高考数学一轮复习 专题02 充分条件、必要条件与命题的四种形式教学案 文

合集下载

高考数学一轮复习全程复习构想数学(文)【统考版】第二节 命题及其关系、充分条件与必要条件(课件)

高考数学一轮复习全程复习构想数学(文)【统考版】第二节 命题及其关系、充分条件与必要条件(课件)

(二)教材改编 2.[选修2-1·P8习题A组T2改编]命题“若a>b,则a+c>b+c”的否 命题是( ) A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c
答案:A
解析:命题的否命题是将原命题的条件、结论都否定,故题中命题的否命题是 “若a≤b,则a+c≤b+c”.
答案:D
解析:根据四种命题的构成可知,选项A,B,C均不正确.故选D.
3.下列命题中为真命题的是( ) A.mx2+2x-1=0是一元二次方程 B.抛物线y=ax2+2x-1与x轴至少有一个交点 C.互相包含的两个集合相等 D.空集是任何集合的真子集
答案:C
解析:A是假命题,当m=0时,mx2+2x-1=0不是一元二次方程;B是假命题, 当a=-2时,抛物线y=ax2+2x-1与x轴无交点;C是真命题,即若A⊆B,B⊆A则 A=B;D是假命题,空集是任何非空集合的真子集.
三、必练4类基础题 (一)判断正误 1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)“x-3>0”是命题.( × ) (2)一个命题非真即假.( √ ) (3)命题“若p,则q”的否命题是“若p,则¬q”.( × ) (4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少 有一个为真.( √ ) (5)当q是p的必要条件时,p是q的充分条件.( √ ) (6) 命 题 “ 若 p 不 成 立 , 则 q 不 成 立 ” 等 价 于 “ 若 q 成 立 , 则 p 成 立”.( √ )
A.逆命题
B.否命题
C.逆否命题
D.否定
答案:B
解析:“正数a的平方不等于0”即“若a是一个正数,则它的平方不等于0”, 其否命题为“若a不是正数,则它的平方等于0”.故选B.

教学设计5:1.3 充分条件、必要条件与命题的四种形式

教学设计5:1.3 充分条件、必要条件与命题的四种形式

1.3 充分条件、必要条件与命题的四种形式一、知识梳理:1、 四种命题(1)、命题是可以 可以判断真假的语句 ,具有 “若P,则q 的形式;(2)、一般地用P 或q 分别表示命题的条件或结论,用或 分别表示P 和q 的否定,于是四种命题的形式就是:原命题: 逆命题: 否命题: 逆否命题:(3)、四种命题的关系:两个互为逆否命题的真假是相同的,原命题的逆命题与原命题的否命题同真同假。

2、 充分条件、必要条件与充要条件(1)“若p ,则q”为真命题,记,则p 是q 的充分条件,q 是p 的必要条件。

(2)如果既有,又有,记作,则p 是q 的充要条件,q 也是p 的充要条件。

3、 判断充分性与必要性的方法:p q ⇒p q ⇒q p ⇒p q ⇔(一)、定义法(1)、且q ,则p是q的充分不必要条件;(2)、,则p是q的必要不充分条件;(3)、,则p是q的既不充分也不必要条件;(4)、且,则p是q的充要条件;(二)、集合法:利用集合间的包含关系判断命题之间的充要关系,设满足条件p的元素构成集合A,满足条件q的元素构成集合B;(1)、若A,则p是q的充分条件若,则p是q的必要条件;(2)、若A,则p是q的充要条件;(3)、若A,且A,则p是q的充分不必要条件;q是p的必要不充分条件;(4)、若A,且,则p是q的既不充分也不必要条件;二、题型探究【探究一】:四种命题的关系与命题真假的判断例1:[2014·陕西卷] 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(B)A.真,假,真B.假,假,真C.真,真,假D.假,假,假例2:写出下列命题的逆命题、否命题、逆否命题并判断其真假。

(1)等底等高的两个三角形是全等三角形;(2)若ab=0,则a=0或b=0。

解析:(1)逆命题:若两个三角形全等,则这两个三角形等底等高。

真命题;否命题:若两个三角形不等底或不等高,则这两个三角形不全等。

高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学习型教学案

高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学习型教学案

高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案本资料为woRD文档,请点击下载地址下载全文下载地址学案2 命题及其关系、充分条件与必要条件导学目标:.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.自主梳理.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q;逆命题:若q则p;否命题:若綈p则綈q;逆否命题:若綈q则綈p.四种命题间的关系四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p叫做q的充要条件.自我检测.下列命题中的假命题是A.∃x∈R,lgx=0B.∃x∈R,tanx=1c.∀x∈R,x3>0D.∀x∈R,2x>0答案 c解析对于c选项,当x=0时,03=0,因此∀x ∈R,x3>0是假命题.2.“a>0”是“|a|>0”的A.充分不必要条件B.必要不充分条件c.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.“x>0”是“x≠0”的A.充分而不必要条件B.必要而不充分条件c.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s 是p的逆命题t的A.逆否命题B.逆命题c.否命题D.原命题答案 c解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.与命题“若a∈m,则bm”等价的命题是A.若am,则bmB.若bm,则a∈mc.若am,则b∈mD.若b∈m,则am答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1 写出下列命题的逆命题、否命题、逆否命题,并判断其真假.实数的平方是非负数;等底等高的两个三角形是全等三角形;弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1 有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二充要条件的判断例2 给出下列命题,试分别指出p是q的什么条件.p:x-2=0;q:=0.p:两个三角形相似;q:两个三角形全等.p:m<-2;q:方程x2-x-m=0无实根.p:一个四边形是矩形;q:四边形的对角线相等.解∵x-2=0⇒=0;而=0x-2=0.∴p是q的充分不必要条件.∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p是q的必要不充分条件.∵m<-2⇒方程x2-x-m=0无实根;方程x2-x-m=0无实根m<-2.∴p是q的充分不必要条件.∵矩形的对角线相等,∴p⇒q;而对角线相等的四边形不一定是矩形,∴qp.∴p是q的充分不必要条件.变式迁移2 下列各小题中,p是q的充要条件的是①p:m<-2或m>6;q:y=x2+mx+m+3有两个不同的零点;②p:f-xfx=1;q:y=f是偶函数;③p:cosα=cosβ;q:tanα=tanβ;④p:A∩B=A;q:∁UB⊆∁UA.A.①②B.②③c.③④D.①④答案 D解析①q:y=x2+mx+m+3有两个不同的零点⇔q:Δ=m2-4>0⇔q:m<-2或m>6⇔p;②当f=0时,由qp;③若α,β=kπ+π2,k∈Z时,显然cosα=cosβ,但tanα≠tanβ;④p:A∩B=A⇔p:A⊆B⇔q:∁UA⊇∁UB.故①④符合题意.探究点三充要条件的证明例3 设a,b,c为△ABc的三边,求证:方程x2+2ax +b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.解题导引有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x0,则x20+2ax0+b2=0,x20+2cx0-b2=0,两式相减可得x0=b2c-a,将此式代入x20+2ax0+b2=0,可得b2+c2=a2,故∠A=90°,充分性:∵∠A=90°,∴b2+c2=a2,b2=a2-c2.①将①代入方程x2+2ax+b2=0,可得x2+2ax+a2-c2=0,即=0.将①代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即=0.故两方程有公共根x=-.所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.变式迁移3 已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.证明必要性:∵a+b=1,∴a+b-1=0.∴a3+b3+ab-a2-b2=-==0.充分性:∵a3+b3+ab-a2-b2=0,即=0.又ab≠0,∴a≠0且b≠0.∵a2-ab+b2=2+34b2>0.∴a+b-1=0,即a+b=1.综上可知,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.转化与化归思想的应用例已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,且m∈Z.求两方程的根都是整数的充要条件.【答题模板】解∵mx2-4x+4=0是一元二次方程,∴m≠0.[2分]另一方程为x2-4mx+4m2-4m-5=0,两方程都要有实根,∴Δ1=161-m≥0,Δ2=16m2-44m2-4m-5≥0,解得m∈[-54,1].[6分]∵两根为整数,故和与积也为整数,∴4m∈Z4m∈Z4m2-4m-5∈Z,∴m为4的约数,[8分]∴m=-1或1,当m=-1时,第一个方程x2+4x-4=0的根为非整数,而当m=1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m=1.[12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数..研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p与q 是否可以相互推出的两次判断,同时还要弄清是p对q而言,还是q对p而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.一、选择题.给出以下四个命题:①若ab≤0,则a≤0或b≤0;②若a>b,则am2>bm2;③在△ABc中,若sinA=sinB,则A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是A.①B.②c.③D.④答案 c解析对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.设0<x<π2,则“xsin2x<1”是“xsinx<1”的A.充分而不必要条件B.必要而不充分条件c.充分必要条件D.既不充分也不必要条件答案 B解析∵0<x<π2,∴0<sinx<1.∴xsinx<1⇒xsin2x<1,而xsin2x<1xsinx<1.故选B.3.“α=π6+2kπ”是“cos2α=12”的A.充分而不必要条件B.必要而不充分条件c.充分必要条件D.既不充分也不必要条件答案 A解析由α=π6+2kπ可得到cos2α=12.由cos2α=12得2α=2kπ±π3.∴α=kπ±π6.所以cos2α=12不一定得到α=π6+2kπ.4.关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是A.都真B.都假c.否命题真D.逆否命题真答案 D解析本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上.因此否命题也是假命题.5.集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是“a>5”的A.充分不必要条件B.必要不充分条件c.充要条件D.既不充分也不必要条件答案 B解析A={x|-4≤x≤4},若A⊆B,则a>4,a>4a>5,但a>5⇒a>4.故选B.二、填空题6.“x1>0且x2>0”是“x1+x2>0且x1x2>0”的________条件.答案充要7.已知p:=0,q:2+2=0,则p是q的____________条件.答案必要不充分解析由=0得x=1或y=2,由2+2=0得x=1且y =2,所以由q能推出p,由p推不出q,所以填必要不充分条件.8.已知p:x2+2x-m>0,如果p是假命题,p是真命题,则实数m的取值范围为________.答案[3,8)解析因为p是假命题,所以1+2-m≤0,解得m≥3;又因为p是真命题,所以4+4-m>0,解得m<8.故实数m的取值范围是3≤m<8.三、解答题9.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.若q<1,则方程x2+2x+q=0有实根;若ab=0,则a=0或b=0;若x2+y2=0,则x、y全为零.解逆命题:若方程x2+2x+q=0有实根,则q<1,为假命题.否命题:若q≥1,则方程x2+2x+q=0无实根,为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.逆命题:若a=0或b=0,则ab=0,为真命题.否命题:若ab≠0,则a≠0且b≠0,为真命题.逆否命题:若a≠0且b≠0,则ab≠0,为真命题.逆命题:若x、y全为零,则x2+y2=0,为真命题.否命题:若x2+y2≠0,则x、y不全为零,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.0.设p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0,或x2+2x-8>0,且綈p 是綈q的必要不充分条件,求a的取值范围.解设A={x|p}={x|x2-4ax+3a2<0,a<0}={x|3a<x<a,a<0},B={x|q}={x|x2-x-6≤0或x2+2x-8>0}={x|x2-x-6≤0}∪{x|x2+2x-8>0}={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.∵綈p是綈q的必要不充分条件,∴綈q⇒綈p,且綈p綈q.则{x|綈q}{x|綈p},而{x|綈q}=∁RB={x|-4≤x<-2},{x|綈p}=∁RA={x|x≤3a或x≥a,a<0},∴{x|-4≤x<-2}{x|x≤3a或x≥a,a<0},则3a≥-2,a<0或a≤-4,a<0.综上,可得-23≤a<0或x≤-4.1.已知数列{an}的前n项和Sn=pn+q,求证:数列{an}为等比数列的充要条件为q=-1.证明充分性:当q=-1时,a1=S1=p+q=p-1.当n≥2时,an=Sn-Sn-1=pn-1.当n=1时也成立.于是an+1an=pnp-1pn-1p-1=p,即数列{an}为等比数列.必要性:当n=1时,a1=S1=p+q.当n≥2时,an=Sn-Sn-1=pn-1.∵p≠0,p≠1,∴an+1an=pnp-1pn-1p -1=p.∵{an}为等比数列,∴a2a1=an+1an=p,即pp-1p+q =p,即p-1=p+q.∴q=-1.综上所述,q=-1是数列{an}为等比数列的充要条件.。

充分条件和必要条件教案(教师

充分条件和必要条件教案(教师

充分条件和必要条件教案(教师版)第一章:引言教学目标:1. 让学生理解充分条件和必要条件的概念。

2. 让学生掌握如何判断充分条件和必要条件。

教学内容:1. 引入充分条件和必要条件的概念。

2. 通过实例让学生理解充分条件和必要条件的区别。

教学步骤:1. 向学生介绍充分条件和必要条件的概念。

2. 通过举例说明充分条件和必要条件的区别。

3. 让学生进行练习,判断给出的条件是充分条件还是必要条件。

教学评估:1. 通过课堂提问检查学生对充分条件和必要条件的理解程度。

2. 通过练习题检查学生判断充分条件和必要条件的能力。

第二章:充分条件教学目标:1. 让学生理解充分条件的意思。

2. 让学生掌握如何判断一个条件是充分条件。

教学内容:1. 定义充分条件的概念。

2. 讲解如何判断一个条件是充分条件。

1. 向学生解释充分条件的概念。

2. 通过举例让学生理解如何判断一个条件是充分条件。

3. 让学生进行练习,判断给出的条件是否是充分条件。

教学评估:1. 通过课堂提问检查学生对充分条件的理解程度。

2. 通过练习题检查学生判断充分条件的能力。

第三章:必要条件教学目标:1. 让学生理解必要条件的概念。

2. 让学生掌握如何判断一个条件是必要条件。

教学内容:1. 定义必要条件的概念。

2. 讲解如何判断一个条件是必要条件。

教学步骤:1. 向学生解释必要条件的概念。

2. 通过举例让学生理解如何判断一个条件是必要条件。

3. 让学生进行练习,判断给出的条件是否是必要条件。

教学评估:1. 通过课堂提问检查学生对必要条件的理解程度。

2. 通过练习题检查学生判断必要条件的能力。

第四章:充分条件和必要条件的区别1. 让学生理解充分条件和必要条件的区别。

2. 让学生掌握如何判断一个条件是充分条件还是必要条件。

教学内容:1. 讲解充分条件和必要条件的区别。

2. 讲解如何判断一个条件是充分条件还是必要条件。

教学步骤:1. 向学生讲解充分条件和必要条件的区别。

【高1数学】02-四种命题的形式、充分条件与必要条件

【高1数学】02-四种命题的形式、充分条件与必要条件

四种命题的形式、充分条件与必要条件基础概念一、基础知识概述本周主要学习了四种命题的形式,充分条件与必要条件等相关概念,及反证法的思想.充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.二、重点知识归纳及讲解1、命题的概念:可以判断真假的语句叫做命题.2、简单命题与复合命题:不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.3、判断复合命题的真假:(1)“非p”形式复合命题的真假可以用下表表示:p非p真假假真即一个命题的否命题与原命题的真假相反.(2)“p且q”形式复合命题的真假可以用下表表示:p q p且q真真真真假假假真假假假假即当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假.(3)“p或q”形式复合命题的真假可以用下表表示:p q p或q真真真真假真假真真假假假即当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假.4、原命题:若p则q(p是原命题的条件,q是原命题的结论);逆命题:若q则p(交换原命题的题设和结论);否命题:若非p则非q(同时否定原命题的条件与结论);逆否命题:若非q则非p(交换原命题的题设和结论后同时否定之).四种命题及相互关系用图表表示为:说明:①原命题、否命题、逆命题和逆否命题是相互的.②写原命题的否命题、逆命题和逆否命题的关键是:找出所给原命题的条件p与结论q.5、反证法:欲证“若p则q”为真命题,从否定其结论“非p”出发,经过正确的逻辑推理得出矛盾,从而“非p”为假,即原命题为真,这样的方法叫反证法.证题的步骤:(1)假设命题的结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确.说明:反证法是一种间接证明命题的基本方法.在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明.反证法的基本思想:通过证明命题的否定是假命题,从而说明原命题是真命题.6、推断符号“⇒”的含义:p⇒”;由p经过推理可以得出q,即如果p成立,那么q一定成立,此时可记作“qp⇒/”.由p经过推理得不出q,即如果p成立,推不出q成立,此时可记作“q7、充分条件与必要条件:p⇒,那么就说:p是q的充分条件;q是p的必要条件.一般地,如果已知q8、充要条件:一般地,如果既有q p ⇒,又有p q ⇒,就记作:q p ⇔.“⇔”叫做等价符号.q p ⇔表示q p ⇒且p q ⇒.这时p 既是q 的充分条件,又是q 的必要条件,则p 是q 的充分必要条件,简称充要条件. 9、充分条件与必要条件的分类:命题按条件和结论的充分性和必要性可分为四类: 若q p ⇒但p q ⇒/,则p 是q 的充分不必要条件; 若p q ⇒但q p ⇒/,则p 是q 的必要不充分条件; 若q p ⇒且p q ⇒,则p 是q 的充要条件;若q p ⇒/且p q ⇒/,则p 是q 的既不充分也不必要条件. 10、从集合角度理解:①q p ⇒,相当于Q P ⊆,即或即:要使Q x ∈成立,只要P x ∈就足够了——有它就行.②p q ⇒,相当于Q P ⊇,即或即:为使Q x ∈成立,必须要使P x ∈——缺它不行.p q ⇒等价于q p ⌝⇒⌝. ③q p ⇔,相当于Q P =,即即:互为充要的两个条件刻划的是同一事物. 三、难点知识剖析本节的难点主要是充要条件的判断,其解决方法主要有:1、要理解“充分条件”“必要条件”的概念,当“若p 则q ”形式的命题为真时,就记作q p ⇒,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.2、要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“ ,反之也真”等.3、数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.4、从集合观点看,若B A ⊆,则A 是B 的充分条件,B 是A 的必要条件;若B A =,则A 、B 互为充要条件.5、证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).典型例题例1、(1)“ABC ∆中,若︒=∠90C ,则A ∠、B ∠都是锐角”的否命题为( ) A .ABC ∆中,若︒≠∠90C ,则A ∠、B ∠都不是锐角 B .ABC ∆中,若︒≠∠90C ,则A ∠、B ∠不都是锐角 C .ABC ∆中,若︒≠∠90C ,则A ∠、B ∠都不一定是锐角 D .以上都不对(2)用反证法证明命题:若整数系数一元二次方程)0(02≠=++a c bx ax 有有理根,那么a 、b 、c 中至少有一个是偶数,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个是偶数D .假设a 、b 、c 至多有两个是偶数(3)有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”;乙说:“甲、丙未获奖”;丙说:“是甲或乙获奖”;丁说:“是乙获奖”.四位歌手的话只有两句是对了,则是_______获奖了. 解析:(1)由命题之间的关系易选B ;(2)“至少有一个”的反面是“一个都没有”,故选B ;(3)设获奖用“1”表示,未获奖用“0”表示,则依次四人的话列表如下:甲 乙 丙 丁 甲:甲获奖 1 0 0 0 乙:甲、丙未获奖 0 1 0 1 丙:甲或乙获奖 1 1 0 0 丁:乙获奖1由表可知,只有第一列符合四位歌手的话只有两句是对的,故是甲获奖了. 答案:(1)B ;(2)B ;(3)甲例2、(上海)(1)222111,,,,,c b a c b a 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“N M =”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 (2)已知2|43:|>-x p ,021:2>--x x q ,则p ⌝是q ⌝的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 解析: (1)如果“0212121>==c c b b a a ”,则“N M =”,如果“0212121<==c cb b a a ”,则“N M ≠”,所以“212121c c b b a a ==”⇒/“N M =”,反之若“∅==N M ”,即说明二次不等式的解集为空集,与它们的系数比无任何关系,只要求判别式小于零.所以“N M =”⇒/“212121c c b b a a ==”,因此“212121c cb b a a ==”是“N M =”的既不充分也不必要条件. (2)解法一:∵}322|{:<>x x x p 或,}12|{:-<>x x x q 或.∴}232|{:≤≤⌝x x p ,}21|{:≤≤-⌝x x q . ∴q p ⌝⇒⌝,p q ⌝⇒/⌝.∴p ⌝是q ⌝的充分不必要条件.解法二:由法一知,∴p q ⇒,q p ⇒/.∴q p ⌝⇒⌝,p q ⌝⇒/⌝.即:p ⌝是q ⌝的充分不必要条件. 答案:(1)D (2)A例3、已知命题:p 方程012=++mx x 有两个不相等的实负根.命题:q 方程01)2(442=+-+x m x 无实根;若p 或q 为真,p 且q 为假,求实数m 的取值范围.分析:先分别求满足条件p 和q 的m 的取值范围,再利用复合命题的真假进行转化与讨论. 解析:由命题p 可以得到:⎩⎨⎧>>-=∆042m m ,∴2>m .由命题q 可以得到:016)]2(4[2<--=∆m ,∴31<<m .∵p 或q 为真,p 且q 为假,∴p 、q 有且仅有一个为真. 当p 为真,q 为假时,3312≥⇒⎩⎨⎧≥≤>m m m m 或,当p 为假,q 为真时,21312≤<⇒⎩⎨⎧<<≤m m m ,所以,m 的取值范围为}213|{≤<≥m m m 或. 例4、已知2311:≤--x p ,)0(012:22>≤-+-m m x x q ,若p ⌝是q ⌝的充分而不必要条件,求实数m 的取值范围. 分析:利用等价命题先进行命题的等价转化,搞清命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决. 解析: 由2311≤--x 解得:102≤≤-x ,则}102|{:>-<=⌝x x x A p 或. 又当0>m 时,由01222≤-+-m x x 得:m x m +≤≤-11,则}0,11|{:>+>-<=⌝m m x m x x B q 或. ∵p ⌝是q ⌝的充分非必要条件,∴B A ⊆,结合数轴应有⎪⎩⎪⎨⎧≤+-≥->101210m m m ,解得:30≤<m 为所求.例5、若0>p ,0>q ,233=+q p .试用反证法证明:2≤+q p . 分析:此题直接由条件推证2≤+q p 是较难的,由此用反证法证之. 证明:假设2>+q p ,∵0>p ,0>q .∴833)(32233>+++=+q pq q p p q p . 又∵233=+q p .∴代入上式得:6)(3>+q p pq ,即:)1(2)( >+q p pq .又由233=+q p ,即2))((22=+-+q pq p q p 代入)1(得:))(()(22q pq p q p q p pq +-+>+. ∵0>p ,0>q .∴0>+q p .∴22q pq p pq +->,但这与0)(2≥-q p 矛盾, ∴假设2>+q p 不成立,故2≤+q p . 说明:反证法:是一种证明题目的间接方法,在有些题目的证明中用反证法非常简洁,但并不是每一题用反证都恰倒好处.那么,对于哪些题目适合用反证法呢?1)从这些条件推出所知的也很少或无法用已知条件进行直接证明的;2)当问题中能用来作为推理依据的公理、定理很少,无法直接证明或证明无从下手的;3)结论以否定的形式出现,无法引用定理来证明否定形式的结论;4)对要证明的命题,已知它的逆命题是正确的;5)要求证明的命题适合某种条件的结论唯一存在.对反证法的掌握,还有待于随着学习的深入,逐步提高.基础练习一、选择题1、有以下5个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;(5)所有男生都爱踢足球.其中命题(5)的否命题是( )A .(1)B .(2)C .(3)D .(4)2、某个命题与正整数n 有关,如果当)(*∈=N k k n 时,该命题成立,那么可得当1+=k n 时命题也成立,现已知当5=n 时,该命题不成立,则可推出( ) A .当6=n 时,该命题不成立 B .当6=n 时,该命题成立 C .当4=n 时,该命题不成立 D .当4=n 时,该命题成立3、设集合}06|{2=-+=x x x A ,}01|{=+=mx x B ,则B 是A 的真子集的一个充分不必要的条件是( ) A .}3,21{ -∈m B .21-=m C .}1,21,0{ -∈m D .}2,0{ ∈m 4、(湖北)有限集合S 中元素个数记作)(S card ,设A 、B 都为有限集合,给出下列命题:①∅=B A 的充要条件是)()()(B card A card B A card += ;②B A ⊆的必要条件是)()(B card A card ≤;③B A ⊂/的充分条件是)()(B card A card ≤;④B A =的充要条件是)()(B card A card =.其中真命题的序号是( )A .③④B .①②C .①④D .②③ 二、填空题5、有下列命题:①面积相等的三角形是全等三角形;②“若0=xy ,则0||||=+y x ”的逆命题;③“若b a >,则c b c a +>+”的否命题;④“矩形的对角线互相垂直”的逆否命题.其中真命题共有_________个.6、在原命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数可以是_________.7、命题}3,2,1{}2{: ∈p ,}3,2,1{}2{: ⊆q ,则对复合命题的下述判断:①p 或q 为真;②p 或q 为假;③p 且q 为真;④p 且q 为假;⑤非p 为真;⑥非q 为假.其中判断正确的序号是_________(填上你认为正确的所有序号).8、如果x 、y 是实数,那么0>xy 是||||||y x y x +=+的________条件.9、若三条抛物线3442+-+=a ax x y ,22)1(a x a x y +-+=,a ax x y 222-+=中至少有一条与x 轴有公共点,则a 的取值范围是________.10、设集合},|),{(R y R x y x U ∈∈= ,}02|),{(>+-=m y x y x A ,}0|),{(≤-+=n y x y x B ,那么点B C A P U ∈)3,2( 的充要条件是________.三、解答题: 11、已知2311:≤--x p ,)0(012:22>≤-+-m m x x q ,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.12、02:<<-m p ,10<<n ;:q 关于x 的方程02=++n mx x 有2个小于1的正根,试分析p 是q 的什么条件.13、已知关于x 的实系数二次方程02=++b ax x 有两个实数根α、β,证明:2||<α且2||<β是b a +<4||2且4||<b 的充要条件.。

高考数学一轮复习 第一章 集合与常用逻辑用语 第二节 命题及其关系、充分条件与必要条件教案 文(含解

高考数学一轮复习 第一章 集合与常用逻辑用语 第二节 命题及其关系、充分条件与必要条件教案 文(含解

第二节命题及其关系、充分条件与必要条件1.命题概念 使用语言、符号或式子表达的,可以判断真假的陈述句特点 (1)能判断真假;(2)陈述句分类真命题、假命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为Bp 是q 的充分不必要条件 p ⇒q 且qp A 是B 的真子集 集合与充要条件p 是q 的必要不充分条件 pq 且q ⇒p B 是A 的真子集p 是q 的充要条件 p ⇔q A =B p 是q 的既不充分又不必要条件pq 且qpA ,B 互不包含1.(2019·某某中学检测)下列有关命题的说法不正确的有________个. ①命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”; ②“x =-1”是“x 2-5x -6=0”的必要不充分条件;③命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1<0”; ④命题“若x =y ,则sin x =sin y ”的逆否命题为真命题.答案:32.设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的________条件(填“充分不必要”“必要不充分”“充要”或 “既不充分也不必要”).答案:充要3.(2019·某某中学检测)命题“若x 2+y 2≤1,则x +y <2”的否命题为________________.答案:若x 2+y 2>1,则x +y ≥24.“x ≥1”是“x +1x≥2”的________条件.解析:若x >0,则x +1x≥2x ·1x=2,当且仅当x =1时取等号,显然[1,+∞) (0,+∞),所以x ≥1是x +1x≥2的充分不必要条件.答案:充分不必要1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且AB )两者的不同.[小题纠偏]1.(2019·海门中学检测)已知α,β表示两个不同平面,直线m 是α内一条直线,则“α∥β”是“m ∥β”的________条件.答案:充分不必要2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________. 解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角考点一 四种命题相互关系及真假判断基础送分型考点——自主练透[题组练透]1.(2018·启东中学期末检测)能够说明“设a ,b 是任意实数,若a 2<b 2,则a <b ”是假命题的一组整数a ,b 的值依次为________.解析:可令a =1,b =-2,满足a 2<b 2,但a >b . 答案:1,-2(答案不唯一)2.(2019·某某一中测试)命题“若α=π4,则tan α=1”的逆否命题是________________.解析:命题的条件是p :α=π4,结论是q :tan α=1.由命题的四种形式,可知命题“若p ,则q ”的逆否命题是“若非q ,则非p ”,显然非q :tan α≠1,非p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案:若tan α≠1,则α≠π43.给出以下四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②(易错题)“全等三角形的面积相等”的否命题; ③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号)解析:①命题“若xy =1,则x ,y 互为倒数”的逆命题为“若x ,y 互为倒数,则xy =1”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,但a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题.答案:①③[谨记通法]1.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.2.谨防3类失误(1)如果原命题是“若p,则q”,则否命题是“若綈p,则綈q”,而命题的否定是“若p,则綈q”,即否命题是对原命题的条件和结论同时否定,命题的否定仅仅否定原命题的结论(条件不变).(2)对于不是“若p,则q”形式的命题,需先改写.(3)当命题有大前提时,写其他三种命题时需保留大前提.考点二充分、必要条件的判定重点保分型考点——师生共研[典例引领]1.(2019·某某中学高三学情调研)“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的________条件.解析:当a=0时,f(x)=x3,所以函数f(x)是奇函数,当函数f(x)=x3+ax2(x∈R)为奇函数时,f(-x)=-x3+ax2=-f(x)=-x3-ax2,所以2ax2=0恒成立,所以a=0.所以“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.答案:充要2.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的____________条件.解析:因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p但綈p綈綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.答案:充分不必要[由题悟法]充分、必要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.(2018·某某新区实验中学测试)在△ABC 中,“A ≠60°”是“cos A ≠12”的________条件.解析:当A =60°时,可以推得cos A =12;当cos A =12时,由于A ∈(0,π),也可以推得A =60°,故“A =60°”是“cos A =12”的充要条件. 即“A ≠60°”是“c os A ≠12”的充要条件.答案:充要2.设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的______条件.解析:因为x 2-x -20>0,所以x >5或x <-4,所以p :x >5或x 2(x -5)<2,所以0<x -5<4,即5<x <9,所以q :5<x <9,因为{x |5<x <9}{x |x >5或x <-4},所以p 是q 的必要不充分条件.答案:必要不充分3.设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的________________条件.解析:因为m =λn ,所以m ·n =λn ·n =λ|n|2. 当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m||n|cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 答案:充分不必要考点三 充分、必要条件的应用重点保分型考点——师生共研[典例引领]1.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值X 围是________.解析:由题意知A ={x |x <4},且A B ,所以a >4. 答案:(4,+∞)2.(2019·响水中学检测)设p :x 2-2x <0,q :(x -m )(x -m -3)≤0,若p 是q 的充分不必要条件,则实数m 的取值X 围是________.解析:由x 2-2x <0,得0<x <2,即p :0<x <2, 由(x -m )(x -m -3)≤0,得m ≤x ≤m +3, 即q :m ≤x ≤m +3,若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧m ≤0,m +3≥2,即-1≤m ≤0.答案:[-1,0][由题悟法]根据充分、必要条件求参数的值或X 围的关键点(1)先合理转化条件,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值X 围.(2)求解参数的取值X 围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值X 围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(2018·兴化三校联考)已知p :x ≥a ,q :x 2-2x -3≥0,若p 是q 的充分不必要条件,则实数a 的取值X 围是________.解析:由x 2-2x -3≥0,得x ≤-1或x ≥3, 若p 是q 的充分不必要条件,则{x |x ≥a }⊆{x |x ≤-1或x ≥3},所以a ≥3. 答案:[3,+∞)2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值X 围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1.答案:(-∞,-7]∪[1,+∞)3.(2019·高邮中学检测)若关于x 的不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4,则实数a 的取值X 围是________.解析:∵不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4, ∴当1<x <4时,不等式x 2-2x +3-a <0成立. 设f (x )=x 2-2x +3-a , 则满足⎩⎪⎨⎪⎧f 1≤0,f4≤0,即⎩⎪⎨⎪⎧1-2+3-a ≤0,16-8+3-a ≤0,解得a ≥11.答案:[11,+∞)一抓基础,多练小题做到眼疾手快1.(2019·X 家港外国语学校检测)命题“若x 2-4x +3=0,则x =3”的逆否命题是________________________.答案:若x ≠3,则x 2-4x +3≠02.(2019·某某实验中学检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .命题甲:A +C =2B ,且a +c =2b ;命题乙:△ABC 是正三角形,则命题甲是命题乙的________条件.答案:充要3.“m =3”是“两直线l 1:mx +3y +2=0和l 2:x +(m -2)y +m -1=0平行”的________条件.答案:充要4.(2018·某某模拟)有下列命题: ①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b ,则a 2≤b 2”,假命题.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,真命题. ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,真命题. 答案:②③5.若x >5是x >a 的充分条件,则实数a 的取值X 围为____________. 解析:由x >5是x >a 的充分条件知,{x |x >5}⊆{x |x >a },所以a ≤5. 答案:(-∞,5]6.(2018·某某中学检测)已知集合A ={x |x (x -3)<0},B ={x ||x -1|<2},则“x ∈A ”是“x ∈B ”的________条件.解析:因为集合A =(0,3),集合B =(-1,3),所以“x ∈A ”是“x ∈B ”的充分不必要条件.答案:充分不必要二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是________________. 解析:依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”. 答案:“若一个数的平方是正数,则它是负数”2.(2018·某某中学高三测试)已知a ,b 都是实数,命题p :a +b =2;命题q :直线x +y =0与圆(x -a )2+(y -b )2=2相切,则p 是q 的________条件.解析:圆(x -a )2+(y -b )2=2的圆心为(a ,b ),半径r =2,直线x +y =0与圆相切,则圆心到直线的距离d =|a +b |1+1=2,解得|a +ba +b =±2,所以p 是q 的充分不必要条件.答案:充分不必要3.(2018·某某模拟)设a ,b 都是不等于1的正数,则“3a >3b>3”是“log a 3<log b 3”的________条件.解析:因为3a >3b>3,所以a >b >1,此时log a 3<log b 3;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a>3b>3”是“log a 3<log b 3”的充分不必要条件.答案:充分不必要4.(2019·某某一中检测)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题; ③x ≤3是|x |≤3的充分不必要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号). 解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,因为|x |≤3x ≤3,所以x ≤3是|x |≤3的必要不充分条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④5.(2018·某某一中高三测试)已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值X 围是________.解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. 因为p 是q 的充分不必要条件,所以M N ,所以⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.答案:(0,3)6.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的________条件.解析:p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p 是q 的必要不充分条件. 答案:必要不充分7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:38.(2018·常熟中学测试)给定下列命题: ①若k >0,则方程x 2+2x -k =0有实数根; ②若x +y ≠8,则x ≠2或y ≠6;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件; ④“若xy =0,则x ,y 中至少有一个为零”的否命题.其中真命题的序号是________.解析:①因为Δ=4-4(-k )=4+4k >0,所以①是真命题;②其逆否命题为真;故②是真命题;③“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;④否命题:“若xy ≠0,则x ,y 都不为零”是真命题.答案:①②④9.(2018·天一中学期末)已知p :|x -1|>2,q :x 2-2x +1-a 2≥0(a >0),若q 是p 的必要不充分条件,则实数a 的取值X 围是________.解析:由|x -1|>2,得x -1>2或x -1<-2,即x >3或x <-1. 由x 2-2x +1-a 2≥0(a >0),得[x -(1-a )][x -(1+a )]≥0, 即x ≥1+a 或x ≤1-a ,a >0. 若q 是p 的必要不充分条件,则⎩⎪⎨⎪⎧a >0,1+a ≤3,1-a ≥-1,解得0<a ≤2.答案:(0,2]10.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:因为等比数列{a n }的前n 项和为S n ,又S 4=2S 2, 所以a 1+a 2+a 3+a 4=2(a 1+a 2),所以a 3+a 4=a 1+a 2,所以q 2=1⇔|q |=1,所以“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要11.(2019·南师大附中检测)设p :实数x 满足x 2+2ax -3a 2<0(a >0),q :实数x 满足x 2+2x -8<0,且綈p 是綈q 的必要不充分条件,求a 的取值X 围.解:由x 2+2ax -3a 2<0(a >0),得-3a <x <a ,即p :-3a <x <a . 由x 2+2x -8<0,得-4<x <2,即q :-4<x <2. 因为綈p 是綈q 的必要不充分条件, 所以p 能推出q ,q 不能推出p , 所以{x |-3a <x <a }{x |-4<x <2}, 即⎩⎪⎨⎪⎧-3a ≥-4,a <2,a >0或⎩⎪⎨⎪⎧-3a >-4,a ≤2,a >0,解得0<a ≤43,故a 的取值X 围是⎝ ⎛⎦⎥⎤0,43. 12.已知集合A =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫mx -1x <0,B ={x |x 2-3x -4≤0},C ={x |log 12x >1},命题p :实数m 为小于6的正整数,q :A 是B 成立的充分不必要条件,r :A 是C 成立的必要不充分条件.若命题p ,q ,r 都是真命题,某某数m 的值.解:因为命题p 是真命题,所以0<m <6,m ∈N ,①所以A =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫mx -1x <0=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫0<x <1m . 由题意知,B ={x |x 2-3x -4≤0}={x |-1≤x ≤4},C =⎩⎨⎧⎭⎬⎫x |log 12x >1=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫0<x <12.因为命题q ,r 都是真命题,所以A B ,C A ,所以⎩⎪⎨⎪⎧ 1m ≤4,1m >12.②由①②得m =1.三上台阶,自主选做志在冲刺名校1.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的________条件. 解析:当等比数列{a n }的首项a 1<0,公比q >1时,如a n =-2n 是递减数列,所以充分性不成立;反之,若等比数列{a n }为递增数列,则⎩⎪⎨⎪⎧ a 1<0,0<q <1或⎩⎪⎨⎪⎧ a 1>0,q >1,所以必要性不成立,即“q >1”是“{a n }为递增数列”的既不充分也不必要条件.答案:既不充分也不必要2.(2018·某某木渎中学测试)若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值X 围为________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立; 当a ≠0时,由⎩⎪⎨⎪⎧ a <0,Δ=4a 2+12a ≤0,得-3≤a <0,综上,实数a 的取值X 围为[-3,0].答案:[-3,0]3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值X 围;(2)若A ∩B =∅,求a 的取值X 围.解:A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧ a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意,则⎩⎨⎧ 3a ≤2,a ≥4,无解.综上,a 的取值X 围为⎣⎢⎡⎦⎥⎤43,2. (2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a }则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值X 围为⎝⎛⎦⎥⎤-∞,23∪[4,+∞).。

教学设计6:1.3 充分条件、必要条件与命题的四种形式

1.3充分条件、必要条件与命题的四种形式一、必记个知识点1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.二、必明2个易误区1.易混否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.注意区别A是B的充分不必要条件(A⇒B且B ⇒/A);与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.三、必会2个方法1.判断充分条件和必要条件的方法(1)命题判断法:设“若p,则q”为原命题,那么:①原命题为真,逆命题为假时,p是q的充分不必要条件;②原命题为假,逆命题为真时,p是q的必要不充分条件;③原命题与逆命题都为真时,p是q的充要条件;④原命题与逆命题都为假时,p是q的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p,q相应的集合:p:A={x|p(x)成立},q:B={x|q(x)成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件.(3)等价转化法:p 是q 的什么条件等价于⌝q 是⌝p 的什么条件.2.转化与化归思想由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假. 考点一 命题及其相互关系1.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π4【解析】选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”. 考点二 充分必要条件的判定[典例] (1)(2013·山东高考)给定两个命题p ,q .若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2013·北京高考)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 (1)由q ⇒⌝p 且⌝p ⇒/ q 可得p ⇒⌝q 且⌝q ⇒/p ,所以p 是⌝q 的充分而不必要条件.(2)由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.[答案] (1)A (2)A[针对训练]下列各题中,p 是q 的什么条件?(1)在△ABC 中,p :A =B ,q :sin A =sin B ;(2)p :|x |=x ,q :x 2+x ≥0.解:(1)若A =B ,则sin A =sin B ,即p ⇒q .又若sin A =sin B ,则2R sin A =2R sin B ,即a =b .故A =B ,即q ⇒p .所以p 是q 的充要条件.(2)p :{x ||x |=x }={x |x ≥0}=A ,q :{x |x 2+x ≥0}={x |x ≥0,或x ≤-1}=B ,∵A B ,∴p 是q 的充分不必要条件. 考点三 充分必要条件的应用[典例] 已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围;(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围.[解] (1)由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10},∵x ∈P 是x ∈S 的充要条件,∴P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,∴m ≤3. 综上,可知m ≤3时,x ∈P 是x ∈S 的必要条件.课后作业[试一试]1.(2013·福建高考)设点P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A “x =2且y =-1”满足方程x +y -1=0,故“x =2且y =-1”可推出“点P 在直线l :x +y -1=0上”;但方程x +y -1=0有无数多个解,故“点P 在直线l :x +y -1=0上”不能推出“x =2且y =-1”,故“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的充分不必要条件.2.“在△ABC 中,若∠C =90°,则∠A 、∠B 都是锐角”的否命题为:____________________.【解析】原命题的条件:在△ABC 中,∠C =90°,结论:∠A 、∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”.答案:“在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”[练一练]1.(2014·济南模拟)设x ∈R ,则“x 2-3x >0”是“x >4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 由x 2-3x >0得x >3或x <0,此时得不出x >4,但当x >4时,不等式x 2-3x >0恒成立,所以正确选项为B.2.与命题“若a ∈M ,则b ∉M ”等价的命题是________.【解析】原命题与其逆否命题为等价命题.答案:若b ∈M ,则a ∉M做一做1.(2013·安徽高考)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 由(2x -1)x =0可得x =12或0,因为“x =12或0”是“x =0”的必要不充分条件.2.(2013·九江一模)命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2”B .“若x >y ,则x 2>y 2”C .“若x ≤y ,则x 2≤y 2”D .“若x ≥y ,则x 2≥y 2”【解析】选C 根据原命题和逆否命题的条件和结论的关系得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.3.(2014·福建质检)已知向量a =(m 2,4),b =(1,1),则“m =-2”是“a ∥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】选A 依题意,当m =-2时,a =(4,4),b =(1,1),所以a =4b ,a ∥b ,即由m =-2可以推出a ∥b ;当a ∥b 时,m 2=4,得m =±2,所以不能推得m =-2,即“m =-2”是“a ∥b ”的充分而不必要条件.4.(2013·聊城期末)设集合A ,B 是全集U 的两个子集,则A B 是(∁U A )∪B =U 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】选A 如图所示,A B ⇒(∁U A )∪B =U ;但(∁U A )∪B =U ⇒/A B ,如A =B ,因此A B 是(∁U A )∪B =U 的充分不必要条件.5.命题“若a >b ,则a -1>b -1”的否命题是________.答案:若a ≤b ,则a -1≤b -1 6.创新题已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若P :“x ∈A ”是Q :“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.【解析】A ={x |x <4},由题意得A B 结合数轴易得a >4.答案:(4,+∞)[课下提升考能]1.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以NM ,故a ∈M 是a ∈N 的必要不充分条件.2.(2013·潍坊模拟)命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题【解析】选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 3.(2013·乌鲁木齐质检)“a >0”是“a 2+a ≥0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】选A a >0⇒a 2+a ≥0;反之a 2+a ≥0⇒a ≥0或a ≤-1,不能推出a >0,选A.。

充分条件与必要条件教案

充分条件与必要条件教案一、教学目标1、知识与技能目标理解充分条件、必要条件的概念。

能够判断给定条件是结论的充分条件还是必要条件。

学会运用充分条件和必要条件解决相关的数学问题。

2、过程与方法目标通过实例引入,培养学生观察、分析和归纳的能力。

经历概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标感受数学逻辑的严谨性,激发学生对数学的兴趣。

培养学生严谨的治学态度和勇于探索的精神。

二、教学重难点1、教学重点充分条件和必要条件的概念。

充分条件和必要条件的判断方法。

2、教学难点理解充分条件和必要条件的关系。

在复杂情境中准确判断充分条件和必要条件。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入教师通过讲述一个生活中的例子来引入课题,比如:“如果今天下雨,那么地面会湿。

”引导学生思考下雨和地面湿之间的关系。

2、概念讲解给出充分条件的定义:如果有条件 A 成立,就一定能得出结论 B 成立,那么条件 A 就是结论 B 的充分条件。

举例说明:“如果一个数能被 2 整除,那么这个数一定是偶数。

”其中“一个数能被 2 整除”就是“这个数是偶数”的充分条件。

给出必要条件的定义:如果由结论 B 成立能够推出条件 A 成立,那么条件 A 就是结论 B 的必要条件。

举例说明:“只有当一个数是偶数,这个数才能被 2 整除。

”其中“一个数是偶数”就是“这个数能被 2 整除”的必要条件。

3、区分充分条件和必要条件通过实例让学生讨论并区分充分条件和必要条件。

例如:“如果一个三角形是等边三角形,那么它一定是等腰三角形。

”分析这里等边三角形是等腰三角形的什么条件。

4、判断充分条件和必要条件的方法教师介绍两种常见的判断方法:定义法:根据充分条件和必要条件的定义进行判断。

集合法:将条件和结论对应的集合表示出来,通过集合的包含关系来判断。

5、例题讲解出示一些具体的数学命题,让学生判断条件是结论的充分条件还是必要条件。

充分条件和必要条件教案(教师

充分条件和必要条件教案(教师)一、教学目标知识与技能:1. 学生能够理解充分条件和必要条件的概念。

2. 学生能够判断一个条件是充分条件还是必要条件。

3. 学生能够运用充分条件和必要条件解决实际问题。

过程与方法:1. 学生通过实例分析和讨论,培养观察、思考和判断能力。

2. 学生通过练习题,提高解题能力和应用能力。

情感态度与价值观:1. 学生培养对数学的兴趣和自信心。

2. 学生培养合作和交流的能力。

二、教学内容1. 充分条件和必要条件的定义充分条件:如果一个条件能够保证结论的发生,这个条件称为结论的充分条件。

必要条件:如果一个条件是结论发生的必要条件,这个条件称为结论的必要条件。

2. 判断充分条件和必要条件的方法(1) 通过对实例的分析,判断条件与结论之间的关系。

(2) 用逻辑推理的方法,判断条件与结论之间的关系。

3. 运用充分条件和必要条件解决实际问题通过具体例题,让学生运用充分条件和必要条件分析问题,解决问题。

三、教学重点与难点重点:1. 充分条件和必要条件的概念。

2. 判断充分条件和必要条件的方法。

难点:1. 对充分条件和必要条件的理解和判断。

2. 运用充分条件和必要条件解决实际问题。

四、教学过程1. 导入:通过一个生活中的实例,引导学生思考条件与结论之间的关系。

2. 新课导入:介绍充分条件和必要条件的定义,让学生通过实例分析和讨论,理解这两个概念。

3. 课堂讲解:讲解判断充分条件和必要条件的方法,并通过例题让学生加深理解。

4. 练习与讨论:让学生通过练习题,巩固所学知识,并在讨论中培养合作和交流的能力。

5. 总结:对本节课的内容进行总结,强调重点和难点。

五、课后作业1. 完成练习题,巩固所学知识。

2. 结合生活实际,找一些充分条件和必要条件的例子,进行思考和分析。

六、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度,包括发言、提问和讨论。

2. 练习题的正确率:统计学生完成练习题的正确率,评估学生对充分条件和必要条件的理解和掌握程度。

高考数学(理)一轮复习精品资料 专题03 充分条件、必要条件与命题的四种形式(教学案) Word版含解析

专题03充分条件、必要条件与命题的四种形式(教学案)高考数学(理)一轮复习精品资料1.充分理解逻辑联结词的含义,注意和日常用语的区别;2.对量词的练习要在“含一个量词”框架内进行,不要随意加深;3.注意逻辑与其他知识的交汇.1.充分条件、必要条件与充要条件(1)“若p,则q”形式的命题为真时,记作p⇒q,称p是q的充分条件,q是p的充要条件.(2)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件,q也是p的充要条件.p是q的充要条件又常说成q当且仅当p,或p与q等价.2.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【特别提醒】等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.高频考点一含有逻辑联结词的命题的真假判断例1、(1)已知命题p :m ,n 为直线,α为平面,若m∥n,n ⊂α,则m∥α,命题q :若a>b ,则ac>bc ,则下列命题为真命题的是()A .p∨qB .綈p∨qC .綈p∧qD .p∧q(2)已知命题p :若x>y ,则-x<-y ;命题q :若x>y ,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q 中,真命题是()A .①③B .①④C .②③D .②④ 答案(1)B(2)C【感悟提升】“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤: (1)确定命题的构成形式; (2)判断其中命题p 、q 的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.【变式探究】(1)已知命题p :对任意x∈R,总有2x>0;q :“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A .p∧qB .(綈p)∧(綈q)C .(綈p)∧qD .p∧(綈q)(2)若命题p :关于x 的不等式ax +b>0的解集是{x|x>-ba },命题q :关于x 的不等式(x-a)(x -b)<0的解集是{x|a<x<b},则在命题“p∧q”、“p∨q”、“綈p”、“綈q”中,是真命题的有________.答案(1)D(2)綈p 、綈q解析(1)p 为真命题,q 为假命题,故綈p 为假命题,綈q 为真命题.从而p∧q 为假,(綈p)∧(綈q)为假,(綈p)∧q 为假,p∧(綈q)为真,故选D.(2)依题意可知命题p 和q 都是假命题,所以“p∧q”为假、“p∨q”为假,“綈p”为真、“綈q”为真.高频考点二、全称命题、特称命题的真假 例2、(1)下列命题中,为真命题的是() A .∀x∈R,x2>0 B .∀x∈R,-1<sinx<1 C .∃x0∈R,02x <0 D .∃x0∈R,tanx0=2(2)下列四个命题p1:∃x0∈(0,+∞),⎝ ⎛⎭⎪⎫120x <⎝ ⎛⎭⎪⎫130x ;p2:∃x0∈(0,1),log12x0>log 13x0;p3:∀x∈(0,+∞),⎝ ⎛⎭⎪⎫12x>log 12x ; p4:∀x∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x<log 13x. 其中真命题是() A .p1,p3 B .p1,p4 C .p2,p3 D .p2,p4 答案(1)D(2)D解析(1)∀x∈R,x2≥0,故A 错;∀x∈R,-1≤sinx≤1,故B 错;∀x∈R,2x>0,故C 错,故选D.(2)根据幂函数的性质,对∀x∈(0,+∞),⎝ ⎛⎭⎪⎫12x>⎝ ⎛⎭⎪⎫13x ,故命题p1是假命题;由于log 12x -log13x =lgx -lg2-lgx -lg3=lg2-lg2lg3,故对∀x∈(0,1),log12x>log13x ,所以∃x0∈(0,1),log12x0>log 13x0,命题p2是真命题;当x∈⎝ ⎛⎭⎪⎫0,12时,0<⎝ ⎛⎭⎪⎫12x<1,log 12x>1,故⎝ ⎛⎭⎪⎫12x>log 12x 不成立,命题p3是假命题;∀x∈⎝ ⎛⎭⎪⎫0,13,0<⎝ ⎛⎭⎪⎫12x<1,log 13x>1,故⎝ ⎛⎭⎪⎫12x<log 13x ,命题p4是真命题.故p2,p4为真命题.【变式探究】(1)命题“存在实数x ,使x>1”的否定是() A .对任意实数x ,都有x>1 B .不存在实数x ,使x≤1 C .对任意实数x ,都有x≤1 D .存在实数x ,使x≤1(2)设x∈Z,集合A 是奇数集,集合B 是偶数集.若命题p :∀x∈A,2x∈B,则綈p 为:______________.答案(1)C(2)∃x0∈A,2x0∉B解析(1)利用特称命题的否定是全称命题求解,“存在实数x ,使x>1”的否定是“对任意实数x ,都有x≤1”.故选C.(2)命题p :∀x∈A,2x∈B 是一个全称命题,其命题的否定应为特称命题. ∴綈p :∃x0∈A,2x0∉B.【感悟提升】(1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M 中的每一个元素x ,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内至少找到一个x =x0,使p(x0)成立.(2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词. ②对原命题的结论进行否定.【举一反三】(1)下列命题中的真命题是() A .∃x∈R,使得sinx +cosx =32B .∀x∈(0,+∞),ex>x +1C .∃x∈(-∞,0),2x<3xD .∀x∈(0,π),sinx>cosx(2)设命题p :∃n∈N,n2>2n ,则綈p 为() A .∀n ∈N,n2>2nB .∃n∈N,n2≤2nC .∀n∈N,n2≤2nD .∃n∈N,n2=2n 答案(1)B(2)C高频考点三由命题的真假求参数的取值范围例3、已知p :∃x∈R,mx2+1≤0,q :∀x∈R,x2+mx +1>0,若p∨q 为假命题,则实数m 的取值范围为()A .m≥2B .m≤-2C .m≤-2或m≥2D .-2≤m≤2答案A解析依题意知p ,q 均为假命题,当p 是假命题时,mx2+1>0恒成立,则有m≥0; 当q 是真命题时,则有Δ=m2-4<0,-2<m<2. 因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m≥0m≤-2或m≥2,即m≥2.【感悟提升】根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)然后再求出每个命题是真命题时参数的取值范围; (3)最后根据每个命题的真假情况,求出参数的取值范围.【举一反三】(1)已知命题p :“∀x∈,x2-a≥0”,命题q :“∃x∈R,使x2+2ax +2-a =0”,若命题“p 且q”是真命题,则实数a 的取值范围是()A .{a|a≤-2或a =1}B .{a|a≥1}C .{a|a≤-2或1≤a≤2}D .{a|-2≤a≤1}(2)命题“∃x∈R,2x2-3ax +9<0”为假命题,则实数a 的取值范围为________. 答案(1)A(2)【2019高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的()(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A【解析】直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a,b 可能相交,也可能平行,故选A.【2019高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的()(A )充要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件 【答案】C 【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.【2019高考上海理数】设R a ∈,则“1>a ”是“12>a ”的() (A )充分非必要条件(B )必要非充分条件 (C )充要条件(D )既非充分也非必要条件 【答案】A【解析】2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A. 【2019高考湖北,理5】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则()A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠na ;对命题q ,①当=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立;②当≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立,则n n a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a 成等比数列,所以p 是q 的充分条件,但不是q 的必要条件.【2019高考天津,理4】设x R ∈,则“21x -<”是“220x x +->”的() (A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件 【答案】A【解析】2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以“21x -<”是“220x x +->”的充分不必要条件,故选A. 【2019高考重庆,理4】“1x >”是“12log (2)0x +<”的()A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 【答案】B【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .【2019高考安徽,理3】设:12,:21xp x q <<>,则p 是q 成立的() (A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件 【答案】A【解析】由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件,选A.【2019高考湖南,理2】.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C.【解析】由题意得,A B A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.【2019·安徽卷】“x <0”是“ln(x +1)<0”的() A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】ln(x +1)<0⇔0<1+x <1⇔-1<x <0,而(-1,0)是(-∞,0)的真子集,所“x <0”是“ln(x +1)<0”的必要不充分条件.【2019·北京卷】设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D【解析】当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D. 【2019·福建卷】直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A【2019·湖北卷】U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B =∅”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由维思图可知,一定存在C=A,满足A⊆C,B⊆∁U C,故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.故选C.【2019·陕西卷】原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假【答案】B【2019·天津卷】设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】C【解析】当ab≥0时,可得a>b与a|a|>b|b|等价.当ab<0时,可得a>b时a|a|>0>b|b|;反之,由a|a|>b|b|知a>0>b,即a>b.【2019·浙江卷】已知i是虚数单位,a,b∈R,得“a=b=1”是“(a+b i)2=2i”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i,得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A.【2019·重庆卷】已知命题p :对任意x ∈R ,总有2x>0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是()A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q 【答案】D【解析】根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.1.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是()A .(綈p)∨qB .p∧qC .(綈p)∧(綈q)D .(綈p)∨(綈q)答案D解析不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有(綈p)∨(綈q)为真命题.2.已知命题p ,q ,“綈p 为真”是“p∧q 为假”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案A解析由“綈p 为真”可得p 为假,故p∧q 为假;反之不成立.3.已知命题p :“x>2是x2>4的充要条件”,命题q :“若a c2>bc2,则a>b”,那么()A .“p 或q”为真B .“p 且q”为真C .p 真q 假D .p ,q 均为假答案A解析由已知得命题p 是假命题,命题q 是真命题,因此选A.4.下列命题中的假命题是()A .∀x∈R,2x-1>0B .∀x∈N*,(x -1)2>0C .∃x0∈R,lgx0<1D .∃x0∈R,tan ⎝⎛⎭⎪⎫x0+π4=5 答案B解析A 项,∵x∈R,∴x-1∈R,由指数函数性质得2x -1>0;B 项,∵x∈N*,∴当x =1时,(x -1)2=0与(x -1)2>0矛盾;C 项,当x0=110时,lg 110=-1<1;D 项,当x∈R 时,tanx∈R,∴∃x0∈R,tan ⎝⎛⎭⎪⎫x0+π4=5. 5.已知命题p :若a>1,则ax>logax 恒成立;命题q :在等差数列{an}中,m +n =p +q 是an +am =ap +aq 的充分不必要条件(m ,n ,p ,q∈N*).则下面选项中真命题是()A .(綈p)∧(綈q)B .(綈p)∨(綈q)C .p∨(綈q)D .p∧q答案B6.命题p :∀x∈R,sinx<1;命题q :∃x∈R,cosx≤-1,则下列结论是真命题的是()A .p∧qB .(綈p)∧qC .p∨(綈q)D .(綈p)∧(綈q)答案B解析p是假命题,q是真命题,所以B正确.7.已知命题p:所有指数函数都是单调函数,则綈p为()A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C.存在一个指数函数,它不是单调函数D.存在一个单调函数,它不是指数函数答案C解析命题p:所有指数函数都是单调函数,则綈p:存在一个指数函数,它不是单调函数.8.已知命题p:∃x0∈R,ex0-mx0=0,q:∀x∈R,x2+mx+1≥0,若p∨(綈q)为假命题,则实数m的取值范围是()A.(-∞,0)∪(2,+∞) B.C.R D.∅答案B解析若p∨(綈q)为假命题,则p假q真.命题p为假命题时,有0≤m<e;命题q为真命题时,有Δ=m2-4≤0,即-2≤m≤2.所以当p∨(綈q)为假命题时,m的取值范围是0≤m≤2.9.命题“∃x∈R,使得x2+2x+5=0”的否定是________.答案∀x∈R,x2+2x+5≠0解析否定为全称命题:“∀x∈R,x2+2x+5≠0”.10.若命题“∃x0∈R,x20+(a-1)x0+1<0”是真命题,则实数a的取值范围是________.答案(-∞,-1)∪(3,+∞)解析因为命题“∃x0∈R,x20+(a-1)x0+1<0”等价于x20+(a-1)x0+1=0有两个不等的实根,所以Δ=(a-1)2-4>0,即a2-2a-3>0,解得a<-1或a>3.11.已知命题p:x2+2x-3>0;命题q:13-x>1,若“綈q∧p”为真,则x的取值范围是________.答案(-∞,-3)∪(1,2]∪解析若綈p是假命题,则p是真命题,即关于x的方程4x-2·2x+m=0有实数解,由于m=-(4x-2·2x)=-(2x-1)2+1≤1,∴m≤1.17.设p :方程x2+2mx +1=0有两个不相等的正根;q :方程x2+2(m -2)x -3m +10=0无实根.则使p∨q 为真,p∧q 为假的实数m 的取值范围是________.答案(-∞,-2]∪[-1,3)18.已知f(x)=m(x -2m)(x +m +3),g(x)=2x -2.若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(-∞,-4),f(x)g(x)<0,则m 的取值范围是________.答案(-4,-2)解析当x≥1时,g(x)≥0,∴要满足条件①,则f(x)<0在x≥1时恒成立,f(x)=m(x -2m)(x +m +3)为二次函数,抛物线必须开口向下,即m<0.f(x)=0的两根x1=2m ,x2=-m -3,且x1-x2=3m +3.(ⅰ)当x1>x2,即-1<m<0时,必须大根x1=2m<1,即m<12.∴此时-1<m<0; (ⅱ)当x1<x2,即m<-1时,大根x2=-m -3<1,即m>-4.∴此时-4<m<-1;(ⅲ)当x1=x2,即m =-1时,x1=x2=-2<1也满足条件.∴满足条件①的m 的取值范围为-4<m<0.满足条件②∃x∈(-∞,-4),f(x)g(x)<0,必须满足二次函数的小根小于-4.(ⅰ)当m>-1时,小根x2=-m-3<-4且m<0,无解.(ⅱ)当m<-1时,小根x1=2m<-4且m<0,解得m<-2. (ⅲ)当m=-1时,f(x)=-(x+2)2≤0恒成立,∴不满足②.∴满足①②的m的取值范围是-4<m<-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题02 充分条件、必要条件与命题的四种形式1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解必要条件、充分条件与充要条件的含义.1.充分条件、必要条件与充要条件(1)“若p,则q”形式的命题为真时,记作p⇒q,称p是q的充分条件,q是p的充要条件.(2)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件,q也是p的充要条件.p是q的充要条件又常说成q当且仅当p,或p与q等价.2.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【特别提醒】等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.高频考点一四种命题的关系及其真假判断例1、(1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2-3x-4=0”为真命题B.“若x≠4,则x2-3x-4≠0”为真命题C.“若x≠4,则x2-3x-4≠0”为假命题D.“若x=4,则x2-3x-4=0”为假命题(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )A.真、假、真 B.假、假、真C.真、真、假 D.假、假、假【答案】(1)C (2)B【感悟提升】(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p,则q”的形式,应先改写成“若p,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【变式探究】已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题【解析】由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.因此原命题是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.【答案】 D高频考点二、充分条件与必要条件的判定例2、(1)函数f(x)在x处导数存在.若p:f′(x)=0;q:x是f(x)的极值点,则( ) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分要件,也不是q的必要条件(2)(2017·衡阳一模)“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件故“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的充分不必要条件.【答案】(1)C (2)B【感悟提升】充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件.【举一反三】(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a 和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【解析】由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.【答案】 A高频考点三充分条件、必要条件的应用例3、已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.解由x2-8x-20≤0,得-2≤x≤10,∴P ={x |-2≤x ≤10}. ∵x ∈P 是x ∈S 的必要条件, 则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,可知m ≥0≤3时,x ∈P 是x ∈S 的必要条件.学【特别提醒】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解; (2)要注意区间端点值的检验.【变式探究】 ax 2+2x +1=0只有负实根的充要条件是________.【解析】 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根x =-12.【答案】 0≤a ≤11.【2016高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a,b 可能相交,也可能平行,故选A.2.【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C 【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.3.【2016高考上海理数】设R a ∈,则“1>a ”是“12>a ”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A. 4.【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ;对命题,①当0=n a 时,5.【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A. 6.【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 【答案】B【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .7.【2015高考安徽,理3】设:12,:21xp x q <<>,则p 是q 成立的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A8.【2015高考湖南,理2】.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C.【解析】由题意得,A B A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.9.【2014·安徽卷】“x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B【解析】ln(x +1)<0⇔0<1+x <1⇔-1<x <0,而(-1,0)是(-∞,0)的真子集,所“x <0”是“ln(x +1)<0”的必要不充分条件.10【2014·北京卷】 设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D【解析】当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D. 11.【2014·福建卷】 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A12.【2014·湖北卷】U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 【答案】C【解析】若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.13.【2014·陕西卷】原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,假,真 B .假,假,真 C .真,真,假 D .假,假,假 【答案】B【解析】设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.学14.【2014·天津卷】 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】C【解析】当ab ≥0时,可得a >b 与a |a |>b |b |等价.当ab <0时,可得a >b 时a |a |>0>b |b |;反之,由a |a |>b |b |知a >0>b ,即a >b .15.【2014·浙江卷】 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A.16.【2014·重庆卷】已知命题p :对任意x ∈R ,总有2x>0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( ) A .p ∧q B .綈p ∧綈q C .綈p ∧q D .p ∧綈q【答案】D1.设m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0【解析】 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”. 【答案】 D2.“x =1”是“x 2-2x +1=0”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【解析】 因为x 2-2x +1=0有两个相等的实数根为x =1,所以“x =1”是“x 2-2x +1=0”的充要条件. 【答案】 A3.设α,β是两个不同的平面,m 是直线且m ⊂α,则“m ∥β”是“α∥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】 B4.“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 显然a =0时,f (x )=sin x -1x为奇函数;当f (x )为奇函数时,f (-x )+f (x )=0.又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =0.因此2a =0,故a =0.所以“a =0”是“函数f (x )为奇函数”的充要条件. 【答案】 C5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 【解析】 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题.【答案】 C6.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 由|x -2|<1,得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2. 所以“1<x <2”是“|x -2|<1”的充分不必要条件. 【答案】 A7.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]【答案】 A8.已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.【答案】 B9.已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【解析】 由y =2x +m -1=0,得m =1-2x ,则m <1.由于函数y =log m x 在(0,+∞)上是减函数,所以0<m <1.因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件.【答案】 B10.“sin α=cos α”是“cos 2α=0”的________条件.【解析】 cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件.【答案】 充分不必要11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.【解析】 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴MN ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 【答案】 (0,3)12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.【答案】 ②③13.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.【解析】 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.【答案】 (2,+∞)14.下列四个结论中正确的是________(填序号).①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“∀x ∈R ,sin x ≤1”的否定是“∃x ∈R ,sin x >1”;③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0.【解析】 ①中“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误.对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x ∈R ,sin x >1”,故②正确.对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误.对于④,若f (x )是R 上的奇函数,则f (-x )+f (x )=0,∵log 32=1log 23≠-log 32, ∴log 32与log 23不互为相反数,故④错误.【答案】 ②。

相关文档
最新文档