焊接缺陷图谱

合集下载

焊接工程上存在的质量通病(附图、原因、防治措施)

焊接工程上存在的质量通病(附图、原因、防治措施)

焊接工程上存在的质量通病(附图、原因、防治措施)第一篇:焊接工程上存在的质量通病(附图、原因、防治措施) 焊接工程上存在的质量通病凡是肉眼或低倍放大镜能看到的且位于焊缝表面的缺陷,如咬边(咬肉)、焊瘤、弧坑、表面气孔、夹渣、表面裂纹、焊缝位置不合理等称为外部缺陷;而必须用破坏性试验或专门的无损检测方法才能发现的内部气孔、夹渣、内部裂纹、未焊透、未溶合等称为内部缺陷。

但常见的多是焊后不清理焊渣和飞溅物以及不清理的焊疤。

1、焊缝尺寸不符规范要求1.1现象:焊缝在检查中焊缝的高度过大或过小;或焊缝的宽度太宽或太窄,以及焊缝和母材之间的过渡部位不平滑、表面粗糙、焊缝纵、横向不整齐,还有在角焊缝部位焊缝的下凹量过大。

1.2原因:1.2.1焊缝坡口加工的平直度较差,坡口的角度不当或装配间隙大小不均等而引起的。

1.2.2焊接中电流过大,使焊条熔化过快,控制焊缝成形困难,电流过小,在焊接引弧时会使焊条产生“粘合现象”,造成焊不透或焊瘤。

1.2.3焊工操作熟练程不够,运条方法不当,如过快或过慢,以及焊条角度不正确。

1.2.4埋弧自动焊过程,焊接工艺参数选择不当。

1.3防治措施1.3.1按设计要求和焊接规范的规定加工焊缝坡口,尽量选用机械加工以使坡口角度和坡口边缘的直线度和坡口边缘的直线度达到要求,避免用人工气割、手工铲削加工坡口。

在组对时,保证焊缝间隙的均匀一致,为保证焊接质量打下基础。

1.3.2通过焊接工艺评定,选择合适的焊接工艺参数。

1.3.3焊工要持证上岗,经过培训的焊工有一定的理论基础和操作技能。

1.3.4多层焊缝在焊接表面最后一层焊缝是,在保证和底层熔合的条件下,应采用比各层间焊接电流较小,并用小直径(φ2.0mm~3.0mm)的焊条覆面焊。

运条速度要求均匀,有节奏地向纵向推进,并作一定宽度的横向摆动,可使焊缝表面整齐美观。

2、咬边(咬肉)2.1现象:焊接时的电弧将焊缝边缘熔出的凹陷或沟槽没有得到熔化金属的补充而留下缺口。

无损检测射线常见缺陷图集及分析RT射线检测部分

无损检测射线常见缺陷图集及分析RT射线检测部分

夹 纸 痕 迹
1、它们的表面现象是什么? 夹纸痕迹的表征为一块低密度区域,并几乎覆盖整张胶片。 2、它们产生的原因是什么? 如果胶片和铅箔增感屏之间存在一张纸,并产生了投影,则会出 现夹纸痕迹。 3、这些现象何时可能发生? 如果没有去掉衬纸,则会发生这种情况。 4、如何检测夹纸痕迹? 只需在有衬纸或无衬纸两种情况下进行曝光检测。 5、如何可以避免它们? 确保在曝光前去掉全部衬纸。
折 痕 曝 光 前
1、折痕的表面现象是什么? 折痕(曝光前)的表征为白月牙状显示,其密度低于邻近的胶片区域(黑度较低)。 2、它们产生的原因是什么? 曝光前弯曲胶片用力过大或过猛都会导致这种类型的折痕。 3、这些现象何时可能发生? 通常出现在从包装盒取出胶片或在曝光前装入暗袋时处理不当的情况下。 4、如何检验曝光前的折痕? 有意识地将某些胶片卷曲或扭折,使其曝光,然后按正常方法冲洗。检验胶片,这时您可 能会在胶片处理不当的地方风到一些颜色较淡的折痕。 5、如何可以避免它们? 严格遵守暗室操作规程,始终小心处理胶片,特别避免手指对胶片施以任何类型的压力。
一、常见缺陷及示意图
二、其他几种缺陷 三、常见伪缺陷
一、常见缺陷
1、圆形缺陷 定义:长宽比小于等于3的非裂纹、未焊透和未熔合缺陷。 圆形缺陷包括气孔、块状夹渣、夹钨等缺陷。气孔
气孔的成像:呈暗色斑点,中心黑度较大,边缘较浅平滑过渡,轮廓较清晰。 夹渣(非金属)的成像:呈暗色斑点,黑度分布无规律,轮廓不圆滑,小点 状夹渣轮廓较不清晰。 夹钨(金属夹渣)成像:呈亮点,轮廓清晰。
未融合
边缘未融合
注意:砂轮片磨伤痕迹(不是未融合)
5、裂纹
定义:裂纹是指材料局部断裂形成的缺陷。 影像特征:底片上裂纹和典型影像是轮廓分明的黑线或黑丝。其细节 特征包括:黑线或黑丝上有微小的锯齿,有分叉,粗细和黑度有时有 变化,有些裂纹影像呈较粗的黑线与较细的黑丝相互缠绕状;线的端 部尖细,端头前方有时有丝状阴影延伸。

射线探伤RT缺陷及示意图

射线探伤RT缺陷及示意图

夹 纸 痕 迹
1、它们的表面现象是什么? 夹纸痕迹的表征为一块低密度区域,并几乎覆盖整张胶片。 2、它们产生的原因是什么? 如果胶片和铅箔增感屏之间存在一张纸,并产生了投影,则会出 现夹纸痕迹。 3、这些现象何时可能发生? 如果没有去掉衬纸,则会发生这种情况。 4、如何检测夹纸痕迹? 只需在有衬纸或无衬纸两种情况下进行曝光检测。 5、如何可以避免它们? 确保在曝光前去掉全部衬纸。
到静电放电现象。如果您看到冲洗的胶片有锯齿状线条或黑色斑 点,则极有可能是出现了静电曝光斑点。 5、如何可以避免? 在相对湿度大于40%的环境下保存胶片,从包装盒取出胶片时避免 快速滑动或移动胶片。
定 影 液 斑 点
1、它们的表面现象是什么? 由定影液产生的斑点表征为一些小白圆点,其密度较周围胶片区域的密度底。 2、它们产生的原因是什么? 在显影之前,溅出的定影液滴,即使极其微量,都有可能导致产生白色斑点。 3、这些现象何时可能发生? 无论何时,只要有化学污染的存在,都可能会发生这种现象。通常发生最多的 是由于暗室布局不当或冲洗不小心引起。 4、如何可以避免它们? 保证胶片装卸区域的安全干燥清洁,不能让定影液溅在胶片上。
一、常见缺陷及示意图 二、其他几种缺陷 三、常见伪缺陷
1、圆形缺陷 定义:长宽比小于等于3的非裂纹、未焊透和未熔合缺陷。 圆形缺陷包括气孔、块状夹渣、夹钨等缺陷。气孔 气孔的成像:呈暗色斑点,中心黑度较大,边缘较浅平滑过渡,轮廓 较清晰。 夹渣(非金属)的成像:呈暗色斑点,黑度分布无规律,轮廓不圆 滑,小点状夹渣轮廓较不清晰。 夹钨(金属夹渣)成像:呈亮点,轮廓清晰。
显 影 液 斑 点
1.它们的表面现象是什么? 由显现液产生的斑点同样表征为一些小圆点,但是其黑度较周围胶片区域 的黑度高。 •它们产生的原因是什么? 在冲洗胶片之前,触摸或显影液溅出都可能会导致产生这种类型的斑点。 •这些现象何时可能发生? 暗室布局不当或冲洗不当都可能导致这种斑点。 •如何可以避免它们? 勿使任何类型的化学药液溅出,确保胶片装入区域完全干燥。

常见的焊接缺陷(内部缺陷)

常见的焊接缺陷(内部缺陷)

常见的焊接缺陷〔内部缺陷〕:〔1〕未焊透:母体金属接头处中间〔*坡口〕或根部〔V、U坡口〕的钝边未完全熔合在一起而留下的局部未熔合。

未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。

原因分析造成未焊透的主要原因是:对口间隙过小、坡口角度偏小、钝边厚、焊接线能量小、焊接速度快、焊接操作手法不当。

防治措施⑴对口间隙严格执行标准要求,最好间隙不小于2㎜。

⑵对口坡口角度,按照壁厚和DL/T869-2004"火力发电厂焊接技术规程"的要求,或者按照图纸的设计要求。

一般壁厚小于20㎜的焊口采用V型坡口,单边角度不小于30°,不小于20㎜的焊口采用双V型或U型等综合性坡口。

⑶钝边厚度一般在1㎜左右,如果钝边过厚,采用机械打磨的方式修整,对于单V型坡口,可不留钝边。

⑷根据自己的操作技能,选择适宜的线能量、焊接速度和操作手法。

⑸使用短弧焊接,以增加熔透能力。

〔2〕未熔合:固体金属与填充金属之间〔焊道与母材之间〕,或者填充金属之间〔多道焊时的焊道之间或焊层之间〕局部未完全熔化结合,或者在点焊〔电阻焊〕时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。

原因分析造成未熔合的主要原因是焊接线能量小,焊接速度快或操作手法不恰当。

防治措施⑴适当加大焊接电流,提高焊接线能量;⑵焊接速度适当,不能过快;⑶熟练操作技能,焊条〔枪〕角度正确。

〔3〕气孔:在熔化焊接过程中,焊缝金属内的气体或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或外表形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔〔包括蜂窝状气孔〕等,特别是在电弧焊中,由于冶金过程进展时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。

射线探伤评片图--气孔36张

射线探伤评片图--气孔36张

焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 密集气孔
其它缺陷
编号
焊接方法
手工
焊缝型式 焊接位置
单面 水平
重点观察缺陷
气孔
其它缺陷
编号
焊接方法
焊缝型式 焊接位置
重点观察缺陷
其它缺陷
手工
单面
水平
气孔
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 气孔
其它缺陷
焊缝型式 焊接位置 单面 水平
重点观察缺陷 气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 密集气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 链状气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 表面气孔
其它缺陷
编号
凸瘤中的气孔
其它缺陷
编号 QK47 CK48
焊接方法 手工
焊缝型式 焊接位置 单面 垂直 水平
重点观察缺陷 条形气孔 密集气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 气孔(夹珠)
其它缺陷
编号
焊接方法
焊缝型式 焊接位置
重点观察缺陷
其它缺陷
手工
单面
水平
夹珠
编号
焊接方法 手工
其它缺陷
QK33 QK35
编号
焊接方法 自动
焊缝型式 焊接位置 双面 平
重点观察缺陷 链状气孔

射线常见缺陷图

射线常见缺陷图

本文源自:中国无损检测论坛weld-01 (High - Low、高-低)也叫错边welld-02 (Incomplete Root Fusion、根部未熔合)welld-03 (Insuffucient Reinforcement、内凹)welld-04 (Excess Root Penetration、根部焊瘤)(External Undercut、外部咬肉)welld-06(Internal Undercut、内部咬肉)welld-07(Root Concavity、根部凹陷) (Root Concavity、根部凹陷)welld-08(Burn Through、烧穿) (Burn Through、烧穿)welld-09(Isolated Slag Inclusion、单个的夹渣) (Isolated Slag Inclusion、单个的夹渣)Wagon Track - Slag Line、线状夹渣线状夹渣(Interrun Fusion、内部未熔合) (Interrun Fusion、内部未熔合)welld-12(Lack of Sidewall Fusion、内侧未熔合) (Lack of Sidewall Fusion、内侧未熔合)welld-13(Porosity、气孔) (Porosity、气孔)(Cluster Porosity、链状气孔) (Cluster Porosity、链状气孔)welld-15(Hollow Bead、夹珠) (Hollow Bead、夹珠)welld-16(Transverse Crack、横向裂纹) (Transverse Crack、横向裂纹)(Centerline Crack、中心线裂纹) (Centerline Crack、中心线裂纹)welld-18(Root Crack、根部裂纹) (Root Crack、根部裂纹)(Tungsten Inclusion)夹钨(Tungsten Inclusion)夹钨。

常见缺陷图

常见缺陷图

General Welding DiscontinuitiesThe following discontinuities are typical of all types of welding.Cold lap is a condition where the weld filler metal does not properly fuse with the base metal or the previous weld pass material (interpass cold lap). The arc does not melt the base metal sufficiently and causes the slightly molten puddle to flow into base material without bonding.Porosity(气孔)is the result of gas entrapment in the solidifying metal. Porosity can take many shapes on a radiograph but often appears as dark round or irregular spots or specks appearing singularly, in clusters or rows. Sometimes porosity is elongated and may have the appearance of having a tail This is the result of gas attempting to escape while the metal is still in a liquid state and is called wormhole porosity. All porosity is a void in the material it will have a radiographic density more than the surrounding area.Cluster porosity(密集气孔)is caused when flux coated electrodes are contaminated with moisture. The moisture turns into gases when heated and becomes trapped in the weld during the welding process. Cluster porosity appear just like regular porosity in the radiograph but the indications will be grouped close together.Slag inclusions(夹渣)are nonmetallic solid material entrapped in weld metal or between weld and base metal. In a radiograph, dark, jagged asymmetrical shapes within the weld or along the weld joint areas are indicative of slag inclusions.Incomplete penetration (IP) or lack of penetration (LOP)(未焊透)occurs when the weld metal fails to penetrate the joint. It is one of the most objectionable weld discontinuities. Lack of penetration allows a natural stress riser from which a crack may propagate. The appearance on a radiograph is a dark area with well-defined, straight edges that follows the land or root face down the center of the weldment.Incomplete fusion(未融合)is a condition where the weld filler metal does not properly fuse with the base metal. Appearance on radiograph: usually appears as a dark line or lines oriented in the direction of the weld seam along the weld preparation or joining area.Internal concavity or suck back(内凹)is condition where the weld metal has contracted as it cools and has been drawn up into the root of the weld. On a radiograph it looks similar to lack of penetration but the line has irregular edges and it is often quite wide in the center of the weld image.Internal or root undercut(根部咬边)is an erosion of the base metal next to the root of the weld. In the radiographic image it appears as a dark irregular line offset from the centerline of the weldment. Undercutting is not as straight edged as LOP because it does not follow a ground edge.External or crown undercut(外咬边)is an erosion of the base metal next to the crown of the weld. In the radiograph, it appears as a dark irregular line along the outside edge of the weld area.Offset or mismatch(错边)are terms associated with a condition where two pieces being welded together are not properly aligned. The radiographic image is a noticeable difference in density between the two pieces. The difference in density is caused by the difference in material thickness. The dark, straight line is caused by failure of the weld metal to fuse with the land area.Inadequate weld reinforcement(未焊满)is an area of a weld where the thickness of weld metal deposited is less than the thickness of the base material. It is very easy to determine by radiograph if the weld has inadequate reinforcement, because the image density in the area of suspected inadequacy will be more (darker) than the image density of the surrounding base material.Excess weld reinforcement(焊缝余高过高)is an area of a weld that has weld metal added in excess of that specified by engineering drawings and codes. The appearance on a radiograph is a localized, lighter area in the weld. A visual inspection will easily determine if the weld reinforcement is in excess of that specified by the engineering requirements.Cracks(裂纹)can be detected in a radiograph only when they are propagating in a direction that produces a change in thickness that is parallel to the x-ray beam. Cracks will appear as jagged and often very faint irregular lines. Cracks can sometimes appear as "tails" on inclusions or porosity.Discontinuities in TIG weldsThe following discontinuities are peculiar to the TIG welding process. These discontinuities occur in most metals welded by the process including aluminumand stainless steels. The TIG method of welding produces a clean homogeneous weld which when radiographed is easily interpreted.Tungsten inclusions(夹钨). Tungsten is a brittle and inherently dense material used in the electrode in tungsten inert gas welding. If improper welding procedures are used, tungsten may be entrapped in the weld. Radiographically, tungsten is more dense than aluminum or steel; therefore, it shows as a lighter area with a distinct outline on the radiograph.Oxide inclusions are usually visible on the surface of material being welded (especially aluminum). Oxide inclusions are less dense than the surrounding materials and, therefore, appear as dark irregularly shaped discontinuities in the radiograph.Discontinuities in Gas Metal Arc Welds (GMAW)The following discontinuities are most commonly found in GMAW welds. Whiskers are short lengths of weld electrode wire, visible on the top or bottom surface of the weld or contained within the weld. On a radiograph they appear as light, "wire like" indications.Burn-Through(烧穿)results when too much heat causes excessive weld metal to penetrate the weld zone. Often lumps of metal sag through the weld creating a thick globular condition on the back of the weld. These globs of metal are referred to as icicles. On a radiograph, burn through appears as dark spots, which are often surrounded by light globular areas (icicles).Radiograph Interpretation – Castings(铸件)The major objective of radiographic testing of castings is the disclosure of defects that adversely affect the strength of the product. Casting are a product form that often receive radiographic inspection since many of the defects produced by the casting process are volumetric in nature and, thus, relatively easy to detect with this method. These discontinuities of course, are related to casting process deficiencies, which, if properly understood, can lead to accurate accept-reject decisions as well as to suitable corrective measures. Since different types and sizes of defects have different effects of the performance of the casting, it is important that the radiographer is able to identify the type and size of the defects. ASTM E155, Standard for Radiographs of castings has been produced to help the radiographer make a better assessment of the defects found components. The castings used to produce the standard radiographs have been destructively analyzed to confirm the size and type of discontinuities present. The following is a brief description of the most common discontinuity types included in existing reference radiograph documents (in graded types or as single illustrations).RADIOGRAPHIC INDICATIONS FOR CASTINGSGas porosity or blow holes are caused by accumulated gas or air which is trapped by the metal. These discontinuities are usually smooth-walled rounded cavities of a spherical, elongated or flattened shape. If the sprue is not high enough to provide the necessary heat transfer needed to force the gas or air out of the mold, the gas or air will be trapped as the molten metal begins to solidify. Blows can also be caused by sand that is too fine, too wet, or by sand that has a low permeability so that gas can't escape. Too high a moisture content in the sand makes it difficult to carry the excessive volumes of water vapor away from the casting. Another cause of blows can be attributed to using green ladles, rusty ordamp chills and chaplets.Sand inclusions and dross are nonmetallic oxides, appearing on the radiograph as irregular, dark blotches. These come from disintegrated portions of mold or core walls and/or from oxides (formed in the melt) which have not been skimmed off prior to introduction of the metal into the mold gates. Careful control of the melt, proper holding time in the ladle and skimming of the melt during pouring will minimize or obviate this source of trouble.Shrinkage is a form of discontinuity that appears as dark spots on the radiograph. Shrinkage assumes various forms but in all cases it occurs because molten metal shrinks as it solidifies, in all portions of the final casting. Shrinkage is avoided by making sure that the volume of the casting is adequately fed by risers which sacrificially retain the shrinkage. Shrinkage can be recognized in a number of characteristic by varying appearances on radiographs. There are at least four types: (1) cavity; (2) dendritic; (3) filamentary; and (4) sponge types. Some documents designate these types by numbers, without actual names, to avoid possible misunderstanding.Cavity shrinkage appears as areas with distinct jagged boundaries. It may be produced when metal solidifies between two original streams of melt, coming from opposite directions to join a common front; cavity shrinkage usually occurs at a time when the melt has almost reached solidification temperature and there is no source of supplementary liquid to feed possible cavities.Dendritic shrinkage is a distribution of very fine lines or small elongated cavitiesthat may vary in density and are usually unconnected.Filamentary shrinkage usually occurs as a continuous structure of connected linesor branches of variable length, width and density, or occasionally as a network.Sponge shrinkage shows itself as areas of lacy texture with diffuse outlines,generally toward the mid-thickness of heavier casting sections. Sponge shrinkagemay be dendritic or filamentary shrinkage; filamentary sponge shrinkage appearsmore blurred because it is projected through the relatively thick coating between the discontinuities and the film surface.Cracks are thin (straight or jagged) linearly disposed discontinuities that occur after the melt has solidified. They generally appear singly and originate at casting surfaces.Cold shuts generally appear on or near a surface of cast metal as a result of two streams of liquid meeting and failing to unite. They may appear on a radiograph as cracks or seams with smooth or rounded edges.Inclusions are nonmetallic materials in a supposedly solid metallic matrix. They may be less or more dense than the matrix alloy and will appear on the radiograph, respectively, as darker or lighter indications. The latter type is more common in light metal castings.Core shift shows itself as a variation in section thickness, usually on radiographicviews representing diametrically opposite portions of cylindrical casting portions.Hot tears are linearly disposed indications that represent fractures formed in ametal during solidification because of hindered contraction. The latter may occurdue to overly hard (completely unyielding) mold or core walls. The effect of hottears, as a stress concentration, is similar to that of an ordinary crack; how tearsare usually systematic flaws. If flaws are identified as hot tears in larger runs of a casting type, they may call for explicit improvements in technique.Misruns appear on the radiograph as prominent dense areas of variable dimensions with a definite smooth outline. They are mostly random in occurrence and not readily eliminated by specific remedial actions in the process.Mottling is a radiographic indication that appears as an indistinct area of more or less dense images. The condition is a diffraction effect that occurs on relatively vague, thin-section radiographs, most often with austenitic stainless steel. Mottling is caused by interaction of the object's grain boundary material with low-energyX-rays (300 kV or lower). Inexperienced interpreters may incorrectly consider mottling as indications of unacceptable casting flaws. Even experienced interpreters often have to check the condition by re-radiography from slightly different source-film angles. Shifts in mottling are then very pronounced, while true casting discontinuities change only slightly in appearance.Radiographic Indications for Casting Repair WeldsMost common alloy castings require welding either in upgrading from defective conditions or in joining to other system parts. It is mainly for reasons of casting repair that these descriptions of the more common weld defects are provided here. The terms appear as indication types in ASTM E390. For additional information,see the Nondestructive Testing Handbook, Volume 3, Section 9 on the "Radiographic Control of Welds."Slag is nonmetallic solid material entrapped in weld metal or between weld material and base metal. Radiographically, slag may appear in various shapes, from long narrow indications to short wide indications, and in various densities, from gray to very dark.Porosity is a series of rounded gas pockets or voids in the weld metal, and is generally cylindrical or elliptical in shape.Undercut is a groove melted in the base metal at the edge of a weld and left unfilled by weld metal. It represents a stress concentration that often must be corrected, and appears as a dark indication at the toe of a weld.Incomplete penetration, as the name implies, is a lack of weld penetration through the thickness of the joint (or penetration which is less than specified). It is located at the center of a weld and is a wide, linear indication.Incomplete fusion is lack of complete fusion of some portions of the metal in a weld joint with adjacent metal; either base or previously deposited weld metal. On a radiograph, this appears as a long, sharp linear indication, occurring at the centerline of the weld joint or at the fusion line.Melt-through is a convex or concave irregularity (on the surface of backing ring, strip, fused root or adjacent base metal) resulting from complete melting of a localized region but without development of a void or open hole. On a radiograph, melt-through generally appears as a round or elliptical indication.Burn-through is a void or open hole into a backing ring, strip, fused root or adjacent base metal.Arc strike is an indication from a localized heat-affected zone or a change in surface contour of a finished weld or adjacent base metal. Arc strikes are caused by the heat generated when electrical energy passes between surfaces of the finished weld or base metal and the current source.Weld spatter occurs in arc or gas welding as metal particles which are expelled during welding and which do not form part of the actual weld: weld spatter appears as many small, light cylindrical indications on a radiograph.Tungsten inclusion is usually denser than base-metal particles. Tungsten inclusions appear most linear, very light radiographic images; accept/reject decisions for this defect are generally based on the slag criteria.Oxidation is the condition of a surface which is heated during welding, resulting in oxide formation on the surface, due to partial or complete lack of purge of the weld atmosphere. Also called sugaring.Root edge condition shows the penetration of weld metal into the backing ring or into the clearance between backing ring or strip and the base metal. It appears inradiographs as a sharply defined film density transition.Root undercut appears as an intermittent or continuousgroove in the internal surface of the base metal, backingring or strip along the edge of the weld root.Real-time RadiographyReal-time radiography (RTR), or real-time radioscopy, is a nondestructive test (NDT) method whereby an image is produced electronically rather than on film so that very little lag time occurs between the item being exposed to radiation and the resulting image. In most instances, the electronic image that is viewed, results from the radiation passing through the object being inspected and interacting with a screen of material that fluoresces or gives off light when the interaction occurs. The fluorescent elements of the screen form the image much as the grains of silver form the image in film radiography. The image formed is a "positive image" since brighter areas on the image indicate where higher levels of transmitted radiation reached the screen. This image is the opposite of the negative image produced in film radiography. In other words, with RTR, the lighter, brighter areas represent thinner sections or less dense sections of the test object.Real-time radiography is a well-established method of NDT having applications in automotive, aerospace, pressure vessel, electronic, and munition industries, among others. The use of RTR is increasing due to a reduction in the cost of the equipment and resolution of issues such as the protecting and storing digital images. Since RTR is being used increasingly more, these educational materials were developed by the North Central Collaboration for NDT Education (NCCE) to introduce RTR to NDT technician students.Real-time Radiography: An Introductory Course Module for NDT Students Download PDF File。

线束焊锡工序不良图例

线束焊锡工序不良图例

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)焊接后即时进行低温退火,去氢处理,消除焊接时产 生的应力,并使氢及时扩散到外界去。
3)选用低氢型焊条和碱性焊剂等;焊材按规定烘干,并 严格清理坡口。
4)加强焊接时的保护和被焊处表面的清理,避免氢的侵 入。
5)选用合理的焊接规范(例如:焊接速度过大或过小均 易产生淬硬组织),采用合理的对口组装焊接顺序,以改
善焊件的应力状态。
未熔合示意图
焊缝未熔合X光底片
未熔合1
未熔合2
未熔合3
未熔合4
未熔合5 未熔合7
未熔合6 未熔合8
坡口咬边(未熔)示意图
坡口咬边(未熔)X光底片
坡口咬边(未熔)1
坡口咬边(未熔)2
坡口咬边(未熔)影像的表面特征是较黑 的细长起伏宽度不一的黑线{线内常含有熔 渣},可以是一根黑线,也可以是多根黑线, 它产生的原因是长条形空腔出现在焊缝坡 口的两侧。
5、未焊透的危害:
1)未焊透也是一种比较危险的缺陷,其危害性取 决于缺陷的形状、深度和长度。
2)未焊透缺陷不仅降低了焊接接头的机械性能, 而且在未焊透处的缺口和端部形成应力集中点, 承载后往往会引起裂纹,是一种危险性缺陷,在 受压焊缝中,这类缺陷一般是不允许存在的。
4、防止措施:
合理选用坡口型式,装配间隙和采用正确 的焊接工艺等。
3)熔池小,冷却速度快
熔池的体积,手工焊约2cm3~10 cm3,自动焊约9 cm3~30 cm3,金属从熔池到凝固只有几秒钟,在这样 短的时间里,冶金反应是不平衡的,因此焊缝金属成分 不均匀,偏析较大。
2、焊缝的结晶特点
焊接熔池从高温冷却到常温,其间经历过两次组织变化过 程;第一次是液态金属转变为固体金属的结晶过程,称为 一次结晶;第二次是温度降低到相变温度时,发生组织转 变,称为第二次结晶。
夹钨示意图
焊缝夹钨X光底片
夹钨1 夹钨3
夹钨2 夹钨4
夹钨5 夹钨7
夹钨6 夹钨8
夹钨影像的表面特征为焊缝中出现一些不 规则的白色斑点,它们是由焊接过程中残 留的小块钨渣引起的。
夹渣示意图
焊缝夹渣X光底片
夹渣1
夹渣2
夹渣3
夹渣4
夹渣5 夹渣7
夹渣6
八、夹渣
夹渣在焊缝中呈现的形态是点状或条状的宽度不 一、黑度不一的影像,它们产生的原因是焊接过 程中焊药熔渣或其它低密度杂质清理不干净而留 存在焊缝中 。
热影响区纵裂1
热影响区纵裂2
热影响区撕裂呈线性黑色锯齿状,平行于熔 合线,穿晶扩展,表面无明显氧化色彩, 属脆性断口的延迟裂纹。
四、母材裂纹X光底片
母材裂纹1
母材裂纹2
五、裂纹
裂纹的分类方法: 按延伸方向可分为纵向裂纹、横向裂纹、
辐射状裂纹; 按发生部位可分为焊缝裂纹、热影响区裂
纹、熔合区裂纹、焊趾裂纹、弧坑裂纹、 母材裂纹; 按发生条件和时机可分为热裂纹、冷裂纹、 再热裂纹。
3、再热裂纹产生的机理
是指某些含钼、钒、铬、铌、钛等沉淀强化元素 的低合金高强钢和耐热钢,焊接冷却后又重新加 热(通常是消除应力热处理)的过程中,在焊接 热影响区的粗晶区产生的裂纹。产生裂纹的原因 是再加热时焊接残余应力松弛,导致较大的附加 变形,与此同时热影响区的粗晶部位会析出合金 碳化物组成的沉淀硬化相,如果粗晶部位的蠕变 塑性不足以适应应力松弛所产生的附加变形,则 沿晶界发生裂纹。再热裂纹的敏感温度区间为 550℃-650℃。
2)氢的聚集作用: 在焊接高温作用下,氢以原子状态进入熔池中,随着熔池温度的不断
降低,氢在金属中的溶解度急剧下降;在金属发生相变时其溶解度将 发生突变。焊接时冷却速度很快,氢来不及逸出而残留在焊缝中,过 饱和的氢就向热影响区扩散,聚集在熔合线附近,氢原子结合成氢分 子,以气体状态进入到金属的细微孔隙中,并造成很大的压力,使局 部产生很大的应力而形成冷裂纹。 氢的扩散在不同材料中速度不同,因此这类冷裂纹产生的时间也不同, 有时在焊接后立即出现,有时在焊后几天,几周甚至更长的时间才出 现,这就是冷裂纹的延迟性,具有更大的危险性。
焊缝缺陷图谱
于静泊 哈尔滨工业大学(威海)材料学院
一、焊接基本知识
1、焊接的冶金特点
什么叫焊接:
两个分离的物体(同种或异种材料)通过原子或 分子之间的结合和扩散造成永久性联接的工艺过 程叫焊接。
熔化焊是金属材料焊接的主要方法: 熔化焊接时,被焊金属在热源作用下被加热,发
生局部熔化,同时熔化了的金属、熔渣、气相之 间进行着一系列影响焊缝金属的成分、组织和性 能的化学冶金反应,随着热源的离开,熔化金属 开始结晶,由液态转为固态,形成焊缝。
产生裂纹的三大因素: 拘束应力、淬硬组织和扩散氢。 延迟裂纹发生的部位: 热影响区,少数在焊缝上,纵向和横向都有发生。
常出现在低合金高强钢和中、高碳钢的焊接接头。 焊趾裂纹、热影响区裂纹、焊道下裂纹、根部裂 纹等都是延迟裂纹常见的形态。
裂纹微观形态: 穿晶开裂,也有沿晶开裂。 裂纹是危害性最大的一种焊接缺陷: 裂纹是一种面积型缺陷[具有三维尺寸的缺陷称为
二、焊缝横向裂纹X光底片
焊缝横向裂纹1 焊缝横向裂纹3
焊缝横向裂纹2 焊缝横向裂纹4
焊缝横向裂纹的表征是横在焊接影 像上的一根细小黑线(直线或曲 线),它产生的原因是由焊缝上的 金属破裂引起的。当焊接应力为拉 应力并与氢的析集和淬火脆化同时 发生时,极易产生冷裂纹。
三、热影响区纵向裂纹X光底片
2)按残留固体物质种类,夹渣可分为非金 属夹渣和金属夹渣。
3)非金属夹渣的主要成分是硅酸盐,也有 一些是氧化物和硫化物,它们主要来自焊 条药皮和焊剂熔渣。金属夹渣最常见的是 钨夹渣(偶见钢质夹珠),它是由钨极氩 弧焊中的钨极烧损,熔入焊缝中形成。
4、产生非金属夹渣的主要原因:
焊接电流过小,焊接速度太快;熔池金属 凝固过快熔渣来不及浮起;运条不正确; 铁水与熔渣分离不好;边缘和层间清渣不 彻底;基本金属和焊接材料化学成分不当, 含硫,磷量较多等。
熔化焊的冶金特点:
1)温度高
以手工电弧焊为例,电弧温度高达6000℃~8000℃,熔 滴温度约1800℃~2400℃,在如此高温下,外界气体会 大量分解,溶入液态金属中,随后又在冷却过程中析出, 所以焊缝易形成气孔缺陷。
2)温度梯度大
焊接是局部加热,熔池温度在1700℃以上,而其周围是 冷态金属,形成很陡的温度梯度,从而会导致较大的内 应力,引起变形或产生裂纹缺陷。
1、热裂纹产生的机理
发生于焊缝金属凝固末期,敏感温度区间大致在 固相线附近的高温区,最常见的热裂纹区是结晶 裂纹,其生成原因是在焊缝金属凝固过程中,结 晶偏析使杂质生成的低熔点共晶物富集于晶界, 形成所谓“液态薄膜”,由于焊缝凝固收缩而受 到拉应力,最终开裂形成裂纹。
结晶裂纹最常见的情况是沿焊缝中心长度方向开 裂,为纵向裂纹。有时也发生在焊缝内部两个柱 状晶体之间,为横向裂纹。
一次结晶从熔合线上开始,晶体的生长方向指向溶池中心, 形成柱状晶体,当柱状晶生长至相互接触时,结晶过程即 告结束。焊缝表面形态以及热裂纹、气孔等缺陷的成因、 形态、位置均与一次结晶有关。
对低碳钢及低合金钢,一次结晶的组织为奥氏体,继续冷 却到低于相变温度时,奥氏体分解为铁素体和珠光体,冷 却速度影响着铁素体和珠光体的比率和大小,进而影响焊 缝的强度、硬度和塑性韧性,当冷却速度很大时,有可能 产生淬硬组织马氏体,冷裂纹的形成与淬硬组织有关 。
二、焊接缺陷的分类
1.外部缺陷 在焊缝的表面,用肉眼或低倍放大镜就可看到,
如咬边,焊瘤,弧坑,表面气孔和裂纹等。 2.内部缺陷 位于焊缝内部,必须通过各种无损检测方法或破
坏性试验才能发现。内部缺陷有未焊透,未熔合, 夹渣,气孔,裂纹等,这些缺陷是我们无损检测 人员检查的主要对象。
三、焊缝缺陷的危害性:
体积型缺陷,具有二维尺寸(第三维尺寸极小) 的缺陷称为面积性缺陷],它的出现将显著减少承 载面积,更严重的是裂纹端部形成尖锐缺口,应 力高度集中,很容易扩展导致破坏。
防止裂纹的措施
1)焊前预热,焊后缓慢冷却,使热影响区的奥氏体分解 能在足够高温度区间内进行,避免淬硬组织的产生,同时 也有减少焊接应力的作用。
七、未焊透
1、定义: 母材根部钝边金属之间没有熔化,焊缝金
属没有进入接头的根部或根部未完全熔透 的现象叫未焊透。 2、未焊透类型: 可分为双面焊未焊透和单面焊未焊透两种。 3、未焊透型状: 可分为双边未焊透与单边未焊透两种。
4、未焊透产生的原因:
焊接电流过小或运条速度过快,焊接速度过快; 坡口角度太小;根部钝边太厚;组对间隙太小; 焊条角度不当;电孤太长及电弧偏吹等。
1)由于缺陷的存在,减少了焊缝的承载 截面积,削弱了静力拉伸强度。
2)由于缺陷形成缺口,缺口尖端会发生 应力集中和脆化现象,容易产生裂纹并扩 展。
3)缺陷可能穿透焊缝,发生泄漏,影响 致密性。
纵向裂纹示意图
一、焊缝纵向裂纹X光底片
焊缝纵向裂纹1
焊缝纵向裂纹2
焊缝纵向裂纹3
焊缝纵向裂纹4
焊缝纵向裂纹5
3、焊缝的组成及热影响区组织 焊接接头由焊缝和热影响区两部分组成。
二次结晶不仅仅发生在焊缝,也发生在靠近焊缝 的基本金属区域,该区域在焊接过程中受到不同 程度的加热,在不同温度下停留一段时间后又以 不同速度冷却下来,最终获得各不相同的组织和 机械性能,称为热影响区。根据组织特征可将热 影响区划分为熔合区、过热区、相变重结晶区和 不完全重结晶区四个小区,其中熔合区和过热区 组织晶粒粗大,塑性很低,是产生裂纹、局部脆 性破坏的发源地,是焊接接头的薄弱环节。
1、夹渣: 焊缝金属中残留有外来固体物质所形成的缺陷。 夹渣:是指焊后残留在焊缝中的熔渣。 夹杂物:是指由于焊接冶金反应产生的,焊后残
留在焊缝金属中的非金属杂质(如氧化物,硫化 物等)。
2、夹渣的形状:
相关文档
最新文档