拉普拉斯变换在一阶和二阶电路的瞬态分析
一阶电路的瞬态分析

(1)计算 t = 0+ 电路时,电容电压不变,因此
电容等效于一直流电压源,数值为 UC (0- ) 。
UC (0- )
UC (0- )
电路分析
(2)计算 t = 0+ 电路时,电感电流不变,因此
电感等效于一直流电流源,数值为 iL (0- ) 。
iL (0- )
iL (0- )
由原电路画出t=0时的等效电 路,得:
iL (0- ) =
US R1 + R3
= 1A,
uC (0- ) = iL (0- ) × R3 = 4V
当t=0 瞬间,闭合,由换路定则可知:
iL (0+ ) = iL (0- ) = 1 A, uC (0+ ) = uC (0- ) = 4V
t=0+时刻的等效电路如图b)所示,它是一个典型的直流电 阻电路,其中 uL (0+ ) = uC (0+ ) - R3iL (0+ ) = 0V
iC
(0+
)
=
-iL
(0-
)
=
-
US R1 + R2
,
UR2 (0+ )
= il (0- )R2
=US
R2 R1 + R2
U L (0+ ) = -U R2 + UC (0- ) = 0
电路分析
R1
R2
K
Us
C uc
iL L
等效电路如图
R1
uR2 R2
iC
uc(0 )
Us
uL iL(0 )
电路分析
+ uC
=
U
拉普拉斯变换在二阶电路求解的应用

拉普拉斯变换在二阶电路求解的应用林天军 5140309331 F1403014摘要:在含有两个独立动态元件的电路中, 单网络变量的电路方程是二阶微分方 程, 这样的电路称二阶电路。
用时域分析直接求解二阶微分方程时、费时、费力、 难度较大, 须建立电路方程, 求特解、通解以及用初始条件确定积分常数等[1]普拉斯变换, 将时域函数转化为复频域函数(s 数), 待确定响应后再用拉氏反变换得到时域响应即最后的解。
这种分析方法不用求特解, 通解及确定积分常数, 求解较为简单。
关键词:拉普拉斯变换,二阶电路,逆变换。
一、前言拉普拉斯变换法是研究线性非时变动态电路的基本工具。
他能将时域中的微分运算以及积分运算分别变换为复频域(s 域)中的乘法及除法,从而将时域中的积分,微分方程变换为复频域中的代数方程,而且在方程中自动计入电路的分析计算变的简单有效。
1.拉氏变换设时域函数()f t 在区间[0,∞)内的定积分为()0st f t e dt ∞--⎰而式中,其复 频率为s j σω=+。
若该积分在s 某一域内收敛,则由此积分确定的复频域函数可表示为0()()st F s f t e dt ∞--=⎰则复频域函数()F s 定义为时域函数()f t 的拉普拉斯变换—(简称拉氏变换),简记为()[()]F s f t ζ=,在拉普拉斯变换式中取积分下限为0-,可以计及t=0时的()f t 中包含的冲激函数,从而给计算含冲激电压或冲激电流的电路带来方便[2]。
2.拉普拉斯变换的基本性质(1)线性性质若11[()]()f t F s ξ=,22[()]()f t F s ξ=,则对任意常数1a 及2a (实数或虚数)有112211221122[()()][()][()]()()a f t a f t a f t a f t a F s a F s ξξξ+=+=+(2)微分性质若[()]()f t F s ξ=,则[()]()(0)d f t sF s f dtξ-=- (3)积分性质若[()]()f t F s ξ=,则01[()]()t f d F s s ξττ-=⎰ (4)时移性质若[()]()f t F s ξ=,则[()]()st f t e F s ξτ--=(5)频移性质若[()]()f t F s ξ=,则[()]()t e f t F s a αξ=-3.拉普拉斯逆变换复频域的象函数()F s ,与因子st e 相乘,构成一个s 的新函数()st F s e ,再从()j σ-∞到()j σ+∞对s 求定积分, 将积分值除以2j π,即得原函数()f t 。
(完整版)拉普拉斯变换在一阶和二阶电路的瞬态分析

拉普拉斯变换在一阶和二阶电路的瞬态分析
内容摘要:(1)一阶电路的解法:经典解法和拉普拉斯解法(2)二阶电路的拉普拉斯解法
通过这两个例子中的经典解法和拉普拉斯解法的对比来体现出拉普拉斯变换在解决复杂电路问题的快捷、省时、简便优越性!
关键词:拉普拉斯变换、一阶电路、二阶电路
引言:通常研究电路的稳态只要利用代数方程就行了,而研究电路的瞬态就需要借助于微分方程。
因为只有微分方程才能不仅表明状态而且能表明状态的变换即过程!在分析解决电路瞬态问题时每一个不同的电路瞬态就要建立一个微分方程,解决一些简单问题的微分方程对我们打学生来说相对比较容易一些,而对于一些复杂的高阶微分方程将是一个大难题!本文将通过对一阶电路和二阶电路的微分方程的分析来证明拉普拉斯变换在解决瞬态电路问题是优越性!
正文:随着计算机的飞速发展,系统分析和设计的方法发生了革命化的变革,原来用传统的模拟系统来进行的许多工作现在都可以用数学的方法来完成。
因此,数学电路、离散系统的分析方法就更显的重要了。
拉普拉斯变换一直是分析这类系统的有效方法。
下面用一个实例来证明其的优越性!
例一有一个电路如下图所示,其电源电动势为E=EmSinwt(Em、w都
是常数),电阻R 和电感L 都是常量,求电流i(t).
解法一——传统法
有电学知识知道,当电流变化时,L 上有感应电动势——L
(t →0)
Us R i +
-。
电路的拉普拉斯变换分析法

E s2 2
E s2 2
- sT
e2
E s2 2
- sT
1 e 2
半波正弦周期函数的拉普拉斯变换为
- sT
L
f t
E s2 2
1e 2 1- e-sT
E s2 2
1
- sT
1-e 2
7.2.4 频率平移特性
若 f (t) L
F (s)
则 L{ f (t)e-s0t } F (s - s0 )
( a)
=0
lim e-(s-a)t 0
t
( a)
a 称为收敛域
拉氏反变换 由F(s)到f(t)的变换称为拉普拉斯反变换,简称拉氏反变换
拉氏变换对
f (t) 1
j
F
(
s)e
st
ds
2j - j
F(s) L[ f (t)] 拉氏正变换 f (t) L-1[F(s)] 拉氏反变换
tf
tdt
f
0
可得
LAd
t
0
Ad
t e-st
dt
Ae0
A
对于单位冲激函数来说,可令上式 A=1,即得:
Ld t 1
书中表7 -1给出了一些常见函数的拉普拉斯变换
拉氏变换法的实质就是将微分方程经数学变换转变成代数 方程,然后进行代数运算,再将所得的结果变换回去。它 和应用对数计算数的乘除相类似。不同的只是在对数运算 中变换的对象是数,而在拉氏变换中变换的对象是函数。
dt
0- dt
L[ f '(t)] L[ df (t)] df (t) e-st dt
dt
0- dt
由上式应用分部积分法,有
L[df (t)] dt
第五章 一阶电路的瞬态分析-117页PPT资料

电感电压电流 iL(0),UL(0) , 电阻电压U R 2 (0 ) 。
解:开关闭合时的电容电压 U C ( 0 _ )
K
Us
R1
R2
C uc
iL L
与电感电流 i L ( 0 ) 为
U C(0)U SR 1R 2R 2, iL(0)R 1 U SR 2
由换路定则, U C ( 0 ) U C ( 0 ) ,iL ( 0 ) iL ( 0 )
i1
uC1 R1
5et
A
t 0
R=R2//R3=1.2Ω 2=RC2=2.4s uC 2(0+)=uC 2(0-)=3V
i2uR C21.5e2t.4 A t0
i2 R2 R3
+
C2
uC2
R1 i1
C1 +
u C1
Is
i2 R2 i
K R3
+
C2 uC2
i IS i1 i2 1 5 e t 1 .5 e 2 t.4At 0
第五章 一阶电路的瞬态分析
第一节 概述
电路结构,参数或电源的改变,称为换路。 电路从一种稳定状态转为另一种稳定状态,称为 过渡过程。
(1)对于纯电阻电路,电路中电压和电流的变
化是“立即”完成的。
K
R2
K闭合
I1
Us R1
,K打开 I 1 0
Us R1
R3
I1
(2)对于存在电容和电感的电路,电容元件的 电压(电荷)和电感元件的电流(磁链)变化一 般需要时间。(过渡过程时间)。
由初始条件UC(0)U0 得 k U 0 电容电压响应(变化规律): UC(t)U0et
拉普拉斯变换在电路分析中的应用)

目录
• 引言 • 拉普拉斯变换基本原理 • 电路元件拉普拉斯变换表示 • 线性时不变电路分析 • 非线性电路分析 • 复杂电路分析 • 总结与展望
01
引言
目的和背景
电路分析的重要性
电路分析是电气工程和电子工程领域 的基础,对于设计和分析各种电路系 统至关重要。
复杂电路的挑战
独立电流源的拉普拉斯变换表示为 $frac{I}{s}$,其中$I$为电源电流。 在拉普拉斯域中,独立电流源的阻 抗与频率成反比。
传输线元件
传输线
传输线的拉普拉斯变换表示为$frac{1}{sqrt{LC}s}$,其中$L$和$C$分别为传 输线的单位长度电感和电容。传输线的阻抗与频率的平方根成反比,随着频率 的增加而减小。
与傅里叶变换的关系
拉普拉斯变换可视为傅里叶变换的扩展,能够处理更广泛 的信号和系统,包括不稳定系统和具有初始条件的系统。
在电路分析中的应用
拉普拉斯变换在电路分析中的主要应用包括求解线性时不 变电路的响应、分析电路的稳定性和暂态行为,以及设计 滤波器、控制器等电路元件。
02
拉普拉斯变换基本原理
定义与性质
利用伏安特性曲线或负载线等方 法,通过图形直观分析非线性电 路的工作状态。
解析法
通过建立非线性电路的数学模型, 采用数值计算或符号计算等方法 求解电路方程,得到电路的响应。
仿真法
利用电路仿真软件对非线性电路 进行建模和仿真分析,可以得到 较为准确的电路响应和性能参数。
拉普拉斯变换在非线性电路中应用
逆拉普拉斯变换
定义
逆拉普拉斯变换是将复平面上的函数转换回时域的过程,它 是拉普拉斯变换的逆操作。通过逆拉普拉斯变换,可以得到 电路的时域响应。
二阶系统的瞬态响应分析

试验二二阶系统的瞬态响应分析一、试验目的1.把握二阶系统的传递函数形式并能够设计出相应的模拟电路;2. 了解参数变化对二阶系统动态性能的影响。
二、试验设施1.THBDC-1型掌握理论•计算机掌握技术试验平台;2.PC机一台(含“THBDC-1”软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。
三、试验内容1.观测二阶系统在1和。
>1三种状况下的单位阶跃响应曲线;2.调整二阶系统的开环增益K,使系统的阻尼比ζ =0.707,测量此时系统的超调量八调整时间4(A= ±0.05);3. ζ为定值时,观测系统在不同①〃时的阶跃响应曲线。
四、试验原理1.二阶系统的瞬态响应用二阶微分方程描述的系统称为二阶系统。
其微分方程的一般形式为dc~ (t) ex dc( t) 2 / ∖ 2 / ∖——J + 2电--L+ COΠc(t) = ωn r(t)dr dt上式经拉普拉斯变换整理得到二阶系统的传递函数的一般形式为∖C(S)ωnW(s) = --------- =- ------------ --------- -R( s) s2+ 2ζωn s + ωtl^从式中可以看出,。
和①〃是打算二阶系统动态特性的两个特别重要的参数。
其中,ζ称为阻尼比;①〃称为无阻尼自然振荡频率。
由二阶系统传递函数的一般形式可知,二阶系统闭环特征方程为s2+ 2ζωll s + ωtj2 - 0解得闭环特征方程的根%2 =-疑〃±6。
〃犷二当阻尼比7不同范围内取值时,特征方程的根也不同,下面针对。
的三种不同取值范围进行争论。
1)Q<ζ<l(欠阻尼)系统特征根为一对具有负实部的共挽复根,即4,2 =S[±jsN'-L,系统的单位阶跃响应的时域表达式为1C(t) = ↑ - -7 -------- :e" sin(0J d t + β)√l-c2其阶跃响应曲线呈衰减震荡过程,如图2・1 (a)所示。
第六章 二阶电路的瞬态分析

S1 268, S2 3732
U C (t ) A1e
A2 e ,
S1U C (0 ) A2 0.77 S2 S1
s2t
S2 A1 U C (0 ) 10.77, S2 S1
U C (t ) (10.77e268t 0.77e3732t )V
例1:
U S 10V , C 1 F , R 4K ,
1K 2 Us C
R
L 1H , K从 1 2 , 求 U C (t ) .
解: U C (0 ) U C (0 ) 10V
dU C iL (0 ) C dt
2
Uc
L
iL
0
t 0
S1,2
R 1 R 2L 2L LC
i(0 ) 1A
uC (0 ) A1 A2 0
i (0 ) C 0.382 A1 2.618 A2 1
0.382 t 2.618t u ( t ) 0.447 e 0.447 e V 则: C
A1 0.447
A2 0.447
(2)当 R 2 R s1,2 1 2L uC (t ) ( A3 A4 t )e t
C 1F L 1H 试分别计算 R 3 、 R 2 、 R 1
时的 解: (1)当
uC (t )
2 L 2 C
R 3
2
L R2 C
过渡过程为过阻尼情况
R 1 R 2 s1,2 1.5 1.5 1 2L 2 L LC
d d
C
Uc
L
(2)
(3) t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉普拉斯变换在一阶和二阶电路的瞬态分析
内容摘要:(1)一阶电路的解法:经典解法和拉普拉斯解法(2)二阶电路的拉普拉斯解法
通过这两个例子中的经典解法和拉普拉斯解法的对比来体现出拉普拉斯变换在解决复杂电路问题的快捷、省时、简便优越性!
关键词:拉普拉斯变换、一阶电路、二阶电路
引言:通常研究电路的稳态只要利用代数方程就行了,而研究电路的瞬态就需要借助于微分方程。
因为只有微分方程才能不仅表明状态而且能表明状态的变换即过程!在分析解决电路瞬态问题时每一个不同的电路瞬态就要建立一个微分方程,解决一些简单问题的微分方程对我们打学生来说相对比较容易一些,而对于一些复杂的高阶微分方程将是一个大难题!本文将通过对一阶电路和二阶电路的微分方程的分析来证明拉普拉斯变换在解决瞬态电路问题是优越性!
正文:随着计算机的飞速发展,系统分析和设计的方法发生了革命化的变革,原来用传统的模拟系统来进行的许多工作现在都可以用数学的方法来完成。
因此,数学电路、离散系统的分析方法就更显的重要了。
拉普拉斯变换一直是分析这类系统的有效方法。
下面用一个实例来证明其的优越性!
例一有一个电路如下图所示,其电源电动势为E=EmSinwt(Em、w都
是常数),电阻R 和电感L 都是常量,求电流i(t).
解法一——传统法
有电学知识知道,当电流变化时,L 上有感应电动势——L
(t →0 )
+ – L
Us R i +
-。