地基土抗剪强度指标Cφ值的确定
土的抗剪强度指标与主要因素_张金贵

伏、抗病最终达到增产的效果。 三、2007年试验田不同处理的产量对比数据 ( 表二) 分析: 一是, 从上述数据中不难看出, 品种的选择非
常重要, 想要单本高产必须选用晚熟分蘖性强的高产品 种 , 华育5号 比 空育131每 公 顷增 产2 000公 斤左 右 ; 二 是 , 运用小苗插秧一定要选早熟品种, 达到安全稳产; 三是, 单 本 插 秧 深 度 一 定 要 保 证 在1~2 cm之 间 , 过 深 影 响 低 位 分蘖, 减产巨大。
剪切面上总应力等于有效应力与孔隙 水压力之和。孔隙水压力由于作用在 土中自由水上, 不会产生土粒之间的 内磨擦力, 只有作用在土的颗粒骨架 上的有效应力, 才能产生土的内磨擦 强度。
因此, 同一种土, 如试验条件不 同, 即使剪切面上的总应力相同, 也 会因土中孔隙水是否排出与排出的程 度, 即有效应力的数值不同, 使试验 结果的抗剪强度不同。因而在土工程 设计中所需要的强度指标试验方法必
须与现场的施工加荷实际相符合。目 前, 有的地方为了近似模拟土体在现 场可能受到的受剪条件, 而把剪切试 验按固结和排水条件的不同, 分为不 固结不排水剪、固结不排水剪和固结 排水剪3种基本试验类型。但是直剪 仪的构造却无法做到任意控制土样是 否排水。绥棱县的一些工程则通过采 用了不同的加荷速率来达到排水控制 的要求, 即采用快剪、固结快剪和慢 剪3 种方法, 这3种方法给水利施工带 来了极大的好处。!
11 3 18 18 84 432 88 78 89 25 1.55 11 2.9 18 18 80 306 78 72 92 26 1.12 12 3 18 54 84 467 80 74 82 25 1.6 11 3 18 54 80 447 82 74 90 26 1.65 16 5.2 18 18 84 560 92 82 89 25 2.1 16 5 18 18 80 396 83 78 93 26 1.58 15 5.2 18 54 84 481 85 76 89 25 1.7 15 5 18 54 80 432 84 74 92 26 1.52
土力学复习资料整理

填空:土体一般由固相固体颗粒、液相土中水和气相气体三部分组成,简称“三相体系”;常见的粘土矿物有:蒙脱石、伊利石和高岭石;由曲线的形态可评定土颗粒大小的均匀程度;如曲线平缓则表示粒径大小相差很大,颗粒不均匀,级配良好;反之,则颗粒均匀,级配不良;颗粒分析试验方法:对于粒径大于的粗粒土,可用筛分法;对于粒径小于的细粒土,可用沉降分析法水分法;土的颗粒级配评价:根据颗粒级配曲线的坡度可以大致判断土的均匀程度或级配是否良好;粒径级配曲线:的越陡,说明颗料粒径比较一致,级配不良;相反,颗粒级配曲线的越缓,说明颗粒不均匀,级配良好;土中水按存在形式分为:液态水、固态水和气态水;土中液态水分为结合水和自由水两大类;结合水可细分为强结合水和弱结合水两种;含水量试验方法:土的含水量一般采用“烘干法”测定;在温度100~105℃下烘至恒重;塑性指数Ip越大,表明土的颗粒愈细,比表面积愈大,土的粘粒或亲水矿物含量愈高,土处在可塑状态的含水量变化范围就愈大;塑性指数定名土类按塑性指数:Ip﹥17为粘土;10﹤Ip≦17为粉质粘土;液性指数:I L=ω-ωp/ωL-ωp=ω-ωp/Ip;当土的天然含水量ω﹤ωp时,I L﹤0,土体处于坚硬状态;当ω﹥ωL时,I L﹥0,土体处于流动状态;当ω在ωp和ωL之间时,I L=0~1,土体处于可塑状态;粘性土根据液性指数可划分为坚硬、硬塑、可塑、软塑及流塑五种软硬状态;土的结构和构造有三种基本类型:单粒结构、蜂窝结构及絮凝结构;影响土的击实压实特性的因素:含水量影响、击实功能的影响、土类及级配的影响;人工填土按组成物质分类:素填土、杂填土和冲填土三类;有效应力原理,即有效应力等于上层总压力减去等效孔隙压力;其中,等效孔隙压力等于孔隙压力与等效孔隙压力系数之积,等效系数介于0和1之间;饱和的有效应力原理:1体内任一平面上受到的总应力等于有效应力加之和;2土的强度的变化和变形只取决于土中的变化;压缩系数a1-2给土分类:1;a1-2< MPa-1 为低压缩性土;2 MPa-1≤a1-2< MPa-1 为中压缩性土;3a1-2≥ MPa-1 属高压缩性土;分层厚度抗剪强度指标的测定方法选用:直接剪切试验、三轴压缩试验、无侧限抗压强度试验、十字板剪切试验;剪切破坏面位置:抗剪强度指标c、φ值的确定:粗粒混合土的抗剪强度c、φ值通过现场剪切试验确定;地基破坏形式分为:整体剪切破坏、局部剪切破坏、冲剪破坏;荷载效应组合:1作用短期效应组合;2作用长期效应组合;地基基础方案类型:浅基础和深基础;浅基础进行稳定性验算内容:1.基础倾覆稳定性验算;2.基础滑动稳定性验算;摩擦桩的传力机理:大部分荷载传给桩周土层,小部分传给桩端下的土层水中基坑的围堰工程类型:土围堰、草麻袋围堰、钢板桩围堰、双壁钢围堰、地下连续墙围堰;桩基础组成:多根桩组成的群桩基础;桩按受力承载性状分类:竖向受荷桩、横向受荷桩、桩墩;桩基础按设置效应分类:挤土桩、部分挤土桩、非挤土桩;桩基础按承台位置分类:高桩承台基础和低桩承台基础;我国主要的区域性特殊土类型:湿陷性黄土、膨胀土、软土和冻土;名词解释:土的颗粒级配:土中所含各粒组的相对含量,以土粒总量的百分数表示,称为土的颗粒级配;结合水:是指受电分子吸引力作用吸附于土粒表面成薄膜状的水;土的重度:单位体积土的重力密度;土的饱和度Sr:土中水的体积与孔隙体积的比值;Sr=Vw/Vv×100%;土粒比重:土中固体矿物的质量与同体积4℃时纯水质量的比值;土的孔隙率n:土中孔隙体积与总体积之比用百分数表示称为土的孔隙率;n=Vv/V×100%;土的含水量:土中水的质量与土粒质量之比用百分数表示称为土的含水量;ω=m w/m s×100%;土的不均匀系数:是指工程上用来反映颗粒级配的不均匀程度的一个量用Cu或C C表示;曲率系数:是反映土的粒径级配累计曲线的斜率是否连续的指标系数液限:土由可塑状态变化到流动状态的界限含水量称为液限或流限,用ωL表示;塑限:土由半固态变化到可塑状态的界限含水量称为塑限,用ωp表示;塑性指数Ip:液限与塑限之差值定义为塑性指数Ip;Ip=ωL-ωp;土的结构:是指土颗粒或集合体的大小和形状、表面特征、排列形式以及它们之间的连接特征;构造:是指土层的层理、裂缝和大孔隙等宏观特征,亦称宏观结构;触变性:粘性土结构遭到破坏,强度降低,但随时间发展土体强度恢复的胶体化学性质称为土的触变性;灵敏度St:来衡量粘性土结构对强度的影响;最优最佳含水量:在一定的压实功能下使土最容易压实,并能达到最大密实度时的含水量称为土的最优最佳含水量,用ωop表示;最大干密度:在一定的压实功能下使土最容易压实,并能达到最大密实度时的干密度称为土的最大干密度,用ρdmax 表示;土的渗透性:土体本身具有连续的孔隙,如果存在水位差作用,水就会透过土体孔隙发生孔隙内的流动,这种具有被水透过的性能称为土的渗透性;达西定律:层流条件下,土中水渗透速度与能量水头损失之间关系的渗流规律,即达西定律;表达式:Q/t=q=kA△h/L=kAi或q/A=v=ki.q单位渗水量;i水力梯度或水力坡降,i=h1-h2/L;v=渗透速度;k土的渗透系数动水力:流动的水对单位体积土骨架作用的力,称为动水力;流砂流土现象:当动水力G D的数值等于或大于土的浮重度γ’时即向上的动水力克服了土粒向下的重力时,土体发生浮起而随水流动,这种现象称为流砂或流土;防治流砂的原则:治砂先治水;①减少或消除基坑内外地下水的水头差;②增长渗流路径;③在向上渗流出口处地表用透水材料覆盖压重以平衡动水力此法多用于闸坝下游处;管涌:在地下水流动的水力坡降i很大时,水流由层流变为紊流,此时渗流力将土体粗粒孔隙中充填的细粒土带走最终导致土体内形成贯通的渗透管道,造成土体坍陷,这种现象称为管涌;基底附加应力:是指作用于地基表面的附加应力称为基底附加应力;地基:是由建构筑物荷载在土体中引起的应力增量称为地基;现象:是指受力构件由于外界因素或自身因素几何形状、外形尺寸发生突变而引起局部范围显着增大的现象;应力集中是指接头局部区域的最大应力值比平均值高的现象;在设计脆性材料构件时,应考虑应力集中的影响;在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响;角点法:法的实质是利用角点下的应力计算公式和应力推求地基中任意点的的方法,称为角;土的有效应力原理:控制饱和土体体积变形和强度变化的不是土体承担的总应力σ,而是总应力与水压力σw之差,即土骨架的应力;有效应力:土体产生压缩变形的有效因素,就是;孔隙水压力:土体中由所传递的压力称为压力;压缩模量:土体在完全侧限的条件下,竖向附加应力σz与其相应的应变增量εz之比,称为土的压缩模量或侧限压缩模量,用符号Es表示;土的压缩性:土在压力作用下体积缩小的特性称为土的压缩性;固结概念:土壤中由若干单粒粘结在一起形成为团聚体的一种;地基的固结度U:指地基在荷载作用下,经历时间t的固结沉降量Sct与最终沉降量Sc之比称为固结度,即Ut=Sct/Sc;固结时间因数:次固结沉降:指土中孔隙水已经消散,有效应力增长基本不变之后变形随时间缓慢增长所引起的沉降;土的抗剪强度:是指土体抵抗剪切破坏的极限能力;库仑定律:库仑定律阐明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸;库伦定律土压力理论:墙后土体处于极限平衡状态并形成一滑动楔体时从楔体的静力平衡条件得出的土压力计算理论;库伦公式:τf=σtanφ超固结土:指土体现有的上覆有效压力小于先期固结压力的土;是大于现有自重压力的土Pc>Po;剪胀性:由于在常规三轴压缩试验中,平均主应力增量在加载过程中总是正的,不可能是体积的弹性回弹,因而这种体应变只能是由剪应力引起的,被称为剪胀性;主动土压力:当挡土墙向离开土体方向偏移至墙后土体达到极限平衡状态时,作用在墙背上的土压力称为主动土压力,一般用Ea表示;被动土压力:当挡土墙在外力作用下,向土体方向偏移至墙后土体达到极限平衡状态时,作用在墙背上的土压力称为被动土压力,一般用Ep表示;静止土压力:当挡土墙静止不动,墙后土体处于弹性平衡状态时,作用在墙背上的土压力为静止土压力,一般用Eo表示; 地基承载力:是指地基承受荷载的能力;地基:将承受建筑物各种作用的地层称为地基;基础:将建筑物与地基接触的最下部分,也就是将建筑物的各种作用传递至地基的结构物称为基础;天然地基:未经人工处理就可以满足设计要求的地基称为天然地基;刚性基础:当基础圬工具有足够的截面使材料的容许应力大于由地基反力产生的弯曲拉应力和剪应力, a-a断面不会出现裂缝,这时,基础内不需配置受力钢筋,这种基础称为刚性基础;柔性基础:是指用抗拉、抗压、抗弯、抗剪均较好的钢筋混凝土材料做基础;基底的核心半径:基底受压区范围的半径ρ=W/A ; W:相应于应力较小基底边缘截面模量A:基底截面积摩擦桩:在竖向荷载作用下,基桩所发挥的承载力以侧摩阻力为主时,统称为摩擦桩;端承桩:在竖向荷载作用下,基桩所发挥的承载力以桩底土层的抵抗力为主时,称为端承桩或柱桩;负摩阻力:当桩的周围土体因某种原因发生下沉,其沉降变形大于桩身的沉降变形时,在桩侧表面将出现向下的摩阻力; “M”法:考虑土的弹性抗力在地面或最大冲刷线处为零,随深度成直线比例增长的计算算法;挤土桩:在成桩过程中,造成大量挤土,使桩周围土体受到严重挠动,土的工程性质有很大改变的桩,挤土过程引起的挤土效应主要是地面隆起和土体侧移,导致对周边环境影响较大;这类桩主要有实心的预制桩,下端封闭的管桩、木桩以及沉管灌注桩在锤击或振入的过程中都要将桩位处的土大量排挤开;刚性桩:当桩的入土深度h<=a 则桩的相对刚度较大;视为刚性桩;弹性桩:对αh>且计算σymax发生在y>h/3处的桩,可验算y=h/3处的σy;则也可以根据变形系数α判别,此时桩身抗弯刚度较小,此灌注桩判为弹性桩;群桩效应:摩擦型群桩基础受竖向荷载后,由于承台、桩、土的相互作用使其桩侧阻力、桩端阻力、沉降等性状发生变化而与单桩明显不同,这种群桩不同于单桩的工作形状所产生的效应,称其为群桩效应;复合地基:是指天然地基在地基处理中部分土体得到增强,或被置换,或在天然地基中设置加筋材料,加固区是由基体和增强体两部分组成的人工地基;软土地基:强度低,压缩量较高的软弱土层.多数含有一定的有机物质;人工地基:经过人工加固或处理后的地基;淤泥质土:是指天然孔隙比小于但大于等于的粘性土;简答题:地下水在土中渗流速度的影响因素:答:1影响砂性土渗透性的主要因素有:颗粒大小、级配、密度以及土中封闭气泡;2影响粘性土渗透性的主要因素有:土的矿物成分、结合水膜厚度、土的结构构造以及土中气体;流砂定义及防治原则答:定义:当动水力G D的数值等于或大于土的浮重度γ’时即向上的动水力克服了土粒向下的重力时,土体发生浮起而随水流动,这种现象称为流砂或流土;防治流砂的原则:治砂先治水;①减少或消除基坑内外地下水的水头差;②增长渗流路径;③在向上渗流出口处地表用透水材料覆盖压重以平衡动水力此法多用于闸坝下游处;动水力定义及影响因素答:定义:流动的水对单位体积土骨架作用的力,称为动水力;影响因素:简述地下水位变化对土中自重应力、地基沉降的影响;答:1当地下水位发生下降时,土中的自重应力会增大;地下水位下降后,新增加的自重应力会引起土体本身产生压缩变形;由于这部分自重应力的影响深度很大,故所引起的地面沉降往往是可观的;2地下水位上升时,土中自重应力会减小;地下水位的上升会导致基坑边坡坍塌,或使新浇筑、强度尚低的基础底板断裂;一些地下结构可能因水位上升而上浮;基底压力的分布假设附加应力扩散特性地基附加应力分布特点是答:1、在地面下同一深度的水平面上的附加应力不同,沿力的作用线上的附加应力最大,向两边则逐渐减小;2、距地面愈深,应力分布范围愈大,在同一铅直线上的附加应力不同, 愈深则愈小;土的渗透系数对固结的影响答:试验表明,土在固结过程中其渗透系数随固结度的增大而逐渐减小,在相同的固结时间内,考虑土的渗透系数变化和不考虑土的渗透系数变化所计算得到的孔隙压力, 其值可相差达 2 倍以上;计算结果表明,考虑渗透系数随固结应力的变化,其表面沉降要比渗透系数保持不变的沉降量小,固结过程较慢,相应的固结时间要长;前期固结压力越大,表面沉降将越小,达到相同固结度时所需固结时间也越长;基础宽度对地基压缩层厚度影响什么是土的压缩性土体压缩变形的原因是什么答:土在压力作用下体积缩小的特性称为土的压缩性;原因:土的压缩变形主要是由于外荷载增加,导致地基中附加应力增加,导致地基土中产生附加的有效应力,有效应力导致土颗粒之间相互错动而产生压缩变形,孔隙水压力不引起压缩变形,但孔隙水压力转化为有效应力后会产生压缩变形;沉降计算经验系数ψs的影响因素按分层总和法计算地基的最终沉降量有那些基本假设和步骤答:基本假设: 1地基土是均质、的半无限线性体; 2地基土在外荷载作用下,只产生竖向压缩变形 , 侧向不发生膨胀变形;3采用基底中心点下的附加应力计算地基变形量;步骤:1、根据有关要求和土体性质进行地基分层;2、计算基底压力p及基底附加应力p0;3、计算各分层面上土的自重应力σczi和附加应力σzi,,并绘制分布曲线;4、确定沉降计算深度Zn;5、计算各分层土的平均自重应力σczi=σcz i-1+ σczi/2和平均附加应力σzi=σz i-1+ σzi/2.并设p2i=σczi+σzi;6、计算各分层的变形量Δsi;7、计算地基最终沉降量s;太沙基一维固结理论的基本假设和适应条件答:固结理论的基本假设如下: 1. 土中水的渗流只沿竖向发生,而且渗流服从达西定律,土的渗透系数k为常数;2. 相对土的孔隙、土颗粒和土中水都是不可压缩的,因此,土的变形仅是孔隙体积压缩的结果,而土的压缩服从式a=-de/dp和式a≈tanα=Δe/Δp=e1-e2/p2-p1所表达的压缩定律;3.土是完全饱和的,土的体积压缩量同土孔隙中排出的水量相等,而且压缩变形速率取决于土中水的渗流速率;适应条件:荷载面积远大于压缩土层的厚度,地基中孔隙水主要沿竖向渗流;土渗透固结过程答:1土体孔隙中自由水逐渐排出;2土体孔隙体积逐渐减小;3由孔隙水承担的压力逐渐转移到土骨架来承受,成为有效应力;固结度影响因素地基最终沉降量构成无侧限抗压强度试验适用性及结果整理适用于测定饱和软粘土的无侧限抗压强度及灵敏度;三轴压缩试验按排水条件的不同的试验方法及选择答:三轴压缩试验按排水条件的不同,可分为:不固结不排水剪UU剪、固结不排水剪CU剪、固结排水剪CD剪三种试验方法;当地基土的透水性和排水条件不良而施工速度较快时,可选用不固结不排水剪切试验指标;当地基土的透水性和排水条件较好而施工速度较慢时,可选用固结排水剪切试验指标;当地基土的透水性和排水条件及施工速度界于两者之间时,可选用固结不排水剪切试验指标当建筑物停工或竣工较久之后又突然加层,可选用固结不排水剪切试验指标;比较朗肯土压力理论与库伦土压力理论的基本假定和适用条件朗肯土压力理论基本假定:挡土墙结构,墙背竖直、光滑,其后填土表面水平并无限延伸;适用于墙背垂直光滑而墙厚填土坡度比较简单的情况;库伦土压力理论基本假设:挡土墙和滑动土契体视为刚体,墙后填土为无粘性砂土,当墙身向前或向后偏移时,墙后滑动土契体是沿着墙背和一个通过墙踵的平面发生滑动;适用于砂土或碎石填料的挡土墙计算,可考虑墙背倾斜、填土面倾斜以及墙背与填土间的摩擦等多种因素的影响;分析时,一般沿墙长度方向取1m考虑;墙后积水对挡土墙的危害答:1增加土体的重力,直接加大了侧压力倾覆力矩;2土颗粒间得到充分润滑而减少了土的粘聚力;3墙基础的滑动力也增加;4.使填土的抗剪强度降低,并产生水压力的作用,使作用在挡土墙上的侧压力增大,使挡土墙失稳; 地基承载力定义及影响其大小的因素有哪些答:地基承载力是指地基承受荷载的能力;影响因素:1.地下水对承载力的影响;2.地基的破坏形式;3.地基土的强度指标;4.基础设计的尺寸;5.荷载作用; 地基的加载变形过程p 1/4公式的适用情况简单的无粘性土坡稳定性分析答:1无渗流作用时:无粘性土坡稳定性与坡高无关,仅取决于坡角β;2有渗流作用时,无粘性土坡稳定性系数约降低1/2;可以这么答:一般来说,无粘性土坡稳定性与坡高无关,只和坡角、土的内摩擦角有关,且只要坡角小于土的内摩擦角就稳定;当无粘性土坡有渗流时,除以上因素,还和土体本身的重度有关;粘性土坡稳定性分析中条分法的基本原理答:将混动土体划分为一条条的小块体,分别以各小块体为研究对象,考虑它们自身重力,体块间作用力,反土体对条块的作用力等等,这些力必须使各条块同时处于极限平衡状态,根据里的大小和方向列出方程组求解未知量,但要真正求出各未知量需作一定假设,对不同条分法有不同的假设;地基基础设计计算的原则 答:1基础底面的压力小于地基承载力容许值;2地基及基础的变形值小于建筑物要求的沉降值;3地基及基础的整体稳定性有足够保证;4基础本身的强度、耐久性满足要求;基承载力修正系数为1k 和2k 的确定因素答:与土的类别、标准值、、、含水比有关;刚性台阶宽高比的决定因素相邻墩台间的不均匀沉降差值要求天然地基浅基础设计计算的主要内容答:1.确定基础埋置深度;2.拟定刚性扩大基础尺寸;3.验算地基承载力;4.基底合力偏心距验算;5.验算基础稳定性和地基稳定性;6验算基础沉降;在地基基础设计中必须同时满足的条件答:为了保证建筑物的正常使用与安全,地基与基础必须具有足够的强度,稳定性和耐久性,变形也应在允许范围之内; 基础的埋置深度应主要考虑的因素答:确定基础埋置深度应综合考虑以下因素:地基的地质和地形条件,河流的冲刷程度,当地的冻结深度,上部结构形式以及保证持力层稳定所需的最小埋深和施工技术条件,造价等因素;桩基础的特点及适用条件答:特点:设计正确,施工得当,承载力高、稳定性好、沉降量小而均匀,耗用材料少、施工简便;适用条件:①荷载较大,地基上部土层软弱,适宜的地基持力层位置较深,采用浅基础或人工地基在技术上、经济上不合理时;②河床冲刷较大,河道不稳定或冲刷深度不易计算正确的施工;③当地基计算沉降过大或建筑物对不均匀沉降敏感时;④建筑物承受较大的水平荷载的施工;⑤水位或地下水位较高施工;⑥地震区,在可液化地基中,采用桩基础可增加建筑物抗震能力;灌注桩的缺点 答:1桩身质量不易控制,轻易出现断桩、缩颈、露筋和夹泥的现象;2桩身直径较大,孔底沉积物不易清除干净,因而单桩承载力变化较大;3一般不宜用于水下桩基;护筒的作用是答:1.固定桩位,并作钻孔导向;2.保护孔口,防止孔口土层坍塌;3.隔离孔内孔外表层水,并保持钻孔内水位高出施工水位,以稳定孔壁;泥浆的作用答:1.在孔内产生较大的静水压力,可防止坍孔;2.泥浆向孔外土层渗漏,在钻进过程中,由于钻头的活动,孔壁表面形成层胶泥,具有护壁作用,同时将孔内外水流切断,能稳定孔内水位;3.泥浆相对密度大,具有挟带钻渣的作用,利于钻渣的排出,此外,还有冷却机具和切土润滑作用,降低钻具磨损和发热程度;负摩阻力概念及产生的原因答:定义:当桩的周围土体因某种原因发生下沉,其沉降变形大于桩身的沉降变形时,在桩侧表面将出现向下的摩阻力;原因:1.在桩附近地面大量堆载,引起地面沉降;2.土层中抽取地下水或其他原因,地下水位下降,使土层产生自重固结下沉;3.桩穿过欠压密土层如填土进入硬持力层,土层产生自重固结下沉;4. 桩数很多的密集群桩打桩时,使桩周土中产生很大的超孔隙水压力,打桩停止后桩周土的再固结作用引起下沉;5.在黄土、冻土中的桩,因黄土湿陷、冻土融化产生地面下沉;中性点深度影响因素负摩擦桩轴力分布规律确定单桩竖向承载力最可靠的方法单桩竖向承载力定义及确定方法单桩轴向荷载传递机理和特点答:桩在轴向压力荷载作用下,桩顶将发生轴向位移沉降=桩身弹性压缩+桩底土层压缩之和置于土中的桩与其侧面土是紧密接触的,当桩相对于土向下位移时就产生土对桩向上作用的桩侧摩阻力;桩顶荷载沿桩身向下传递的过程中,必须不断地克服这种摩阻力,桩身轴向力就随深度逐渐减小,传至桩底轴向力也即桩底支承反力,桩底支承反力=桩顶荷载—全部桩侧摩阻力;桩顶荷载是桩通过桩侧摩阻力和桩底阻力传递给土体; 土对桩的支承力=桩侧摩阻力+桩底阻力桩的极限荷载或称极限承载力=桩侧极限摩阻力+桩底极限阻力桩侧摩阻力和桩底阻力的发挥程度与桩土间的变形性态有关,并各自达到极限值时所需要的位移量是不相同的;弯矩计算公式参数含义旋转钻机按泥浆循环程序的分类影响群桩基础承载力和沉降的因素答:有:土的性质、桩长、桩距、桩数、群桩的平面排列和承台尺寸大小等因素;群桩承载力的确定答:群桩承载力等于单桩承载力之和;承台设计内容答:包括承台材料、形状、高度、底面高程和平面尺寸的确定以及强度验算;砂井的主要作用答:的主要作用是排水,砂井施工后砂井与砂形成排水通道,能将软土层的地下水排出而使软土固结,从而提高了;软土地基的物理力学性质的基本特点答:1含水率较高,孔隙比较大;2抗剪强度低;3压缩性较高;4渗透性很小;5结构性明显;6流动性显着;地基处理的原理不同的分类答:可分为以下四类:1排水固结法;利用各种方法使软黏土地基排水固结,从而提高土的强度和减小土的压缩性;2振密、挤密法;采用某种措施,如振动、挤密等,使地基土体增密,以提高土的强度,降低土的压缩性;3置换及拌入法;以砂、碎石等材料置换软土地基中部分软土,或在松软地基中掺人胶结硬化材料,或向地基中注入化学药液产生胶结作用,形成加固体,达到提高地基承载力、减小压缩量的目的;4加筋法;通过在地基中埋设强度较大的土工聚合物,以达到加固地基的目的;的方法有很多,然而不同的方法使用原理也不同,作用也不同,适用范围也不同,具体来看一下:地基处理——机械碾压法原理:挖除浅层软弱图或不良土,分层碾压或夯实土,按回填的材料可分为砂石垫层、碎石垫层、粉煤灰垫层、干渣垫层、土灰土、二灰垫层等;适用范围:常用于基坑面积宽大开挖土方量较大的回填土方工程适用于处理浅层非饱和和软弱地基、湿陷性黄土地基、膨胀土地基、季节性冻土地基、素填土和杂填土地基.地基处理——重锤夯实法原理:可提高持力层的承载力,减小沉降量,消除或部分消除土的湿陷性和胀缩性,防止土的冻胀作用及改善土的抗液化性;适用范围:适用于地下水位以上稍湿的粘性土、砂土、湿陷性黄土、杂填土以及分层填土地基;地基处理——挤淤法原理:采用边强夯、边填碎石、边挤淤的方法,在地基中形成碎石墩体,它可提高地基承载力和减小沉降适用范围:适用于厚度较小的淤泥和淤泥质土地基;应通过现场实验才能确定其适用性;地基处理中改善地基土的工程性质的方法。
东北大学智慧树知到“土木工程”《土力学与地基基础(二)》网课测试题答案4

东北大学智慧树知到“土木工程”《土力学与地基基础(二)》网课测试题答案(图片大小可自由调整)第1卷一.综合考核(共15题)1.只要地基在防止整体破坏方面有足够的安全储备,则无需验算地基变形。
()A、错误B、正确2.某柱下方形基础边长2m,埋深d=1.5m,柱传给基础的竖向力F=800kN,地下水位在地表下0.5m处,则基底压力等于()A.220kPaB.230kPaC.210kPaD.215kPa3.由某土的颗粒级配曲线获得,则该土的不均匀系数Cu为()。
A.50%B.6C.155D.10.9354.在相同条件下,主动土压力Ea与被动土压力Ep的大小关系是()A.Ea≤EpB.EaC.Ea>EpD.Ea≥Ep5.桩侧负摩阻力的产生,使桩身轴力()。
A、增大B、减小C、不变D、无法确定6.下列描述正确的是() A.墙后填土选用粘性土时,因粘性土的蠕变性质能使主动土压力向静止土压力状态发展,从而引起墙背侧压力随时间增加B.墙后填土选用砂性土时,墙后土体的主动土压力状态能够长时间保持C.对填土速度较快、高度较大的挡土墙,粘性填土的抗剪强度指标宜选用不排水剪指标D.在季节冻土地区,墙后填土应选用非冻胀性填料,如碎石、砾砂等7.局部剪切破坏是介于整体剪切破坏和冲剪破坏之间的一种破坏型式。
()A、错误B、正确8.当载荷试验得来的荷载沉降p一s曲线无明显转折点时,压板面积为0.25一0.50m²时的情况下,规定取s=()所对应的压力作为地基承载力特征值,但其值不应大于最大加载量的一半。
A、0.02bB、(0.0—0.02)bC、(0.01—0.015)bD、0.01b9.垫层设计内容包括()。
A、确定垫层的厚度B、确定垫层的宽度C、垫层材料选择D、确定下卧土层承载力10.土体总应力抗剪强度指标为c,φ,有效应力抗剪强度指标为c’,φ’,则其剪切破坏时实际破裂面与大主应力作用面的夹角为()A.B.C.D.11.设计中选择挡土墙形式时,应遵循的原则包括()。
土的抗剪强度 粘聚力和内摩擦角

土的抗剪强度--粘聚力和内摩擦角内摩擦角与黏(内)聚力:土的抗剪强度由滑动面上土的黏聚力〈阻挡剪切)和土的内摩阻力两部分组成。
内摩擦角大小取决于土粒间的摩阻力和连锁作用,内摩擦角反映了土的摩阻性质。
黏聚力是黏性土的特性指标,黏聚力包括土粒间分子引力形成的原始黏聚力和土中化合物的胶结作用形成的固化黏聚力。
因而内摩擦角与黏聚力是土抗剪强度的两个力学指标。
土的抗剪强度指土对剪切破坏的极限抵抗能力,土体的强度问题实质是土的抗剪能力问题。
土的抗剪强度指标——内摩擦角φ、黏(内)聚力Cφ——土的内摩擦角(°)C——土的粘聚力(KPa)φ、C与土的性质有关,还与实验方法、实验条件有关。
因此,谈及强度指标时,应注明它的试验条件。
(直剪实验、三轴剪切试验等)土的抗剪强度第一节概述建筑物由于土的原因引起的事故中,一部分是沉降过大,或是差异沉降过大造成的;另一方面是由于土体的强度破坏而引起的。
对于土工建筑物(如:路堤、土坝等)来说,主要是后一个原因。
从事故的灾害性来说,强度问题比沉降问题要严重的多。
而土体的破坏通常都是剪切破坏;研究土的强度特性,就是研究土的抗剪强度特性。
):是指土体抵抗抗剪切破坏的极限能力,其数值等于剪切破坏①土的抗剪强度(τf时滑动的剪应力。
②剪切面(剪切带):土体剪切破坏是沿某一面发生与剪切方向一致的相对位移,这个面通常称为剪切面。
其物理意义:可以认为是由颗粒间的内摩阻力以及由胶结物和束缚水膜的分子引力所造成的粘聚力所组成。
无粘性土一般无连结,抗剪强度主要是由颗粒间的摩擦力组成,这与粒度、密实度和含水情况有关。
粘性土颗粒间的连结比较复杂,连结强度起主要作用,粘性土的抗剪强度主要与连结有关。
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
最新地基土抗剪强度指标Cφ值的确定

地基土抗剪强度指标Cφ值的确定地基土抗剪强度指标C、φ值的确定1. 抗剪强度的物理意义及基本理论土在外力作用下在剪切面单位面积上所能承受的最大剪应力称为土的抗剪强度。
土的抗剪强度是由颗粒间的内摩察力以及由胶结物和水膜的分子引力所产生粘聚力共同组成。
在法向应力不大时,抗剪强度与法向应力的关系近似为一条直线,这就是抗剪强度的库仑定律。
S=c+σtanφ2. 抗剪强度的试验方法2.1室内剪切试验包括直接剪切试验和三轴剪切试验,主要适用于粘性土和粉土,砂土可按要求的密度制备土样。
2.2 除土工试验以外其他确定抗剪强度C、Φ值的方法2.2.1 根据原位测试数据确定抗剪强度C、Φ值的经验方法(1) 动力触探沈阳地区《建筑地基基础技术规范》(DB21-907-96)资料(深度范围不大于15m)砂土、碎石土内摩察角标准值Φk(2) 标准贯入试验国外砂土N与Φ的关系经验关系式主要有Dunhan、大崎、Peck、Meyerhof等研究的经验公式,见《工程地质手册》(第四版)P193。
经试算(详见国外砂土标贯击数N与内摩察角Φ的关系(按公式计算))采用Φ值进行承载力特征值f ak计算时,对于粉、细砂采用Φ=(12N)0.5+15,对于中、粗、砾砂采用Φ=0.3N+27计算出的数值实际能较为吻合(N为经杆长修正后的标贯击数)。
根据计算成果,N与Φ的对应关系见下表:N与内摩察角Φ(度)的经验关系表(3) 静力触探试验《工程地质手册》(第四版)P210,砂土的内摩察角可根据静力触探参照下表取值。
砂土的内摩察角Φ2.4.2 根据现场剪切试验确定抗剪强度C、Φ值该方法成本较高,一般很少采用,主要用于场地稳定性评价,见《工程地质手册》(第四版)P234。
粗粒混合土的抗剪强度C、Φ值通过现场剪切试验确定。
3. 岩土体抗剪强度指标的经验数据3.1 土的抗剪强度指标经验数据(1) 砂土的内摩察角与矿物成分和粒径的关系(2) 不同成因粘性土的力学性质指标3.2 岩石的抗剪强度指标经验数据3.3 岩石结构面的抗剪强度指标经验数据(1)岩体结构面的抗剪强度指标宜根据现场原位试验确定。
地基土抗剪强度指标C、φ值的确定

地基土抗剪强度指标C、φ值的确定1. 抗剪强度的物理意义及基本理论土在外力作用下在剪切面单位面积上所能承受的最大剪应力称为土的抗剪强度。
土的抗剪强度是由颗粒间的内摩察力以及由胶结物和水膜的分子引力所产生粘聚力共同组成。
在法向应力不大时,抗剪强度与法向应力的关系近似为一条直线,这就是抗剪强度的库仑定律。
S=c+σtanφ2. 抗剪强度的试验方法室内剪切试验包括直接剪切试验和三轴剪切试验,主要适用于粘性土和粉土,砂土可按要求的密度制备土样。
除土工试验以外其他确定抗剪强度C、Φ值的方法2.2.1 根据原位测试数据确定抗剪强度C、Φ值的经验方法(1) 动力触探沈阳地区《建筑地基基础技术规范》(DB21-907-96)资料(深度范围不大于15m)砂土、碎石土内摩察角标准值Φk(2) 标准贯入试验国外砂土N与Φ的关系经验关系式主要有Dunhan、大崎、Peck、Meyerhof等研究的经验公式,见《工程地质手册》(第四版)P193。
经试算(详见国外砂土标贯击数N与内摩计算时,对于粉、细砂采察角Φ的关系(按公式计算))采用Φ值进行承载力特征值fak用Φ=(12N)+15,对于中、粗、砾砂采用Φ=+27计算出的数值实际能较为吻合(N为经杆长修正后的标贯击数)。
根据计算成果,N与Φ的对应关系见下表:N与内摩察角Φ(度)的经验关系表(3) 静力触探试验《工程地质手册》(第四版)P210,砂土的内摩察角可根据静力触探参照下表取值。
砂土的内摩察角Φ2.4.2 根据现场剪切试验确定抗剪强度C、Φ值该方法成本较高,一般很少采用,主要用于场地稳定性评价,见《工程地质手册》(第四版)P234。
粗粒混合土的抗剪强度C、Φ值通过现场剪切试验确定。
3. 岩土体抗剪强度指标的经验数据土的抗剪强度指标经验数据(1) 砂土的内摩察角与矿物成分和粒径的关系(2) 不同成因粘性土的力学性质指标岩石的抗剪强度指标经验数据岩石结构面的抗剪强度指标经验数据(1)岩体结构面的抗剪强度指标宜根据现场原位试验确定。
《土质学与土力学》7土的抗剪强度

土质学与土力学 7土的抗剪强度《土质学与土力学》第七章 土的抗剪强度第一节 概述建筑物由于土的原因引起的事故中,一部分是沉降过大,或是差异沉降过大造成的;另一方面是由于土体的强度破坏而引起的。
对于土工建筑物(如:路堤、土坝等)来说,主要是后一个原因。
从事故的灾害性来说,强度问题比沉降问题要严重的多。
而土体的破坏通常都是剪切破坏;研究土的强度特性,就是研究土的抗剪强度特性。
①土的抗剪强度(τf ):是指土体抵抗抗剪切破坏的极限能力,其数值等于剪切破坏时滑动的剪应力。
②剪切面(剪切带):土体剪切破坏是沿某一面发生与剪切方向一致的相对位移,这个面通常称为剪切面。
其物理意义:可以认为是由颗粒间的内摩阻力以及由胶结物和束缚水膜的分子引力所造成的粘聚力所组成。
无粘性土一般无连结,抗剪强度主要是由颗粒间的摩擦力组成,这与粒度、密实度和含水情况有关。
粘性土颗粒间的连结比较复杂,连结强度起主要作用,粘性突的抗剪强度主要与连结有关。
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
第二节 抗剪强度的基本理论一、库仑定律(剪切定律) 1773年 法国学者在法向应力变化范围不大时,抗剪强度与法向应力的关系近似为一条直线,这就是抗剪强度的库仑定律。
无粘性土:φστtg f ⋅= 粘性土:φστtg f ⋅=+c式中:f τ:土的抗剪强度,Kpa ;σ:剪切面的法向压力,Kpa ;φtg :土的内摩擦系数;φ:土的内摩擦角,度;c :土的内聚力,Kpa 。
σφtg :内摩擦力。
库仑定律说明:(1)土的抗剪强度由土的内摩擦力σφtg 和内聚力c 两部分组成。
(2)内摩擦力与剪切面上的法向应力成正比,其比值为土的内摩擦系数φtg 。
浅谈土及抗剪强度试验

浅谈土的抗剪强度试验岩土工程中土体的破坏主要是剪切破坏,研究土的强度主要就是研究土的抗剪强度,土的抗剪强度是指土抵抗剪切破坏的极限强度,它在很大程度上决定了土的承载力,在建筑物地基设计之前必须测定土的抗剪强度指标(粘聚力c和内摩擦角φ),并据此计算地基的承载力和评价地基的稳定性。
土的抗剪强度指标是通过土工试验测得的,目前室内试验常用的方法是直接剪切试验和三轴压缩试验,野外试验常用的方法是十字板剪切试验和大型直剪试验。
下面就这几种试验方法进行较全面的分析和梳理。
一、室内试验:1、直接剪切试验:直剪试验是最早最简单目前使用最多的测定土的抗剪强度的试验方法。
直剪试验仪有应变控制式和应力控制式两种,一般用应变控制式,因为它能较准确地测定剪应力峰值且操作简便。
直剪试验一般用于测定细粒土的c 和φ及粒径小于2mm砂土的φ,通常每组取4个试样,在4种不同垂直压力(一般在100~400kPa)下进行剪切试验,测得剪应力与位移关系曲线,取曲线上的峰值剪应力(若无峰值取剪切位移达4mm时的强度值)作为该垂直压力下的抗剪强度,通过几个试样的抗剪强度确定强度包线求出c和φ。
直剪试验具有仪器简单、试样的制备和安装方便等优点;但仪器构造决定了试样不是沿土样中最薄弱的面破坏,剪切面上的剪应力分布不均匀,排水条件不能有效控制等,这些缺点使测得的指标不够理想,所以直剪试验多用于二三类普通工程。
直剪试验根据固结、排水和剪切速率等情况的不同又可分为以下5种不同的试验方法:①、快剪试验:适用于渗透系数小于10-6cm/s的细粒土,是在试样施加垂直压力后立即快速剪切,一般用0.8mm/min的速度在3~5分钟内剪损,目的是在剪切过程中尽量避免排水,使试验前后的含水率接近。
当地基土透水性较差排水不良时可用这种方法,但是测出的结果往往离散性较大。
②、固结快剪试验:是在试样上施加垂直压力待排水固结稳定后,再快速施加水平剪切力进行剪切,剪切过程跟快剪一样避免排水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地基土抗剪强度指标Cφ值的确定
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
地基土抗剪强度指标C、φ值的确定
1. 抗剪强度的物理意义及基本理论
土在外力作用下在剪切面单位面积上所能承受的最大剪应力称为土的抗剪强度。
土的抗剪强度是由颗粒间的内摩察力以及由胶结物和水膜的分子引力所产生粘聚力共同组成。
在法向应力不大时,抗剪强度与法向应力的关系近似为一条直线,这就是抗剪强度的库仑定律。
S=c+σtanφ
2. 抗剪强度的试验方法
室内剪切试验
包括直接剪切试验和三轴剪切试验,主要适用于粘性土和粉土,砂土可按要求的密度制备土样。
除土工试验以外其他确定抗剪强度C、Φ值的方法
2.2.1 根据原位测试数据确定抗剪强度C、Φ值的经验方法
(1) 动力触探
沈阳地区《建筑地基基础技术规范》(DB21-907-96)资料(深度范围不大于15m)
砂土、碎石土内摩察角标准值Φk
(2) 标准贯入试验
国外砂土N与Φ的关系经验关系式主要有Dunhan、大崎、Peck、Meyerhof等研究的经验公式,见《工程地质手册》(第四版)P193。
经试算(详见国外砂土标贯击数N与内摩察角Φ的关系(按公式计算))采用Φ值进行承载力特征值f ak计算时,对于粉、细砂采用Φ=(12N)+15,对于中、粗、砾砂采用Φ=+27计算出的数值实际能较为吻合(N 为经杆长修正后的标贯击数)。
根据计算成果,N与Φ的对应关系见下表:
N与内摩察角Φ(度)的经验关系表
(3) 静力触探试验
《工程地质手册》(第四版)P210,砂土的内摩察角可根据静力触探参照下表取值。
砂土的内摩察角Φ
2.4.2 根据现场剪切试验确定抗剪强度C、Φ值
该方法成本较高,一般很少采用,主要用于场地稳定性评价,见《工程地质手册》(第四版)P234。
粗粒混合土的抗剪强度C、Φ值通过现场剪切试验确定。
3. 岩土体抗剪强度指标的经验数据
土的抗剪强度指标经验数据
(1) 砂土的内摩察角与矿物成分和粒径的关系
(2) 不同成因粘性土的力学性质指标
岩石的抗剪强度指标经验数据
岩石结构面的抗剪强度指标经验数据
(1)岩体结构面的抗剪强度指标宜根据现场原位试验确定。
试验应符合现行国家标准《工程岩体试验方法标准》GB/T 50266的规定。
当无条件进行试验时,对于二、三级边坡工程可按下表和反算分析等方法综合确定。
注:a 无经验时取表中的低值;b 极软岩、软岩取表中较低值;c 岩体结构面连通性差取表中的高值;d 岩体结构面浸水时取表中较低值;e 临时性边坡可取表中高值;f 表中数值已考虑结构面的时间效应。
(2) 岩体结构面的结合程度可按下表确定。
(3) 边坡岩体性能指标标准值可按地区经验确定。
对于破坏后果严重的一级边坡应通过试验确定。
(4) 岩体内摩擦角可由岩块内摩擦角标准值按岩体裂隙发育程度乘以下表所列的折减系数确定。
(5) 边坡岩体等效内摩擦角按当地经验确定。
当无经验时,可按下表取值。
注:a 边坡高度较大时宜取低值,反之取高值;坚硬岩、较硬岩、较软岩和完整性好的岩体取高值,软岩、极软岩和完整性差的岩体取低值; b 临时性边坡取表中高值; c 表中数值已考虑时间效应和工作条件等因素。
(6) 土质边坡按水土合算原则计算时,地下水位以下的土宜采用土的自重固结不排水抗剪强度指标;按水土分算原则计算时,地下水位以下的土宜采用土的有效抗剪强度指标。