角平分线的定义求出∠ACD的度数,过点A作AF⊥CD于点F,由锐角三角函数的定义求出AF,CF及DF 的长,根据CD=CF+FD即可得出结论.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°.在Rt△ACB中,∵∠CAB=60°,AB=6,∴BC=AB•sin∠CAB=6×=3,∠CBA=30°,如图1,连接OC,过点C作CE⊥x轴于点E,在Rt△BCE中,CE=BCsin∠CBA=3×=,阴影部分的面积=S扇形OBC﹣S△OBC=×π×9﹣××3=3π﹣;(2)连接AD,∴∠ADC=∠ABC=30°,在△CAD中,AC=3,∠ACD=45°,过点A作AF⊥CD于点F,在Rt△AFC中,AF=CF=,在Rt△AFD中,∵DF=AF=,∴CD=CF+FD=+.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.试题26答案:【考点】解直角三角形的应用.【分析】过点D作光线的平行线,交地面于点G,交射线AC于点F,过点D作DE⊥AF于点E,在Rt△DBE中,根据BE=BD •sin30°和DE=BD•cos30°求出BE和DE,在Rt△FED中,根据∠AGF=45°,求出EF=ED,再根据AF=AB+BE+EF,求出AF,然后与AC进行比较,即可得出路灯设备在地面上的影长.【解答】解:如图,过点D作光线的平行线,交地面于点G,交射线AC于点F,过点D作DE⊥AF于点E,在Rt△DBE中,∴∠BDE=30°,∵BD=2,∴BE=BD•sin30°=1,DE=BD•cos30°=,在Rt△FED中,∵∠AGF=45°,∴∠EDF=45°,∴EF=ED=,∵AB=4,∴AF=AB+BE+EF=4+1+=5+.∵5+>6,∴此时的影长为AG.在Rt△AFG中,AG=AF=5+.答:此刻路灯设备在地面上的影长为(5+)米.【点评】此题考查了解直角三角形,用到的知识点是锐角三角函数、三角形内角和定理,关键是根据题意画出图形,构造直角三角形.试题27答案:【考点】一元二次方程的应用;一次函数的应用.【分析】设y与x的解析式为:y=ax+b,将表格中的数代入解析式,求出a、b的值,求出解析式,然后表示出利润,根据利润为40万元,求出销售价格.【解答】解:设y与x的解析式为:y=ax+b,则,解得:,∴y=﹣0.1x+8,根据题意,得:(x﹣20)(﹣0.1x+8)﹣40=40,∴x1=40,x2=60,∵尽可能让顾客得到实惠,∴价格应定为40元.答:价格应定为40元.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.试题28答案:【考点】四边形综合题.【分析】(1)AE=BF=x,据此即可利用x表示出等腰直角△EFG的斜边EF的长,然后利用三角函数求得GF的长;(2)首先利用矩形的面积公式表示出面积S,然后利用二次函数的性质即可求解;(3)首先求得与正方形各边相切的线段的长度,然后判断高小于或等于10cm即可判断,然后根据NG的长不小于30cm,高不小于10cm即可列不等式求得x的范围.【解答】解:(1)∵AE=BF=x,∴EF=AB﹣AE﹣BF=60﹣2x.∴在Rt△GEF中,GF=EF=×(60﹣2x)=30﹣x;(2)∵NG=AE=x,即GH=NG=x,∴S=x (30﹣x)=﹣2x2+60x=﹣2(x﹣15)2+450;∵﹣2<0,∴当x=15时,S最大=450;(3)能放下.理由是:当圆柱形工艺品与GHMN相切时,x=15,此时,30﹣x=30﹣15×=30﹣30>10,故一定能放下.根据题意得:解得:15≤x≤30﹣5.【点评】本题考查了图形的折叠以及等腰直角三角形的性质,本题中利用x表示出三角形的面积是本题的关键.试题29答案:【考点】圆的综合题.【分析】(1)①根据正切的概念求出BC=10,OC=8,运用待定系数法求出直线BC的解析式,根据函数图象上点的坐标特征解得即可;②作OQ⊥AB交⊙A于P,则此时PQ最小,根据三角形面积公式计算即可;(2)①根据切线的性质和相似三角形的性质计算即可;②结合图形、运用直线与圆的位置关系定理解答.【解答】解:(1)①∵点B的坐标为(6,0),tan∠OCB=,∴BC=10,OC=8,设直线BC的解析式为y=kx+b,,解得,∵点Q的横坐标为m,∴点Q的纵坐标为﹣m+8;②如图1,作OQ⊥AB交⊙A于P,则此时PQ最小,×AB×OQ=×BO×CO,解得,OQ=4.8,∴PQ最小=OQ最小﹣1=3.8;(2)①如图2,⊙A与直线BC相切于H,则AH⊥BC,又∠BOC=90°,∴△BHA∽△BOC,∴=,即=,解得,BA=,则OA=6﹣=,∴t=时,⊙A与直线BC相切;②由(2)①得,t=时,⊙A与直线BC相切,当t=5时,⊙A经过点B,当t=7时,⊙A经过点B,当t=15时,⊙A经过点C,故<t≤5或7≤t≤15时,⊙A与线段BC有两个公共点.【点评】本题考查的是直线与圆的位置关系、待定系数法求一次函数的解析式以及最短距离的确定,灵活运用相关定理和数形结合思想是解题的关键.试题30答案:【考点】二次函数综合题.【专题】压轴题.【分析】(1)通过求函数解析式,求出相应线段的长度,观察AC=2OA,进而求出∠ABC度数;(2)通过观察三角形ADC面积与三角形AOC面积相等,可以判断直线OD∥AC,求出直线与抛物线交点即为点D;(3)利用抛物线解析式设出O′,通过旋转60°,求出点B′的坐标,将点B′代入抛物线解析式即可求出.【解答】解:(1)由题意与y轴交于点C(0,﹣3),∴得解析式为y=x2﹣3,令y=0,x=±,∴B(,0),A(﹣,0),∴OA=,OC=3,AC=2,∴∠OCA=30°,∴∠ABC=60°;(2)由(1)得:OA=,OC=3,∴S△OAC=×3×=,过原点与AC平行的直线y=﹣,直线与抛物线的交点即为点D,联立:,解得x1=,x2=(舍去),∴D (,).(3)设点O′(m,m2﹣3),∵顺时针旋转60°,则点B′(m+,m2﹣),∴(m+)﹣3=m2﹣,∴m=﹣,∴O′(﹣,﹣).【点评】题目考查二次函数综合应用,涉及二次函数解析式、三角形面积,一次函数解析式确定及旋转,题目整体较难,适合学生2016届中考压轴题的拔高训练.。

江苏省无锡市惠山区2021-2022学年九年级上学期期中考试数学试卷

江苏省无锡市惠山区2021-2022学年九年级上学期期中考试数学试卷

九年级数学期中试卷2021. 11
注意事项:1. 本卷满分150分,考试时间为120分钟;
2.试卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.
3.请把试题的答案写在答卷上,不要写在试卷上.
一、选择题:(本大题共有10小题,每题3分,共30分)
1.下列方程为一元二次方程的是()
A.x2-2=0 B.ax2-2x-3=0 C.x2+y=1 D.x2-1
x
-1=0
2.用配方法解一元二次方程x2+3=4x,下列配方正确的是()
A. (x+2)2=2 B. (x-2)2=7 C.(x+2)2=1 D. (x-2)2=1
3.若等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则等腰三角形的周长为()
A.9 B. 10 C. 12 D.9或12
4.若⊙P的半径为5,圆心P的坐标为(-3,4),则平面直角坐标系的原点O与⊙P的位置关系是( )
A.在⊙P内 B.在⊙P上 C.在⊙P外 D.无法确定
5.在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()
A.B.C.D.
6.某药品经过两次降价,由每盒72元调至56元,若设平均每次降低的百分率为x,根据题意,可得方程()
A.72(1﹣x)2=56 B.72(1﹣x2)=56
C.72(1﹣2x)=56 D.72(1+x)2=56
7.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30° B.50° C.60° D.70°
第7题第8题第10题
8.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5º,AB=4,则半径OB。

江苏无锡钱桥中学九年级上期质量监控测试数学考试卷(解析版)(初三)月考考试卷.doc

江苏无锡钱桥中学九年级上期质量监控测试数学考试卷(解析版)(初三)月考考试卷.doc

江苏无锡钱桥中学九年级上期质量监控测试数学考试卷(解析版)(初三)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列各组数中,成比例的是()A.-6,-8,3,4 B.-7,-5,14,5C.3,5,9,12 D.2,3,6,12【答案】A【解析】试题分析:四个数中其中两个数的积等于另外两个数的积,则这四个数成比例.考点:成比例【题文】tanA﹣=0()A.30° B.45° C.60° D.75°【答案】C【解析】试题分析:根据题意可得:tanA=,根据特殊角的三角函数可得:∠A=60°.考点:三角函数【题文】若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是 ( )A. k>-1B. k≥-1C. k<-1D. k≤-1【答案】C【解析】试题分析:当一元二次方程的根的判别式小于零时,则方程没有实数根.即4+4k0,解得:k-1. 考点:根的判别式【题文】小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m【答案】A【解析】试题分析:根据题意可得:,解得:x=2.2,则2.2-1.7=0.5m,即小刚举起的手臂超出头顶0.5m. 考点:比的性质【题文】随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.8【答案】C【解析】试题分析:根据增长率的一般公式可得出答案.考点:一元二次方程的应用【题文】设是方程的两个实数根,则a+b的值为()A.1 B.-1 C.-2009 D.2009 【答案】B【解析】试题分析:对于一元二次方程a+bx+c=0的两个根和,则+=,根据题意可得:a+b=-1. 考点:韦达定理【题文】如图,,则下列等式错误的是()A. B. C. D.【答案】D【解析】试题分析:根据平行线截线段成比例可得:,,.考点:平行线截线段成比例【题文】如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A. (―1,2)B. (―9,18)或(9,―18)C. (―9,18)D. (―1,2)或(1,―2)【答案】D【解析】试题分析:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),故选D.考点:1.位似变换;2.坐标与图形性质.【题文】如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.【答案】D【解析】试题分析:连接AC,则∠A=90°,AC=,AB=2,则tan∠ABC==.考点:解直角三角形【题文】如图,直线y=-x+k与y轴交于点A,与双曲线y=在第一象象交于B、C两点,且AB·AC=9,则k=()A. B. C.D.2【答案】D【解析】试题分析:分别作BE⊥y轴于E,CF⊥y轴于F,设B点与C点的横坐标为m、n,然后根据AB·AC=9求出k 的值.考点:反比例函数的性质【题文】如果=,那么的值为___________.【答案】【解析】试题分析:根据题意可得:5x=3x+3y,则2x=3y,即.考点:比的性质【题文】关于x的一元二次方程x2+3x-a=0的一个根是2,则a为___.【答案】10【解析】试题分析:将x=2代入可得:4+6-a=0,解得:a=10.考点:方程的解【题文】若两个相似三角形的周长比是4:9,则对应中线的比是【答案】4:9【解析】试题分析:对应中线的比值等于相似三角形的相似比.考点:相似三角形的性质【题文】在Rt△ABC中,∠C=90°,a=5,b=5,则∠A=___________.【答案】30°【解析】试题分析:根据题意可得:tanA=,则∠A=30°.考点:三角形函数【题文】关于x的一元二次方程x2﹣mx﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.【答案】9【解析】试题分析:根据韦达定理可得:,=-1.则=7-2×(-1)=9. 考点:韦达定理【题文】如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比=___________.【答案】1:4【解析】试题分析:根据S△DOE:S△COA=1:25可得:DE:AC=1:5,则BE:BC=1:4,即BE:CE=1:4,△BDE和△CDE 是登高三角形,则S△BDE:S△CDE=BE:EC=1:4.考点:相似三角形的应用【题文】如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.【答案】(1,0)或(-5,-2)【解析】试题分析:本题中对这个药进行分两种情况讨论,若A、E是一对对应点,B、F是另一对对应点直线AE与BF交于M,过M作MP⊥x轴∵ME:MA=EF:AB=1:2∴ME:EA=1∵MN:AB=EP:EB=ME:EA=1∴MN=AB=2,EN=EB=4∴OP=5∴M点的坐标是(-5,-2)若A、G是一对对应点,O、B是另一对对应点 M点的坐标是(1,0)考点:位似图形.【题文】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 _______【答案】().【解析】试题分析:根据题意得出前面几个点的坐标,然后得出一般性的规律.考点:规律题【题文】计算(1)计算:2cos45°-(2)解方程:=2x+4【答案】(1)-7;(2)=-2,=0.【解析】试题分析:(1)、分别求出各式的值,然后进行加减法计算;(2)、首先进行移项,然后利用提取公因式进行解方程.试题解析:(1)、原式=-4+(-4)+1=-7(2)、-2(x+2)=0 (x+2)(x+2-2)=0解得:=-2 =0考点:(1)、实数的计算;(2)、解一元二次方程.【题文】如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上(1)、在图中画出△ABC关于点O成中心对称的图形△A′B′C′;(2)、在(1)的作图过程中,点A,B,C分别绕点O旋转_________°,求点C在旋转过程中所走过的路径长.【答案】(1)、答案见解析;(2)、180°;π.【解析】试题分析:(1)、根据中心对称图形的画法画出图形;(2)、首先求出扇形的半径,然后根据弧长的计算公式进行求解.试题解析:(1)、如图所示,△A′B′C′为所求的三角形;(2)、根据题意得:点A,B,C分别绕点O旋转180°,由图形得:OC==,则点C在旋转过程中所走过的路径长考点:(1)、中心对称图形;(2)、弧长的计算公式.【题文】如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.【答案】【解析】试题分析:首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.试题解析:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==考点:解直角三角形【题文】如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【答案】(1)、证明过程见解析;(2)、3.【解析】试题分析:(1)、根据双垂直得出∠DBF=∠DAC,然后根据直角得出三角形相似;(2)、根据tan∠ABD=1,∠ADB=90°得出AD=BD,然后根据△ACD和△BFD相似得出BF=AC=3.试题解析:(1)、∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)、∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3考点:三角形相似的性质【题文】某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)1900.【解析】试题分析:(1)、首先设该地投入异地安置资金的年平均增长率为x,然后根据题意得出方程,从而得出x 的值;(2)、设今年该地有a户享受到优先搬迁租房奖励,根据题意列出不等式组,然l考点:(1)、一元二次方程的应用;(2)、不等式的应用【题文】如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.【答案】(1)、证明过程见解析;(2)、BC=10.【解析】试题分析:(1)、根据角平分和平行得出BD=DE,然后根据△ADE和△ABC相似得出所求的结果;(2)、根据面积得出线段的比值,然后根据三角形相似得出所求的线段.试题解析:(1)、∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠DEB=∠CBE∴∠ABE=∠DEB.∴BD=DE,∵DE∥BC,∴△ADE∽△ABC,∴∴,∴AE•BC=BD•AC;(2)、设△ABE中边AB上的高为h.∴,∵DE∥BC,∴.∴,∴BC=10.考点:(1)、三角形相似的应用;(2)、等腰三角形的判定.【题文】某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【答案】99m【解析】试题分析:根据题意得出∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,从而的得出△ABC∽△EDC ,△ABF∽△GFH,然后根据相似比得出AB的长度.试题解析:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=, =即=, =,解得:AB=99,答:“望月阁”的高AB的长度为99m.考点:相似三角形的应用【题文】如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)、求双曲线的解析式;(2)、求四边形ODBE的面积.【答案】(1)、y=;(2)、12.【解析】试题分析:(1)、作BM⊥x轴于M,作DN⊥x轴于N,根据点A和点B的坐标得出BC=OM=2,BM=OC=6,AM=3,根据DN∥BM得出△ADN∽△ABM,从而得出点D的坐标,然后求出反比例函数的解析式;(2)、根据四边形的面积等于梯形OABC的面积减去△OCE的面积再减去△OAD的面积得出答案.试题解析:(1)、作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)、S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.考点:(1)、反比例函数的性质;(2)、相似三角形的应用【题文】如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B 、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)试问:直线AC与直线AB是否垂直?请说明理由;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【答案】(1)、垂直;理由见解析;(2)、(﹣2,1);(3)、(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).【解析】试题分析:(1)、根据点A、B、C的坐标得出OA、OB和OC的长度,根据线段的比值以及∠AOC=∠BOA=90°得出△AOC和△BOA相似,然后得出∠BAC=90°,即垂直;(2)、首先根据待定系数法求出直线AC的解析式,根据中垂线的性质得出点D的纵坐标,然后求出横坐标;(3)、根据等腰三角形的性质进行分类讨论,求出点P的坐标.试题解析:(1)、∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(2)、设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),(3)点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).考点:(1)、一次函数的性质;(2)、三角形相似的性质与应用【题文】在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2)与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.(1)、求二次函数的解析式;(2)、点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M坐标;(3)、点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);①当点E在二次函数的图像上时,求OP的长;②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE 为直径的⊙M相切,直接写出此刻t的值.【答案】(1)、y=-+3x;(2)、M坐标为(1,0)或(3-2,0)或(3+2,0);(3)、①、;②、t=或t=.【解析】试题分析:(1)、可设二次函数的解析式为y=a+bx+c,利用二次函数的图象经过原点及点A(1,2),B(3,0),分别代入求出a,b,c的值即可;(2)、分M是AB的垂直平分线与x轴的交点;M在B点左边并且BM=AB;M在B点右边并且BM=AB;三种情况讨论可得点M坐标;(3)、①过A点作AH⊥x轴于H点,根据DP ∥AH,得出△OPD∽△OHA,进而求出OP的长;②分两种情况讨论,求出t的值即可.试题解析:(1)、设二次函数的解析式为y=a+bx+c,∵二次函数的图象经过原点及点A(1,2),B(3,0),∴,解得.故二次函数解析式为:y=-+3x;(2)、M是AB的垂直平分线与x轴的交点,点M坐标是(1,0);M在B点左边并且BM=AB,点M坐标是(3-2,0);M在B点右边并且BM=AB,点M坐标是(3+2,0);故点M坐标为(1,0)或(3-2,0)或(3+2,0);(3)、①由已知可得C(6,0)如图:过A点作AH⊥x轴于H点,∵DP∥AH,∴△OPD∽△OHA,∴,即,∴PD=2a,∵正方形PDEF,∴E(3a,2a),∵E(3a,2a)在二次函数y1=-x2+3x的图象上,∴a=;即OP=.②直线AC与以DE为直径的⊙M相切,此刻t的值为:t=或t=.考点:(1)、二次函数的应用;(2)、三角形相似;(3)、直线与圆的位置关系.。

无锡市查桥中学2021-2022学年九年级(上)月考数学试卷(12月份)

无锡市查桥中学2021-2022学年九年级(上)月考数学试卷(12月份)

2021-2022学年无锡市锡山区查桥中学九年级(上)月考数学试卷(12月份)一.选择题(共10小题,每小题3分,满分30分)1.(3分)tan45°的值等于()A.B.C.1D.2.(3分)下列函数中一定是二次函数的是()A.y=3x﹣1B.y=ax2+bx+c C.y=x2D.s=2t2﹣2t+13.(3分)如图,CD为⊙O的直径,弦AB⊥CD于E,OE=12,AB=10,那么直径CD的长为()A.12.5B.13C.25D.264.(3分)将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm的扇形,则该圆锥的底面半径是()A.1.8cm B.3.6cm C.4cm D.6cm5.(3分)两个相似三角形面积比是1:4,若小三角形的周长为8cm,则另一个三角形的周长是()A.32cm B.4cm C.16cm D.4或16cm6.(3分)如图,已知△ADE∽△ACB,若AB=10,AC=8,AD=4,则AE的长是()A.3.2B.4C.5D.207.(3分)如图,线段AB两个端点的坐标分别为A(2,2)、B(2.5,0.8),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标为()A.(3,1.6)B.(4,3.2)C.(4,4)D.(6,1.6)8.(3分)函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.9.(3分)如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1C.1D.110.(3分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.二.填空题。

(共8小题,每空3分,满分30分)11.(3分)A、B两地的距离AB=5km,在图上量得对应的距离A′B′=2cm,则图上距离与实际距离之比为.12.(3分)已知a=4,b=9,则这两个数a,b的比例中项为.13.(3分)若y=(m﹣2)是关于x的二次函数,则常数m的值为.14.(3分)已知一斜坡的坡角α=60°,那么该斜坡的坡度为.15.(3分)如果抛物线l经过点A(﹣2,0)和B(5,0),那么该抛物线的对称轴是直线.16.(3分)如图,若A,B,C,D都在格点处,AB与CD相交于O,则∠BOD的余弦值为.17.(6分)公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B、C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm.(1)点C到AB的距离为cm.(2)点A到地面的距离为cm.18.(6分)如图,在Rt△ABC中,∠ABC=90°,AB>BC,点D为边AC上一点,连接BD,将△ABD沿BD翻折得△BDE,连接CE,(1)若DE⊥AC,则∠BDC的度数为°;(2)若四边形BDEC是平行四边形,AC=4,则AB=.三.解答题。

2021年江苏省无锡市惠山区九年级一模数学试题

2021年江苏省无锡市惠山区九年级一模数学试题
A.方差B.众数C.中位数D.平均数
9.如图,在平面直角坐标系中,点A在第一象限,BA⊥y轴于点B,反比例函数y= (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为( )
A. B.1C.2D.3
10.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()
(1)当主持人询问艾热准备奇袭哪位歌手时,艾热透露“希望和男性嗓音去比试”,那周深被奇袭的概率是;
(2)7名主打歌手比赛的上场顺序是通过抽签方式进行,若已经知道前4位歌手的上场顺序,还有华晨宇、米希亚、周深不知道,那么华晨宇和周深两位是相邻出场的概率是多少.(请用“画树状图”或“列表”等方法写出分析过程)
15.如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=___________.
16.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=12,那么线段GE的长为_______.
17.如图,在△ABC中,CA=3,CB=4,AB= 5,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为________.
A.180°B.360°C.720°D.1080°
7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( ).
A.主视图的面积为4B.左视图的面积为4
C.俯视图的面积为3D.三种视图的面积都是4
8.某区新教师招聘中,九位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .
B .
C .
D .
江苏省无锡市惠山区钱桥中学2021届九年级上学期月考试数学试卷
一、精心选一选(每题3分,共30分)班级姓名. 1.下列方程是一元二次方程的是( ) A .x-2=0
B .x 2
-2x-3 C .xy+1=0 D .x 2
-1=0
2.若关于x 的一元二次方程02-k 2=+x x (k 为实数)的根的情况是( ) A .两个不相等的实数根 B .两个相等的实数根 C .没有实数根 D .无法确定
b a D a b C b a B b a A b a b
a 23.2
3.32.32.0,032.
3====≠≠=)
()下列变形错误的是(
4.用配方法解方程x 2
+2x-5=0时,原方程应变形为( ) A.(x+1)2
=6 B.(x+2)2
=9 C.(x-1)2
=6D.(x-2)2
=9
5.下列各组的四条线段成比例的是( )
A .2,3,2,3,
B .4,6,5,10
C .1,2,2,22
D .2,3,4,1
5.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC=BD=54cm ,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
7.下列四个三角形,与右图中的三角形相似的是 ()
8.如图,在△ABC 中,高AD 与中线CE 相交于点F ,AD =CE=6,FD=1,则AB 的值为( )
第6题
第8题
A .221
B .62
C .10
D .45
9.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,要想在2天之后涨回到原价,试估计平均每天的涨幅( )
A .一定为5%
B .在5%~6%之间
C .在4%~5%之间
D .3%~4%之间
10.如图,在正方形ABCD 中,E ,F 分别为BC ,CD 的中点,连接AE ,BF
交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长于点Q ,下列结论正确的有( )个 ①AE ⊥BF ;②QB=QF ;③3
4
=FG AG ;④S 四边形ECFG =2S △BGE . A .1
B .4
C .3
D .2
二、填空题(每空2分,共16分)
11. 当m=时,关于x 的方程5-)3(7
-m
2
=-x x m 是一元二次方程.
12.在比例尺为1:40000的地图上,若某条道路长为5cm ,则它的实际距离为km .
13.若关于x 的方程kx 2
-2x+1=0有两个不相等的实数根,则k 的取值
范围是. 14.一种药品经过两次降价,药价从原来每盒25元降至现在的16元,设平均每次降价的百分率为x,则所列方程是.
15.已知a,b 是一元二次方程x 2
+x -3=0的两个实数根,则a 2
-b+2020=. 16.实数a,b 满足b=322+-+-a a ,且关于x 的一元二次方程ax 2
+bx+c
=0(a 0)有一个根为1,则c =.
17.如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG =2,G D =1,DF =5,则
CE
BC
的值等于______. 18.如图,Rt △ABC 中,∠C=90°,放置边长分别为3,4,x 的三个正方形,则x 的值为_____. 19.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt △ABC 和等腰Rt △ADE ,其中∠ABC=
∠AED=90°,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①△CAM ∽△DEM ;②CD=2BE ;③MP •MD=MA •ME ;④2CB 2
=CP •CM .其中正确的是(请填上序号).
20.设△ABC 的面积1,如下图,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为.(用
≠第10题
第17题 第18题
第17题
第17题

n的代数式表示,其中n为正整数)
三、解答题:(共80分)
21.解方程:(每题4分,共24分)
(1)(x-1)2=0 (2)3(x-2)2=x(x-2);(3)x2-2x-6=0(配方法)
(4)2x2+1=2x (5)(x-2)2=2x+5 (6)计算:+(π+)0+|﹣2|
22.如图,□ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,
(1)求证:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求
OD
OB
的值.
第19题
第20题
23.(1)在正方形方格纸中,我们把顶点均在“格点”上的三角形称为“格点三角形”,如图△ABC是一个格点三角形,点A的坐标为(-2,2).
(1)点B的坐标为,△ABC的面积为;(2分)
(2)在所给的方格纸中,请你以原点O为位似中心,将△ABC缩小为原来的一半(仅用直尺);
(3)在(2)中,若P(a,b)为线段AC上的任一点,则缩小后点P的对应点P1的坐标为.
(2)按要求作图,不要求写作法,但要保留作图痕迹.
我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.
请运用上述性质,只用直尺(不带刻度)作图.
①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.
②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.
24.如图,一路灯AB与墙OP相距20米,当身高CD=1.6米的小亮在离墙17米的D处时,影长DG为1米;当小亮站在点F时,发现自己头顶的影子正好接触到墙的底部O处.
(1)求路灯AB的高度.
(2)请在图1中画出小亮EF的位置;并求出此时的影长.
(3)如果小亮继续往前走(如图2),在距离墙2米的N处停下,那么小亮MN在墙上的影子有多高?
25.如图1,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm,点D是BC上的一个定点.动点P从点C出发,以每秒2厘米的速度沿C-A-B方向运动,动点Q从D出发,以1cm/s的速度沿D→B方向运动.点P出发5s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当0≤t≤5时△BPQ的面积S(cm2)与点P的运动时间t(s)的函数图象.
(1)CD=,S=cm2;
(2)当点P在边AB上时,t为何值时,使得△BPQ与△ABC为相似?
(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时t的值.
26.国家限购以来,二手房和新楼盘的成交量迅速下降.据统计,宁波六区限购前某季度二手房和新楼盘成交量为9500套.限购后,同一季度二手房和新楼盘的成交量共4425套.其中二手房成交量比限购前减少55%,新楼盘成交量比限购前减少52%.
(1)问限购后二手房和新楼盘各成交多少套?
(2)在成交量下跌的同时,房价也大幅跳水.某楼盘限购前均价为12000元/m2,限购后,无人问津,房价进行调整,二次下调后均价为7680元/m2,求平均每次下调的百分率?总理表态:让房价回归合理价位.合理价位为房价是可支配收入的3~6倍,假设宁波平均每户家庭(三口之家)的年可支配收入为9万元,每户家庭的平均住房面积为80m2,问下调后的房价回到合理价位了吗?请说明理由.
27.如图,矩形ABCD中,AB=8cm,BC=6cm,点O为对角线的中点,点P从点A出发,沿折线AD-DO-OC,以每秒2厘米的速度向终点运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,点P运动的时间为t(秒).
(1)求点N落在BD上时t的值;
(2)当点O在正方形PQMN内部时,t的取值范围;
(3)当直线DN平分△BCD面积时求出t的值.。

相关文档
最新文档