玻尔理论的实验基础分解
玻尔原子理论

玻尔原子理论玻尔理论提出的前夜经典理论失足于原子尺度1911年卢瑟福建立原子核式结构模型,表明原子由原子核与电子组成,而电子就像一群孩子一样围着火堆跳着圆圈舞,这火堆正是原子核。
这一模型成功地解释了α粒子散射实验,但是一旦运用牛顿力学与经典电磁理论来仔细一下分析这一模型则会发现它与事实存在着很大的矛盾,是站不住脚的。
如果按照经典电磁理论来推导,电子在绕核运动的过程中必将不断地辐射电磁波,电子也将因此不断损失能量最终坠落到原子核上,这样一来原子就必将是一个不稳定的结构。
其次,辐射电磁波的频率应当等于电子绕核转动的频率,既然电子在损失能量的过程中就像坠落地球的陨石一样随着不断地靠近绕转频率做出连续性地变化,那么其辐射出的电磁波频率也应当是连续变化的。
然而事实上,原子的结构是稳定的,并不会出现电子坠落到原子核上的现象,这是难以想象的,否则它也不会得到原子的称号,因为“原子”(atom)一词的原意就是“不可分”,而且观察表明原子辐射总是辐射具有特定频率的分立的光波(线光谱),一般不会出现不断改变的连续谱。
经典理论在原子的尺度上受到了挑战,而且这并不是说当时没能出现某个天才人物,能够运用已有的经典理论建立一个适用于原子内部的模型,而是只要运用经典理论就不可能得到合理的理论,无论理论的建立者是怎样的天才。
打个不恰当的比喻,这看起来有点儿像阴沟里翻船,经典理论陷入原子的泥潭中难以抽身。
但不论怎样,现在亟须建立起一个不同于经典理论的新理论,来描述在原子尺度上发生的奇怪现象。
复杂的氢原子光谱且不谈古圣先贤们对于彩虹的研究和关于光谱的种种充满想象力的理论,在玻尔理论提出之前,至少是从牛顿开始,人们就已经积累了大量关于原子光谱的实验数据,尤其是在夫琅和费开拓性的发明了光柵之后。
但这些全都是经验性的,如果谈及理论即使是对原子光谱了解得再多的科学家也是一句话都说不出来,当时确实是出现了一些理论,像巴尔末公式、瑞兹公式,但这些理论都只是对数据做出了解释与预言,并未解释为什么会出现光谱,就像玻尔常常说的:瑞兹理论求出的那些谱线到底实际上是否存在是一个“离奇莫测”的问题。
1.4 玻尔理论

n 3.56
13
取整,被激发到
n n3
激发态。
1
氢原子可能辐射的波长是
hc 102.6nm EE hc 656.3nm EE hc 121.6nm EE
3 1 23 3 2 12 2 1
6562.8Å 4861.3Å 4340.5Å 4101.7Å
Hα
Hβ
Hγ
Hδ
H∞
图 氢原子光谱(Balmer系)
1 1 R( 2 2 ) 波数 nf ni
1
R 109677 .581 cm
1
Balmer公式与观测结果的惊人符合,引起了光谱学家的注 意。紧接着就有不少人对光谱线波长(数)的规律进行了 大量分析,发现,每一种原子都有它特有的一系列光谱项 T(n),而原子发出的光谱线的波数,总可以表成两个光谱 项之差:
T (m) T (n)
其中m, n是某些整数。 显然,光谱项的数目比光谱线的数目要少得多。
1913年,玻尔首先把量子论应用到原子结构的研究上,使物 质结构理论进入了一个新阶段。 二、 玻尔基本假设 1. 稳定态假设
核外电子在一系列圆形轨道上绕核运动。在轨道上运动时无辐射, 为电子的稳定态,或定态,能量为 E1 E 2 E 3
4. 能级图
eV 0
-0.30 -0.54 -0.85 -151 帕邢系 -3.39
2
E 136eV n
n
6 5 4 3 2
巴尔末系
Rhc E 2 n
n
或
-13.58
n
n 1
电离能
基态
E 赖曼系 n 1 激发态
n
1
E
E1 136eV
玻尔模型的原理与应用

玻尔模型的原理与应用1. 简介玻尔模型是量子力学的早期发展中的一个里程碑。
它由丹麦物理学家尼尔斯·玻尔在1913年提出,并被广泛应用于解释氢原子的光谱现象。
玻尔模型基于一些假设和简化,但为后来的量子力学奠定了基础。
本文将介绍玻尔模型的原理以及其应用。
2. 原理玻尔模型基于以下几个假设: - 假设1:电子只能在离散的能级上存在,而不能在能级之间连续跃迁。
- 假设2:电子的轨道是圆形的,并且只能绕原子核运动。
- 假设3:电子在不发射或吸收能量的情况下,其运动在较低能级上是稳定的,这被称为静止状态或基态。
- 假设4:当电子吸收或发射能量时,它会从一个能级跃迁到另一个能级。
根据这些假设,玻尔提出了以下经验法则: 1. 守恒法则:电子在不发射或吸收能量的情况下,处于较低能级上是稳定的。
2. 跃迁法则:当电子吸收或发射能量时,它会从一个能级跃迁到另一个能级,能级差的能量等于电子吸收或发射的能量。
3. 应用玻尔模型的应用主要集中在解释氢原子光谱的特征和推导出一些量子力学的结果。
以下是玻尔模型的一些应用:3.1 光谱解释玻尔模型成功解释了氢原子光谱的特征,特别是巴尔末系列、帕邢-Balmer系列、洪德系列等。
根据玻尔模型,当电子从高能级跃迁到低能级时,会发射光子,并产生特定的光谱线。
这些光谱线在实验中被观察到,并与理论预测相符。
3.2 能级计算玻尔模型还可以用于计算氢原子的能级。
根据模型的假设和经验法则,可以得出电子在各个能级上的能量和轨道半径的表达式。
这些表达式可以用于计算氢原子的能级,并与实验结果进行比较。
3.3 分子结构解释玻尔模型还可以用于解释分子结构中的一些现象。
例如,通过将氢原子的玻尔模型扩展到多个原子,可以推导出分子中原子之间的键长和键能等物理量。
3.4 教学工具虽然玻尔模型有其局限性,但它仍然是一种简化的量子力学描述方法,在教学中被广泛应用。
通过讲解玻尔模型,可以帮助学生理解能级、轨道和光谱等基本概念,并为进一步学习量子力学打下基础。
玻尔模型的原理和应用

玻尔模型的原理和应用1. 简介玻尔模型,又称为玻尔-索末菲模型,是位于量子力学早期阶段的一种模型。
它由丹麦物理学家尼尔斯·玻尔于1913年提出,用于解释氢原子的光谱线的产生机制。
玻尔模型成功地揭示了原子的稳定结构和能级的离散性质,并为后来量子力学的发展奠定了基础。
本文将介绍玻尔模型的原理及其在物理学和化学中的应用。
2. 玻尔模型的原理玻尔模型基于以下几个假设:1.电子只能在规定的轨道上运动,每个轨道对应一个特定的能级。
2.电子在轨道上运动时,不会辐射能量。
3.电子只有在跃迁到另一个较低能级的轨道上时,才会辐射出能量(光子),形成光谱线。
根据这些假设,玻尔推导得到了以下关于氢原子能级的公式:$$E = -\\frac{{2\\pi^2me^4Z^2}}{{h^2n^2}}$$其中,E为能级,m为电子质量,e为电子电荷,Z为原子核中质子数,h为普朗克常数,n为轨道的主量子数。
这个公式表明了能级与主量子数n的平方反比,能级越低,主量子数越小;能级越高,主量子数越大。
同时,这个公式也说明了能级的离散性质,即只有特定的能级值是允许的。
3. 玻尔模型的应用3.1 光谱线的解释玻尔模型的最初目的是解释氢原子光谱线的产生机制。
根据玻尔模型,当电子从一个较高的轨道跃迁到一个较低的轨道时,会释放出一个光子,其频率与能级差相关,从而形成光谱线。
通过对氢原子光谱线的研究,玻尔模型成功地解释了氢原子光谱线的频率和能级之间的关系。
3.2 原子结构的研究玻尔模型的成功启示了科学家们研究其他原子结构的思路。
通过将玻尔模型的原理推广到其他原子和离子系统中,科学家们能够预测和解释不同原子的能级结构和光谱线。
玻尔模型为我们理解原子的结构和性质提供了一个重要的基础。
3.3 量子力学的发展玻尔模型的提出对后来量子力学的发展产生了重要的影响。
玻尔模型的成功解释了氢原子光谱线和能级结构的实验现象,同时也暴露出了经典物理学的局限性。
14-2康普顿效应氢原子玻尔理论

三、康普顿散射实验
实验演示及实验结论:
I(相对强度) 0
45
90
在散射线中除有
( 0);
0
,还
,
0与 0 无关,但随散射角
增大而增大。
135
0
(散射波长)
四、光子说的解释
拓展:电子能谱
能量关系可表示:
hv EbEkEr
电子结合能 电子动能
原子的反冲能量 Er 21Mma*2
电子能谱是利用高能光子照射被测样品,测量由此
引根起据的激光发电源子的能量不分同布,的电一子种能谱谱学方又法分。为:
X射线光电子能谱(简称 XPS)
(X-Ray Photoelectron Spectrometer) 紫外光电子能谱(简称 UPS)
(Ultraviolet Photoelectron Spectrometer) 俄歇电子能谱(简称 AES)
(Auger Electron Spectrometer)
拓展:电子能谱
X射线光电子能谱(XPS) (X-Ray Photoelectron
Spectrometer)
在X射线作用下,各种轨道电子都有可能从原子中激发成为 光电子,由于各种原子、分子的轨道电子的结合能是一定的, 因此可用来测定固体表面的电子结构和表面组分的化学成分。
说明:
(1)氢原子的能量是一系 列分立的值——能级。
(2)由于 E 0 ,则 E 1
为把电子从第一玻尔轨道 移到无穷远处所需的能量 值,称为电离能。
自 氢原子能级图
由 态
n
E/eV
玻尔的氢原子理论

玻尔的氢原子理论
为此,J.汤姆孙在1904年提出了原子结构的枣糕式模型.该模型认 为,原子可以看作一个球体,原子的正电荷和质量均匀分布在球内, 电子则一颗一颗地镶嵌其中.1909年,J.汤姆孙的学生卢瑟福为了验证 原子结构的枣糕式模型,完成了著名的α粒子散射实验.实验发现α粒 子在轰击金箔时,绝大多数α粒子都穿透金箔,方向也几乎不变,但 是大约有1/8 000的α粒子会发生大角度偏转,即被反弹回来.这样的 实验结果是枣糕式模型根本无法解释的,因为如果说金箔中的金原子 都是枣糕式的结构,那么整个金箔上各点的性质应该近乎均匀,α粒 子轰击上去,要么全部透射过去,要么全部反弹回来,而不可能是一 些穿透过去,一些反弹回来.
玻尔的氢原子理论
二、 原子结构模型
1897年,J.汤姆孙发现了电子.在此之前,原 子被认为是物质结构的最小单元,是不可分的,可 是电子的发现却表明原子中包含带负电的电子.那 么,原子中必然还有带正电的部分,这就说明原子 是可分的,是有内部结构的.执着的科学家就会继 续追问:原子的内部结构是什么样的?简洁的里德 伯光谱公式是不是氢原子内部结构的外在表现?
玻尔的氢原子理论
三、 玻尔的三点基本假设
为了解决原子结构有核模型的稳定性和氢原子光谱的分 立性问题,玻尔提出以下三个假设:
(1)定态假设.原子中的电子绕着原子核做圆周运动, 但是只能沿着一系列特定的轨道运动,而不能够任意转动, 当电子在这些轨道运动时,不向外辐射电磁波,原子系统处 于稳定状态,具有一定的能量.不同的轨道,具有不同的能 量,按照从小到大的顺序记为E1、E2、E3等.
玻尔的氢原子理论
可是这个模型却遭到很多物理学家的质疑.因为按照当时的物 理理论(包括经典力学、经典电磁理论及热力学统计物理),这 样一个模型是根本不可能的,原因有以下两个:
高中物理玻尔理论教案

高中物理玻尔理论教案
学科:物理
年级:高中
课时:1
教学目标:
1.了解波尔理论的基本概念和内容;
2.掌握波尔理论中的原子结构和能级的基本原理;
3.能够运用波尔理论解释原子的光谱和能级跃迁;
4.培养学生分析问题和解决问题的能力。
教学重点:
1.波尔理论的基本概念和内容;
2.原子的光谱和能级的解释;
3.能级跃迁的原理。
教学难点:
1.能级跃迁的解释;
2.原子光谱的应用。
教学准备:
1.教材:《物理课本》;
2.多媒体教学设备。
教学过程:
一、导入(5分钟)
教师引入波尔理论的基本概念和历史背景,激发学生对波尔理论的兴趣。
二、讲解波尔理论(15分钟)
1.波尔理论的提出和基本内容;
2.原子结构的描述;
3.能级和量子数的概念。
三、应用波尔理论分析问题(15分钟)
1.波尔理论解释原子的光谱;
2.能级跃迁的过程;
3.量子数的物理意义。
四、课堂练习(10分钟)
学生进行波尔理论相关的练习,加深对波尔理论的理解和掌握。
五、总结与拓展(5分钟)
教师总结本节课的内容,提出问题,引导学生思考波尔理论的应用和拓展。
作业:完成相关习题;查阅资料,了解波尔理论的实验验证。
教学反思:
通过本节课的教学,学生可以了解波尔理论的基本概念和内容,掌握波尔理论的原子结构和能级的基本原理,培养学生分析问题和解决问题的能力。
同时,注重培养学生的实践能力和思考能力,促进学生对物理知识的理解和运用。
波尔的氢原子理论

2 卢瑟福的核式模型
卢瑟福1871年8月13日出生在 新西兰,1894年大学毕业,1895年 到 英 国 剑 桥 大 学 学 习 , 成 为 J.J. 汤 姆孙的研究生。1908年卢瑟福荣获 诺贝尔化学奖,同年在曼切斯特大 学任教,继续指导他的学生进行 粒子散射的实验研究。
卢瑟福的α粒子散射验证了核式模型。
19-1 波尔的氢原子理论
量子物理起源于对原子物理的研究,人们从高能粒子的 散射实验和原子光谱中获得原子内部信息。
3
4
一 玻尔理论的实验基础
1 汤姆逊葡萄干面包模型
1903年,汤姆孙提出原子结构模 型:原子里面带正电的部分均匀地 分布在整个原子球体中,而带负电 的电子镶嵌在带正电的球体之中。 带正电的球体与带负电的电子二者 电量相等,故原子不显电性。
5 6 普芳德(Pfund)系
区域 紫外 可见 可见 红外 红外
此后又发现碱金属也有类似的规律。
日期 1906年 1880年 1908年 1922年 1924年
3 里兹并合原理
~ T(m α) T(n β)
R
光谱项 : T(m) (m )2
R
T (n) (n )2 10
三 经典电磁理论遇到的困难
6
粒子散射
4 2
H
e
,
q 2e, 原子量为4,m 7500me
粒子束射向金箔:
-
(1) 多数 0
+
(2)少数 较大
1 / 8000被反射,
(3)极少数 ,反弹
大部分透过。
7
1911年,卢瑟福提出原子的 “有核结构模型”
原子的核式模型
原子由原子核和核外电子 构成,原子核带正电荷,占据 整个原子的极小一部分空间, 而电子带负电,绕着原子核转 动,如同行星绕太阳转动一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了解释光电效应,爱因斯坦在能量子假说的基础上提出 光子理论,提出了光量子假设。
爱因斯坦的光量子假设
光不仅在发射和吸收时以能量为h的微粒形式出现,而且在 空间传播时也是如此。也就是说,频率为 的光是由大量能量 为 =h 光子组成的粒子流,这些光子沿光的传播方向以光速
§2.1、玻尔理论的实验基础
卢瑟福原子核式结构模型的成就:对粒子的散射实验给出了 令人满意的解释,第一次正确地解决了原子内部的结构问题。
问题:对核外电子的运动情况还没有令人满意的说明。
1900年普朗克发表了著名的量子假说,但很少有人注意他的文 章,更不要说理解它了;连普朗克本人也不喜欢自己的“量子 ”,他与很多人一起想把量子说纳入经典轨道。可是,爱因斯 坦却认真对待这一革命性的观念,他在提出狭义相对论的同年 (1905年)明确地提出了光量子的概念。无独有偶,爱因斯坦的 论文同样不受名人的重视,甚至到了1913年,德国最著名的四 位物理学家(包括普朗克在内)在一封信中还把爱因斯坦的光量 子概念说成展‘迷失了方向” 。
c2 1.43102米开
维恩公式在短波部分与实验结 果吻合得很好,但长波却不行。
E(,T )
• 瑞利和琼斯用能量均分定理和 电磁理论得出瑞利—琼斯公式:
实验
瑞利-琼斯
E(,T ) 2 ckT 4
瑞利—琼斯公式在长波部分与实 验结果比较吻合。但在紫外区竟 算得单色辐出度为无穷大—所谓 的“紫外灾难”。
维恩理论值 T=1646k
1900年元旦,英国物理学家开耳文在一篇总结以往几百年来物 理学的文章中说:“在已经基本建成的科学大厦中,后辈物理 学家似乎只要做一些零碎的修补工作就行了;但是,在物理学 晴朗天空的远处还有两朵令人不安的乌云。”这两朵乌云,指 的是当时物理学无法解释的两个现象其中一个就是黑体辐射, 另一个是迈克尔逊—莫雷干涉实验(1887年) 。正是这两朵乌云 ,不久便掀起了物理学上一场深刻的革命:一个导致量子力学 的诞生,一个导致相对论的建立。
热辐射的电磁波能量对频率有一个分布,怎么去研究热辐射 的规律呢?
提出 “理想模型”的方法
黑体:对什么光都吸收而无反射 的物体,它是一种在自然界中并 不存在的完全理想的黑体。
黑体
• 维恩根据经典热力学得出一个半经验公式:维恩公式
E(,T )
c1
c2
e T
5
c1 3.701016焦耳米2 / 秒
使他决心“不惜一切代价 找到一个理论的解释”。 经过二个月的日夜奋斗, 普朗克在12月14日在德国 物理学会提出:电磁辐射 的能量交换只能是量子化 的。
E nh , n 1,2,3,L
E(,T )
实验
瑞利-琼斯
普朗克理论值
维恩理论值
T=1646k
由于这一概念同经典物理严重背离 ,因此在以后的十余年内,普朗克 很后悔当时提出“量子说”,并想 尽办法试图把它纳入经典范畴.
(3)光电流正比于光强的解释 光强正比于单位时间流过单位面积的光子数。光强越大,
光子数越多。 金属内电子吸收一个光子可以释放一个光电子。光强越大,
光电子越多,光电流越大。
(4)光电效应瞬时性的解释 电子吸收光子时间很短,只要光子频率大于截止频率,电子
反向遏止电压 | U0 | 与光强无关。 •当入射光频率 < 0 时,无论光强多大也无电子逸出金属表面。
③光电效应是瞬时的 从光开始照射到光电逸出所需时间<10-9s。
经典理论无法解释光电效应的实验结果。
经典认为,按照经典电磁理论,入射光的光强越大,光波 的电场强度的振幅也越大,作用在金属中电子上的力也就越大, 光电子逸出的能量也应该越大。也就是说,光电子的能量应该 随着光强度的增加而增大,不应该与入射光的频率有关,更不 应该有什么截止频率。
可是,当时年仅28岁的丹麦物理学家尼尔斯·玻尔,却创造性 地把量子概念用到了当时人们持怀疑的卢瑟福原子结构模型, 解释了近30年的光谱之谜。
一、实验基础之一—— 黑体辐射
分子(含有带电粒子)的热运动使物体辐射电磁波。这种与温 度有关的辐射称为热辐射。
物体辐射的能量等于在同一时间内所吸收的能量时,热辐射 过程达到热平衡,称为平衡热辐射。
Q Ek0 0 , h A 0 ,
h A ,
A h
0
不同金属具有不同的截止频率。
当入射光频率 > 0 时,电子才能逸出金属表面,产生光电效应。
(2) Ek0 , | U0 | 的解释
由 Ek0 e | U0 | h A 可知,
h A
U0
e
e
初动能及反向遏止电压与 成正比,而与光强无关。
二、实验基础之二—— 光电效应
光线经石英窗照在阴极上,便有 电子逸出----光电子。
阳 极
光电子在电场作用下形成光电流。
W 石英窗
A
K阴
极
当 K、A 间加反向电压,光电子要
克服电场力作功,当电压达到某一
值 U0 时,光电流恰为0。 U0称反
向遏止电压。
G V
此时光电子动能全转换成电势能
Ek max
1 2mv2Fra biblioteke| U0
|
遏止电压的大小反映光 电子初动能的大小。
光电效应实验规律
①.光电流与光强的关系 饱和光电流强度与入射光强度成正比。
阳A
W 石英 窗
K阴
②.截止频率0 ----红限
极
极
对于每种金属材料,都相应的有一确定
的截止频率0 。
•入射光频率 > 0 时,电子逸出金属表面;
G V
当 > 0 时, 光电子初动能 Ek0
c 运动。
爱因斯坦光电效应方程
在光电效应中金属中的电子吸收了光子的能量,一部分消
耗在电子逸出功A,另一部分变为光电子的动能 Ek0 。由能量
守恒可得出:
h
1 2
mvm
2
A
式中:A为电子逸出金属表面所需作的功,称为逸出功;
EK 0
1 2
mvm
2
为光电子的最大初动能。
光电效应的解释
(1)截止频率0 (红限)的解释
1900年10月19日,普朗克在德国物理学会会议上提出了一个 黑体辐射能量分布公式:
E(,T ) 2 2 h
c2 eh / kT 1
式中:k为玻尔兹曼常数,
h=6.626×10-34 J.s
称为普朗克常数。
这个公式是普朗克为了凑合实验数据而猜出来的。
发现:普朗克的黑体辐射 能量分布公式和实验结果 以惊人的精确性相符合。