数值计算中误差的传播规律

合集下载

数值计算常用公式

数值计算常用公式

第一章 误差由观测产生的误会差,称为观测误差或参量误差. 由数值计算方法所得到的近似解与实际问题准确解之间出现的这种误差,称为截断误差或方法误差。

x *为准确值的一个近似值,则绝对误差: e *(x)= x-x * 绝对误差限:∣e *(x)∣=∣x-x *∣≤ε*(在知道x 准确值的条件下)相对误差:=xx x xx e*-=)(*=****)(xx x xx e -=相对误差限:******)()(rrxx x xx e x eε≤-==误差传播规律:)()()()()(2**21**1*x e x fx e x f y e ∂∂+∂∂≈*)()(**y y e y e r =(看会第七页例题)有效数字与有效数字位数:例一:对于x=π=3.14159…,若取近似值=3.14,则绝对误差∣)(*x e ∣=0.00159…≤01.021⨯,即百分位数字4的半个单位(指01.021⨯)是*x 的绝对误差限,故从*x 最左边的非零数“3”开始到百分位数字“4”的三个数都是有效数字,近似值*x 具有三位有效数字。

例二:求2*1049-⨯=x 的有效数字?有两位有效数字,即位有效数字,则有设的绝对误差限为,而可写为解:**2**x 2m 2m 0m x 105.0x 1049.0x =-=-⨯⨯-第二章 非线性方程求根二分法:[]b a x ,∈,2b a x +=分成两半,检查0)()(0<x f a f 则x *在[],x a 范围内。

1*22+-=-≤-k kk ka b a b xx预估二分法的次数:ε≤-+12k ab ,ε为允许误差(精度)。

简单迭代法:)(0)(x g x x f =⇒=,....)2,1,0)((1==+k x g x kk满足条件:1.(1)当在区间[]b a ,上g'存在,且)1(1)('的正常数为小于其中L L x g <≤;(2)对任意[]b a x ,∈,都有[]ba x g ,)(∈, 则 (1)对任取初始近似值[]b a x ,0∈,迭代法)(1x g xk =+产生的迭代序列{kx}都收敛于方程[]ba x g x ,)(在=上的唯一实根*x ; (2).1*;11*011x x LLx x x x L x x kk k k k --≤---≤-+误差估计表明:要使即可。

线性代数中的数值计算

线性代数中的数值计算

正则化方法
L1正则化
在目标函数中加入L1范数作为惩罚项,实现稀疏解的 选择。
L2正则化
在目标函数中加入L2范数作为惩罚项,防止过拟合现 象的发生。
弹性网正则化
结合L1和L2正则化的优点,同时实现稀疏解和防止过 拟合的目的。
05
非线性方程组的数值解法
牛顿法与拟牛顿法
牛顿法
通过迭代的方式求解非线性方程组的 根,每一步迭代都需要计算雅可比矩 阵(函数的一阶导数矩阵)和海森矩 阵(函数的二阶导数矩阵)。
有效数字与精度
有效数字表示一个数中可靠数字 的位数,精度则反映了计算结果 的准确性。在数值计算中,需要 关注有效数字的保留和精度的控 制。
误差传播
在复杂的数值计算中,误差可能 会逐步累积和传播,导致最终结 果的失真。因此,需要分析误差 传播规律,并采取相应的措施来 减小误差。
数值稳定性
01
算法稳定性
线性代数中的数值计算
• 数值计算基础 • 线性方程组求解 • 矩阵特征值与特征向量计算 • 线性最小二乘问题 • 非线性方程组的数值解法 • 数值计算中的优化问题
01
数值计算基础
误差与精度
绝对误差与相对误差
描述计算结果与真实值之间的差 异程度,其中绝对误差是计算值 与真实值之差的绝对值,相对误 差是绝对误差与真实值之比。
拟牛顿法
在牛顿法的基础上,通过近似计算海 森矩阵或其逆矩阵,从而减少计算量 ,提高求解效率。常见的拟牛顿法有 BFGS方法和DFP方法等。
梯度下降法与共轭梯度法
梯度下降法
沿着目标函数的负梯度方向进行迭代,逐步逼近函数的极小值点。该方法适用 于连续可微的凸函数优化问题。
共轭梯度法
结合梯度下降法和共轭方向法的思想,利用历史梯度信息构造共轭方向,从而 加速收敛速度。共轭梯度法适用于大规模非线性优化问题。

1-第一章 数值计算中的误差分析

1-第一章 数值计算中的误差分析
前言
课程目的和任务: 通过对一些基本声学和水声学问题的分析和
求解,掌握基本声学理论计算与工程研究中常用的 数值计算方法,培养综合运用声学专业知识、数学 知识和计算机技术解决科学研究中手工所不能解算 的问题,具备应用现代计算工具解决工程实际问题 的能力。
前言
水声学主要研究声波在水下的辐射、传播与接收,用 以解决与水下目标探测和信息传输过程有关的各种声学问 题。声波是目前在海洋中唯一能够远距离传播的能量辐射 形式。因此作为信息载体的声波,在海洋中所形成的声场 时空结构,就成为近代水声学的基本研究内容,而提取海 洋中声场信息的结构是我们用来进行水下探测、识别、通 信及环境监测等的手段。



c*

1.2 299792458
4.1 109 (4.002769
109 )
数值计算中的误差分析
有效数字
如果近似值 x* 的绝对误差限是某一位的半个单位,就称其
“准
x*
确”到这一位x*,且从该位开始直到 的第一位非零数字共有n位,
则称近似数 有n位有效数字。
有效数字既能表示近似值的大小,又能表示其精确程度(绝对
学习目的:
提高应用计算机解决实际问题的能力。
前言
数值计算流程:
实际问题
理论模型
数学问题
误差分析
上机计算
程序设计
算法设计
特点:
既具有数学的抽象性与严格性,又具有应用的广泛性与实际实 验的技术性,是一门与计算机紧密结合的实用性很强的有着自身研 究方法与理论体系的计算数学课程。
前言
数学问题可以通过离散化、逼近转化为数值问题,在计算机上 可执行的(指计算公式中只有四则运算和逻辑运算等计算机上能够 执行的计算)求解数值问题的系列计算公式称为数值方法。

计算方法(1)-数值计算中的误差

计算方法(1)-数值计算中的误差

* r
(
x)
1)乘方运算结果的相对误差增大为原值 x的p倍,降低精度.
2)开方运算结果的相对误差缩小为原值
x的1/q倍,精度得到提高.
三.算例的误差分析
x
3
2 2

1 1

24
§6 算法的数值稳定性
一.算法稳定性的概念
凡一种算法的计算结果受舍入误差的影 响小者称它为数值稳定的算法.
例4 解方程 x2 (109 1)x 109 0
方程精确解: x1 10 9 , x2 1
利用求根公式
x1,2


b

b2 4ac 2a
x1 10 9 , x2 0
25

当多个数在计算机中相加时,最好从
绝对值最小的数到绝对值最大的数依次相
加,可使和的误差减小.
二.算法的改进
2 2

1 1

3
计算结 果
2 7/5
2 17 /12
1 ( 2 1)6

2 6

0.0040960

5
6


0.00523278
5
12
2 99 70 2
1
1 0.16666667
6
3
6
1



5
6
0.00523278
12 6
计算方法
1
第一章 数值计算中的误差
§1 引言 §2 误差的种类及其来源 §3 绝对误差和相对误差 §4 有效数字及其与误差的关系 §5 误差的传播与估计 §6 算法的数值稳定性

误差的合成、分配和传递

误差的合成、分配和传递

在通常情况下,未定系统总误差可以用极限误差的 形式给出误差的最大变化范围,也可用标准差来表示。

按极限误差合成 按标准差合成
三、误差的合成
1)按极限误差合成 a.绝对值合成法: 表达式:
( e1 e2
em ) ei
i 1 m
其中ei为极限误差。当m大于10时,合成误差估计值往 往偏大。一般应用于m小于10。
则有:
i
x f xi ci i xi y y
x
i
i
xi xi
相对误差传递公式
y i x
i 1
n
一、误差的传递
和差函数的误差传递
y x1 x2
c1 f 1 x1
x1 y
c2
f 1 x2
x2 y
1 c1
2 c2
y
1i j
n
对 y
y y
(
i 1
n
x x f )0 i 两边求方差,则得: xi y xi
随机相对误差的传递公式
y
n f 2 xi 2 2 f xi f x j ( ) ( ) 2 [( ) ] [( ) ]i , j i j 0 i x y x y x y i 1 1i j i i j n
2 i 1i j
1 y
x
i 1 2 ij i , j i j
1i j
n
在水文测验误差分析中,常对上式进行简化。假定各直接被测量的相对 标准差相等,再假定各直接被测量之间不存在相关关系,则变量和的相 对标准差传递公式变为: x m 2 1 m 2 灵敏系数平方和 ny xi xi y i 1 y i 1 的方根

绪论2误差传播定律

绪论2误差传播定律
未来,误差传播定律的 研究将更加注重跨学科 融合,借鉴其他领域的 理论和方法,形成更加 完善的理论体系。
智能化技术应用
随着人工智能等技术的 发展,未来误差传播定 律的研究将更加注重智 能化技术的应用,如利 用机器学习等方法进行
误差预测和控制。
实验与理论相结合
未来研究将更加注重实 验与理论的相结合,通 过实验验证理论的正确 性和可靠性,推动误差 传播定律在实际应用中
误差控制
为了控制误差的累积和传播,提高测 量结果的准确性,需要研究和掌握误 差传播规律。
学科发展
随着测量科学和技术的不断发展,对 误差传播规律的研究逐渐深入,形成 了较为完善的理论体系。
02
误差传播定律数学表达式
单一观测值误差传播公式
误差传播定律描述了测量误差在数据处理过程中的传 递规律。对于单一观测值,其误差传播公式可表示为
缺乏统一的理论框架
目前,误差传播定律的研究缺乏统一的理论框架,不同领域和方法 之间的融合不够,限制了其应用范围和效果。
实验验证不足
误差传播定律的实验验证相对较少,缺乏充分的实验数据支持,使 得理论成果在实际应用中的可靠性受到质疑。
未来发展趋势及前景预测
第一季度
第二季度
第三季度
第四季度
跨学科融合研究
输标02入题
$$sigma_y = |f'(x)| cdot sigma_x$$
01
03
该公式表明,函数 $y$ 的误差与 $x$ 的测量误差及 函数在该点的导数有关。当 $|f'(x)|$ 较大时,即使
$sigma_x$ 很小,$sigma_y$ 也可能较大。
04
其中,$sigma_y$ 为函数 $y = f(x)$ 的误差,$f'(x)$ 为函数在点 $x$ 处的导数,程测量中,误差传播定律用 于评估测量结果的可靠性和精度, 指导测量方案的设计和实施。

误差传递的计算方式课件

误差传递的计算方式课件
详细描述
实际应用中的误差传递实例通过具体 的应用场景和案例分析,强调了误差 传递在解决实际问题中的重要性和实 际意义。
05 误差传递的预防与控制
提高测量精度与准确度
选用高精度测量设备
规范操作
采用高精度的测量设备,可以减少测 量误差,提高测量数据的准确性。
严格按照操作规程进行测量,避免因 操作不当导致测量误差。

进行误差传递分析
分析误差来源
对测量过程中产生的误差 进行详细分析,找出误差 的来源和传递途径。
建立误差传递模型
根据误差来源和传递途径 ,建立误差传递模型,为 制定误差控制策略提供依 据。
预测误差影响
根据建立的误差传递模型 ,预测误差对最终结果的 影响,以便采取相应的措 施进行控制。
制定误差控制策略
定期校准设备
定期对测量设备进行校准,确保设备 处于良好的工作状态,提高测量数据 的可靠性。
选择合适的数学模型与方法
根据问题选择合适的数学模型
01
根据实际问题的特点,选择适合的数学模型,使误差传递最小
化。
优化算法
02
采用优化算法,提高计算精度和效率,减少误差传递。
验证模型与方法
03
对所选择的数学模型和方法进行验证,确保其准确性和可靠性
详细描述
二阶误差传递公式是一阶误差传递公式的扩展,它考虑了两个输入变量的变化对 输出变量的影响。二阶误差传递公式通常用于分析非线性系统的误差传播。
高阶误差传递公式
总结词
描述误差传递的数学模型中的高阶误 差传递公式。
详细描述
高阶误差传递公式是更高阶的误差传 递公式,它考虑了多个输入变量的变 化对输出变量的影响。高阶误差传递 公式通常用于分析复杂系统的误差传 播。

计算方法(1)-数值计算中的误差

计算方法(1)-数值计算中的误差

f
(x1, x2 )

f
(x1*, x2* )


f x1
*

(x1

x1* )


f x2
*

(x2

x2* )


1 2!

2 f x12
*
(x1

x1* )2

2
2 f x1x2
*

2
§1 引言
一.用数值计算方法解决实际问题 的步骤
1.将实际问题抽象成数学问题,即建立 数学模型;
2.选用合适的算法,编制出计算机程序; 3.上机调试并计算,以得出所欲求解的
结果.
3
二.数值计算方法
1.定义 将所欲求解的数学模型简化
成一系列算术运算和逻辑运算,以便在计 算机上求出问题的数值解,并对算法的收 敛性、稳定性和误差进行分析、计算.
21
例: 比较算法
① 计算 3.01 3 (精确到第五位数字).
② 计算 1 cosx .
2.乘法运算的误差传播

* r

n
xi
n

* r
(
xi
)
i1 i1
1) 近似值之积的
相对误差等于相乘
各因子的相对误差
的代数和.

n i 1
xi
误差增长因子16的绝对误差的倍数经传播后增大或缩小表示增长因子的绝对误差缩小的倍数经传播后增大或表示的绝对误差增长因子的相对误差的倍数经传播后增大或缩小表示增长因子的相对误差缩小的倍数经传播后增大或表示的相对误差增长因子误差增长因子的绝对误差增长因子的相对203
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法




实验序号:实验一
实验名称:数值计算中误差的传播规律
实验人:
专业年级:
教学班:
学号:
实验时间:
实验一 数值计算中误差的传播规律
一、实验目的
1.观察并初步分析数值计算中误差的传播;
2.观察有效数字与误差传播的关系.
二、实验内容
1.使用MATLAB 的help 命令学习MATLAB 命令digits 和vpa 的用途和使用格式;
2.在4位浮点数下解二次方程01622=++x x ;
3.计算下列5个函数在点2=x 处的近似值
(1)60)1(-=x y ,
(2)6
1)1(1+=x y , (3)32)23(x y -=,
(4)3
3)23(1x y +=, (5)x y 70994-=.
三、实验步骤
本次实验包含三个相对独立的内容.
1.在内容1中,请解释两个命令的格式和作用;
在matlab 中采用help 语句得到:
1、digits用于规定运算精度,比如: digits(20); 这个语句就规定了运算精度是20位有效数字。

但并不是规定了就可以使用,因为实际编程中,我们可能有些运算需要控制精度,而有些不需要控制。

vpa就用于解决这个问题,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。

例如: digits(5); a=vpa(sqrt(2)); 这样a的值就是1.4142,而不是准确的1.4142135623730950488016887242097 又如: digits(11);
a=vpa(2/3+4/7+5/9); b=2/3+4/7+5/9; a的结果为1.7936507936,b的结果为1.793650793650794......也就是说,计算a的值的时候,先对2/3,4 /7,5/9这三个运算都控制了精度,又对三个数相加的运算控制了精度。

而b的值是真实值,对它取11位有效数字的话,结果为1.7936507937,与a不同,就是说vpa 并不是先把表达式的值用matlab本身的精度求出来,再取有效数字,而是每运算一次都控制精度。

2.求解方程时,分别使用求根公式和韦达定理两种方法,并比较其有效数字和相对误差;
用求根公式解得:x1=-0.015,x2=-62.00
用韦达定理解得:x11=-0.016,x22=-62.00
x22=x2,x11=1/x22
该方程相对精确的解为:
Er1表示用求根公式求得的相对误差,Er2表示用韦达定理求得的相对误差
x1有1位有效数字,x2有3位有效数字;
x11有4位有效数字,x22有3位有效数字。

3.实验内容3中的5个函数在2=x 处的精确值都是相等的,若取4.12≈进行计算,计算各函数的结果,作图观察并比较它们的绝对误差(作图区间可取
]
.1,4.1[甚至更小),并从算法设计原则上说明原因.
42
Matlab计算如下:
作图比较如下:
计算绝对误差:
结论:当x=1.4时,结果的好坏次序是y3,y1,y0,y2,y4.导致y4的结果出现很大误差的原因是大数70作了乘数,y2误差的原因是小数0.2作为了乘数,其余的结果还是比较好的,误差都不至于太大。

由此可知,不同的计算方法会导致不同的结果,相应结果中误差的放大程度也不同,所以我们在计算的过程中应尽量遵循计算原则,注意以下几点:小数不能作为乘数,大数不能作为除数,避免大数吃小数,避免相近的数相减,简化计算步骤等。

相关文档
最新文档