(完整版)拉普拉斯变换在一阶和二阶电路的瞬态分析
一阶电路的瞬态分析

(1)计算 t = 0+ 电路时,电容电压不变,因此
电容等效于一直流电压源,数值为 UC (0- ) 。
UC (0- )
UC (0- )
电路分析
(2)计算 t = 0+ 电路时,电感电流不变,因此
电感等效于一直流电流源,数值为 iL (0- ) 。
iL (0- )
iL (0- )
由原电路画出t=0时的等效电 路,得:
iL (0- ) =
US R1 + R3
= 1A,
uC (0- ) = iL (0- ) × R3 = 4V
当t=0 瞬间,闭合,由换路定则可知:
iL (0+ ) = iL (0- ) = 1 A, uC (0+ ) = uC (0- ) = 4V
t=0+时刻的等效电路如图b)所示,它是一个典型的直流电 阻电路,其中 uL (0+ ) = uC (0+ ) - R3iL (0+ ) = 0V
iC
(0+
)
=
-iL
(0-
)
=
-
US R1 + R2
,
UR2 (0+ )
= il (0- )R2
=US
R2 R1 + R2
U L (0+ ) = -U R2 + UC (0- ) = 0
电路分析
R1
R2
K
Us
C uc
iL L
等效电路如图
R1
uR2 R2
iC
uc(0 )
Us
uL iL(0 )
电路分析
+ uC
=
U
拉普拉斯变换在二阶电路求解的应用

拉普拉斯变换在二阶电路求解的应用林天军 5140309331 F1403014摘要:在含有两个独立动态元件的电路中, 单网络变量的电路方程是二阶微分方 程, 这样的电路称二阶电路。
用时域分析直接求解二阶微分方程时、费时、费力、 难度较大, 须建立电路方程, 求特解、通解以及用初始条件确定积分常数等[1]普拉斯变换, 将时域函数转化为复频域函数(s 数), 待确定响应后再用拉氏反变换得到时域响应即最后的解。
这种分析方法不用求特解, 通解及确定积分常数, 求解较为简单。
关键词:拉普拉斯变换,二阶电路,逆变换。
一、前言拉普拉斯变换法是研究线性非时变动态电路的基本工具。
他能将时域中的微分运算以及积分运算分别变换为复频域(s 域)中的乘法及除法,从而将时域中的积分,微分方程变换为复频域中的代数方程,而且在方程中自动计入电路的分析计算变的简单有效。
1.拉氏变换设时域函数()f t 在区间[0,∞)内的定积分为()0st f t e dt ∞--⎰而式中,其复 频率为s j σω=+。
若该积分在s 某一域内收敛,则由此积分确定的复频域函数可表示为0()()st F s f t e dt ∞--=⎰则复频域函数()F s 定义为时域函数()f t 的拉普拉斯变换—(简称拉氏变换),简记为()[()]F s f t ζ=,在拉普拉斯变换式中取积分下限为0-,可以计及t=0时的()f t 中包含的冲激函数,从而给计算含冲激电压或冲激电流的电路带来方便[2]。
2.拉普拉斯变换的基本性质(1)线性性质若11[()]()f t F s ξ=,22[()]()f t F s ξ=,则对任意常数1a 及2a (实数或虚数)有112211221122[()()][()][()]()()a f t a f t a f t a f t a F s a F s ξξξ+=+=+(2)微分性质若[()]()f t F s ξ=,则[()]()(0)d f t sF s f dtξ-=- (3)积分性质若[()]()f t F s ξ=,则01[()]()t f d F s s ξττ-=⎰ (4)时移性质若[()]()f t F s ξ=,则[()]()st f t e F s ξτ--=(5)频移性质若[()]()f t F s ξ=,则[()]()t e f t F s a αξ=-3.拉普拉斯逆变换复频域的象函数()F s ,与因子st e 相乘,构成一个s 的新函数()st F s e ,再从()j σ-∞到()j σ+∞对s 求定积分, 将积分值除以2j π,即得原函数()f t 。
电路的拉普拉斯变换分析法

E s2 2
E s2 2
- sT
e2
E s2 2
- sT
1 e 2
半波正弦周期函数的拉普拉斯变换为
- sT
L
f t
E s2 2
1e 2 1- e-sT
E s2 2
1
- sT
1-e 2
7.2.4 频率平移特性
若 f (t) L
F (s)
则 L{ f (t)e-s0t } F (s - s0 )
( a)
=0
lim e-(s-a)t 0
t
( a)
a 称为收敛域
拉氏反变换 由F(s)到f(t)的变换称为拉普拉斯反变换,简称拉氏反变换
拉氏变换对
f (t) 1
j
F
(
s)e
st
ds
2j - j
F(s) L[ f (t)] 拉氏正变换 f (t) L-1[F(s)] 拉氏反变换
tf
tdt
f
0
可得
LAd
t
0
Ad
t e-st
dt
Ae0
A
对于单位冲激函数来说,可令上式 A=1,即得:
Ld t 1
书中表7 -1给出了一些常见函数的拉普拉斯变换
拉氏变换法的实质就是将微分方程经数学变换转变成代数 方程,然后进行代数运算,再将所得的结果变换回去。它 和应用对数计算数的乘除相类似。不同的只是在对数运算 中变换的对象是数,而在拉氏变换中变换的对象是函数。
dt
0- dt
L[ f '(t)] L[ df (t)] df (t) e-st dt
dt
0- dt
由上式应用分部积分法,有
L[df (t)] dt
第五章 一阶电路的瞬态分析-117页PPT资料

电感电压电流 iL(0),UL(0) , 电阻电压U R 2 (0 ) 。
解:开关闭合时的电容电压 U C ( 0 _ )
K
Us
R1
R2
C uc
iL L
与电感电流 i L ( 0 ) 为
U C(0)U SR 1R 2R 2, iL(0)R 1 U SR 2
由换路定则, U C ( 0 ) U C ( 0 ) ,iL ( 0 ) iL ( 0 )
i1
uC1 R1
5et
A
t 0
R=R2//R3=1.2Ω 2=RC2=2.4s uC 2(0+)=uC 2(0-)=3V
i2uR C21.5e2t.4 A t0
i2 R2 R3
+
C2
uC2
R1 i1
C1 +
u C1
Is
i2 R2 i
K R3
+
C2 uC2
i IS i1 i2 1 5 e t 1 .5 e 2 t.4At 0
第五章 一阶电路的瞬态分析
第一节 概述
电路结构,参数或电源的改变,称为换路。 电路从一种稳定状态转为另一种稳定状态,称为 过渡过程。
(1)对于纯电阻电路,电路中电压和电流的变
化是“立即”完成的。
K
R2
K闭合
I1
Us R1
,K打开 I 1 0
Us R1
R3
I1
(2)对于存在电容和电感的电路,电容元件的 电压(电荷)和电感元件的电流(磁链)变化一 般需要时间。(过渡过程时间)。
由初始条件UC(0)U0 得 k U 0 电容电压响应(变化规律): UC(t)U0et
拉普拉斯变换在电路分析中的应用)

目录
• 引言 • 拉普拉斯变换基本原理 • 电路元件拉普拉斯变换表示 • 线性时不变电路分析 • 非线性电路分析 • 复杂电路分析 • 总结与展望
01
引言
目的和背景
电路分析的重要性
电路分析是电气工程和电子工程领域 的基础,对于设计和分析各种电路系 统至关重要。
复杂电路的挑战
独立电流源的拉普拉斯变换表示为 $frac{I}{s}$,其中$I$为电源电流。 在拉普拉斯域中,独立电流源的阻 抗与频率成反比。
传输线元件
传输线
传输线的拉普拉斯变换表示为$frac{1}{sqrt{LC}s}$,其中$L$和$C$分别为传 输线的单位长度电感和电容。传输线的阻抗与频率的平方根成反比,随着频率 的增加而减小。
与傅里叶变换的关系
拉普拉斯变换可视为傅里叶变换的扩展,能够处理更广泛 的信号和系统,包括不稳定系统和具有初始条件的系统。
在电路分析中的应用
拉普拉斯变换在电路分析中的主要应用包括求解线性时不 变电路的响应、分析电路的稳定性和暂态行为,以及设计 滤波器、控制器等电路元件。
02
拉普拉斯变换基本原理
定义与性质
利用伏安特性曲线或负载线等方 法,通过图形直观分析非线性电 路的工作状态。
解析法
通过建立非线性电路的数学模型, 采用数值计算或符号计算等方法 求解电路方程,得到电路的响应。
仿真法
利用电路仿真软件对非线性电路 进行建模和仿真分析,可以得到 较为准确的电路响应和性能参数。
拉普拉斯变换在非线性电路中应用
逆拉普拉斯变换
定义
逆拉普拉斯变换是将复平面上的函数转换回时域的过程,它 是拉普拉斯变换的逆操作。通过逆拉普拉斯变换,可以得到 电路的时域响应。
第六章 二阶电路的瞬态分析

S1 268, S2 3732
U C (t ) A1e
A2 e ,
S1U C (0 ) A2 0.77 S2 S1
s2t
S2 A1 U C (0 ) 10.77, S2 S1
U C (t ) (10.77e268t 0.77e3732t )V
例1:
U S 10V , C 1 F , R 4K ,
1K 2 Us C
R
L 1H , K从 1 2 , 求 U C (t ) .
解: U C (0 ) U C (0 ) 10V
dU C iL (0 ) C dt
2
Uc
L
iL
0
t 0
S1,2
R 1 R 2L 2L LC
i(0 ) 1A
uC (0 ) A1 A2 0
i (0 ) C 0.382 A1 2.618 A2 1
0.382 t 2.618t u ( t ) 0.447 e 0.447 e V 则: C
A1 0.447
A2 0.447
(2)当 R 2 R s1,2 1 2L uC (t ) ( A3 A4 t )e t
C 1F L 1H 试分别计算 R 3 、 R 2 、 R 1
时的 解: (1)当
uC (t )
2 L 2 C
R 3
2
L R2 C
过渡过程为过阻尼情况
R 1 R 2 s1,2 1.5 1.5 1 2L 2 L LC
d d
C
Uc
L
(2)
(3) t
瞬态过程与拉普拉斯变换

瞬态过程与拉普拉斯变换引言瞬态过程是动态系统中的一个重要概念,用于描述系统从初始状态到稳定状态的过渡过程。
在理论和实际应用中,瞬态过程的分析对于了解系统的行为和性能至关重要。
本文将介绍瞬态过程以及拉普拉斯变换在瞬态过程分析中的应用。
一、瞬态过程的定义瞬态过程是指系统在初始时刻或受到某个外部激励时,从一个非稳定的状态转变到另一个稳定的状态的过程。
通常,瞬态过程包括开始阶段和结束阶段,其中开始阶段是系统从非稳定状态逐渐接近稳定状态的过程,而结束阶段是系统收敛到稳定状态的过程。
二、瞬态过程的描述瞬态过程可以用数学模型来描述。
通常,利用微分方程和差分方程等数学工具来描述系统的动态行为。
这些方程包含了系统输入、输出以及系统各个部分之间的关系,通过求解这些方程可以得到系统在不同时刻的状态。
三、拉普拉斯变换的概念拉普拉斯变换是一种重要的数学工具,可以将时域函数转换为复频域函数。
通过拉普拉斯变换,我们可以在复平面上分析系统的频率响应、稳定性以及瞬态过程。
拉普拉斯变换的数学定义较为复杂,这里不作展开,但需要指出的是,拉普拉斯变换能够将微分方程转化为代数方程,便于分析和求解。
四、拉普拉斯变换在瞬态过程分析中的应用1. 瞬态过程的初值定理拉普拉斯变换为瞬态过程的分析提供了便利。
根据瞬态过程的初值定理,系统在初始时刻的响应可以通过拉普拉斯变换后的函数在复频域的初始条件来描述。
2. 瞬态过程的末值定理同样,拉普拉斯变换也为瞬态过程的末值定理提供了数学表达。
末值定理能够描述系统的响应在趋近稳定状态时的极限值,是分析瞬态过程收敛性的重要工具。
3. 瞬态过程的响应计算通过对系统的拉普拉斯变换进行部分分式展开,可以得到系统的瞬态响应的数学表达式。
这个表达式能够给出系统在不同初始条件和激励下的响应。
五、拉普拉斯变换的局限性拉普拉斯变换虽然在瞬态过程分析中具有重要的应用,但是它也有其局限性。
首先,拉普拉斯变换对于非因果系统和不稳定系统不适用。
第十讲一阶电路的瞬态分析

=3mA
i(0+)=i1(0+)+i2(0+)=4.5mA
计算结果
电量 i
i1=iL
i2
uC
uL
t=0- 1.5mA 1.5mA 0
3V 0
t=0+ 4.5mA 1.5mA 3mA 3V 3V
返回
小结:换路初始值的确定
1. t=0- :电感相当于短路;电容相当于开路. 2.换路后 t=0+ 瞬间: 电容 uC(0+) = uC(0 -)=US 相当于数值为US的理想电压源
S iR
t=0
+
+
RC
duC dt
+
uC=
US
US –
C uC uC( t ) = u '+ uC'' –
设uC' =K(常量),则
dK RC dt + K= US
所以 K=US , uC' = US
即:稳态时电容两端的电压值,称之为稳态解。
uC(∞ ) =US
返回
(2)通解uC''
是齐次微分方程
一般一阶电路 只含有一个储能 元件。
分析方法
经典法: 通过列出和求解电路的 微分方程,从而获得物 理量的时间函数式。
三要素法:在经典法的基础上总结 出来的一种快捷的方法, 只适用于一阶电路。
返回
1. 一阶RC 电路瞬态过程的微分方程
图示电路,当 t = 0 时, S i R
开关 S 闭合。列出回路电压
1 <2<3
0.368US
0 1 2
3
t
返回
(3) RC 电路的全响应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉普拉斯变换在一阶和二阶电路的瞬态分析
内容摘要:(1)一阶电路的解法:经典解法和拉普拉斯解法(2)二阶电路的拉普拉斯解法
通过这两个例子中的经典解法和拉普拉斯解法的对比来体现出拉普拉斯变换在解决复杂电路问题的快捷、省时、简便优越性!
关键词:拉普拉斯变换、一阶电路、二阶电路
引言:通常研究电路的稳态只要利用代数方程就行了,而研究电路的瞬态就需要借助于微分方程。
因为只有微分方程才能不仅表明状态而且能表明状态的变换即过程!在分析解决电路瞬态问题时每一个不同的电路瞬态就要建立一个微分方程,解决一些简单问题的微分方程对我们打学生来说相对比较容易一些,而对于一些复杂的高阶微分方程将是一个大难题!本文将通过对一阶电路和二阶电路的微分方程的分析来证明拉普拉斯变换在解决瞬态电路问题是优越性!
正文:随着计算机的飞速发展,系统分析和设计的方法发生了革命化的变革,原来用传统的模拟系统来进行的许多工作现在都可以用数学的方法来完成。
因此,数学电路、离散系统的分析方法就更显的重要了。
拉普拉斯变换一直是分析这类系统的有效方法。
下面用一个实例来证明其的优越性!
例一有一个电路如下图所示,其电源电动势为E=EmSinwt(Em、w都
是常数),电阻R 和电感L 都是常量,求电流i(t).
解法一——传统法
有电学知识知道,当电流变化时,L 上有感应电动势——L
(t →0)
Us R i +
-。