高三数学复习专题讲座
高三数学复习专题讲座(第一讲)集合与集合思想

第一讲、对集合的理解及集合思想应用的问题一、1、集合语言是一种特殊的符号语言,是现代数学的基本语言,所以要学好高中的数学,首先必须深层次的理解集合的概念及其内涵,跟我们生活是一样的,如果连语言都不通的话,就跟谈不上很好的交流和表达了。
2、《集合》的学习,不仅仅局限与集合里面简单的计算,而需要更深层次的理解集合思想内涵,许多同学在学习集合,在学习高中数学的时候,有种“力不从心”的感觉,总是“一看就会,一听就懂,一做就错”,很大程度上是因为没有真正理解其中的思想内涵,仅仅是停留在表面的理解。
3、集合是个原始概念,只作描述性的解释:若干个确定对象的全体,可以看作一个集合,组成集合的对象称为集合的元素。
从这个概念,至少可以看到三个研究方向:集合中元素的研究;单个集合本身的研究;若干个集合之间关系的研究(函数就是两个集合之间按照一定规则的对应关系)。
二、透过集合的描述法理解集合。
对于用描述法给出的集合{x |x ∈P }1、翻译,高中数学的学习,要注意自然语言,符号语言,图像语言……之间的相互转化。
代表元素x 可以翻译成:是什么?它所具有的性质P 可以翻译成:有多少?2、研究两个集合之间的关系,也就可以通过研究集合里面元素之间的关系来解决。
3、形式:对于性质P ,在数学语言中,代表着一种形式,也就是说,只要满足这样形式的个体x ,则可以看着是集合的元素。
在许多的数学题型中,需要对数学表达式进行变形,变成我们需要或者是熟悉的能够解决问题的形式。
如:+∈R y x ,,yx y x 21,2+=+求的最小值,这里有两种方式:1、用消元法,2、讲当成整体,y x +即:)21)((21yx y x ++=原式,这里显然方法第二种形式要简洁一些。
如:},14/{},,12/{Z k k x x B Z k k x x A ∈±==∈+==,(1)判断集合B A ,的关系 (2)证明B A ,之间的关系解析:(1)这作为一个判断题目,可以通过对集合的翻译研究他们之间的关系对集合A :1、x :数——2、奇数——3、观察,x 可以去到……-3,-2,1,3……——4、A 集合为全体奇数,同理:B 集合也是全体奇数,故:A=B(2)要证明A=B ,即需要证明A ,B 互为彼此的子集,即⎩⎨⎧∈⇒∈∀∈⇒∈∀⇔=Ax B x B x A x B A ,这里也就需要证明A 中的元素能够表示成B 中元素具有的形式P 的形式,反之亦然。
高三数学第二轮专题讲座复习:极限的概念及其运算

张喜林制[选取日期]高三数学第二轮专题讲座复习:极限的概念及其运算高考要求极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题 重难点归纳1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限 2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限3 注意在平时学习中积累一些方法和技巧,如 )1|(|0lim ,0)1(lim<==-∞→∞→a a nn n nn ⎪⎪⎪⎩⎪⎪⎪⎨⎧><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 01110110 典型题例示范讲解例1已知lim ∞→x (12+-x x -ax -b )=0,确定a 与b 的值命题意图在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律,既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法错解分析本题难点是式子的整理过程繁琐,稍不注意就有可能出错 技巧与方法 有理化处理解 bax x x b ax x x b ax x x x x +++-+-+-=--+-∞→∞→1)()1(lim)1(lim 2222bax x x b x ab x a x +++--++--=∞→1)1()21()1(lim2222要使上式极限存在,则1-a 2=0,当1-a 2=0时,1)21(1)21(1111)21(lim 1)1()21(lim 22222=++-++-=+++--++-=+++--+--=∞→∞→aab a ab a x b x xx b ab b ax x x b x ab x x 由已知得上式∴⎪⎩⎪⎨⎧=++-=-01)21(012aab a 解得⎪⎩⎪⎨⎧-==211b a例2设数列a 1,a 2,…,a n ,…的前n 项的和S n 和a n 的关系是S n =1-ba n -nb )1(1+,其中b 是与n 无关的常数,且b ≠-1(1)求a n 和a n -1的关系式;(2)写出用n 和b 表示a n 的表达式;(3)当0<b <1时,求极限lim ∞→n S n命题意图历年高考中多出现的题目是与数列的通项公式,前n 项和S n 等有紧密的联系 有时题目是先依条件确定数列的通项公式再求极限,或先求出前n 项和S n 再求极限,本题考查学生的综合能力错解分析本题难点是第(2)中由(1)中的关系式猜想通项及n =1与n =2时的式子不统一性 技巧与方法 抓住第一步的递推关系式,去寻找规律解 (1)a n =S n -S n -1=-b (a n -a n -1)-1)1(1)1(1-+++n n b b =-b (a n -a n -1)+nb b)1(+ (n ≥2)解得a n =11)1(1+-+++n n b b a b b (n ≥2) 代入上式得把由此猜想21113211132321213212221221111)1()1()1(,)1()1()1(])1(1[)1()1()1()1(1])1(1[1)1(,111)2(b ba b b b b b a b b a b bb b a b b b b b b b a b b b b b bb a b b b b b a b b b b a b ba b ba S a n n n n n n n n n n n n n n n +=+++++++=+++++=+++++++=++++=++++++=∴+=∴+--==+--+-+--+-+-),1()11(1)()1(11)1(1)1)(1(1)1(11)3()1(2)1()1)(1()1(111111112≠+---+-=+-+--⋅-=+--=⎪⎪⎩⎪⎪⎨⎧=≠+--=++++=++++++++b b b b b b b b b b b b b b ba S b n b b b b b b b b b a n n nn n n n n n n n n n n n.1lim ,0)11(lim ,0lim ,10=∴=+=<<∞→∞→∞→n n nn n n S bb b 时例3求1122+-→++n n n n n aa 111121()21:22,;lim lim 22()n nn n n n n n a a a a a a a a a--+→∞→∞++><-==++解当或时 111()212222,;lim lim 242()2n n n n n n n n a a a a a a -+→∞→∞++-<<==++当时 1112123212,;lim lim 262n n n n n n n n a a a --+-→∞→∞+⋅===+⋅当时 2,a =-当时11111111112221()2(2)22232622(2)22323()2222n n n n n n n n n n nn n n nn n n n n n a a n ----+++--+⎧-+-==-⎪+-+⎪+⋅==⎨++-+⋅⎪==-⎪⎩--为奇数为偶数 学生巩固练习1 a n 是(1+x )n 展开式中含x 2的项的系数,则)111(lim 21nn a a a +++∞→ 等于 A 2B 0C 1D -12 若三数a ,1,c 成等差数列且a 2,1,c 2又成等比数列,则nn c a c a )(lim 22++∞→的值是( ) A 0B 1C 0或1D 不存在3 )(lim x x x x n -+++∞→ =_________4 若)12(lim 2nb n n a n --+∞→=1,则ab 的值是_________5 在数列{a n }中,已知a 1=53,a 2=10031,且数列{a n +1-101a n }是公比为21的等比数列,数列{lg(a n +1-21a n }是公差为-1的等差数列 (1)求数列{a n }的通项公式; (2)S n =a 1+a 2+…+a n (n ≥1),求lim ∞→n S n参考答案1 解析 )111(21,2)1(C 2nn a n n a n n n --=∴-==, 2)11(2lim )111(lim 21=-=+++∴∞→∞→na a a n n n 答案 A2 解析 ⎩⎨⎧=+=+⎩⎨⎧=+=+⎩⎨⎧==+6222 ,12222222c a c a c a c a c a c a 或得 答案 C 3 解析 xx x x x x x x x x x x x x +++-++=-+++∞→+∞→lim)(lim.21111111lim23=++++=+∞→x xx x 答案 21 4 解析 原式=112)2(lim12)12(lim22222222222=+-+-+-=+-+--+∞→∞→nbn n a a n a n b a nbn n a b n n n a n n⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=-422120222b a b b a ∴a ·b =82答案 82 5 解 (1)由{a n +1-101a n }是公比为21的等比数列,且a 1=53,a 2=10031,∴a n +1-101a n =(a 2-101a 1)(21)n -1=(10031-53×101)(21)n -1=1121)21(41+-=n n ,∴a n +1=101a n +121+n ①又由数列{lg(a n +1-21a n )}是公差为-1的等差数列,且首项lg(a 2-21a 1)=lg(10031-21×53)=-2,∴其通项lg(a n +1-21a n )=-2+(n -1)(-1)=-(n +1),∴a n +1-21a n =10-(n +1),即a n +1=21a n +10-(n +1)②①②联立解得a n =25[(21)n +1-(101)n +1] (2)S n =])101()21([2511111∑∑∑==++=-=nk nk k k nk k a 911]1011)61(211)21([25lim 22=---=∴∞→n n S。
(专题讲座)2022届高三数学复习备考总结与反思

客观题机阅,主观题手阅,然后进行扫描,一方面通过智
学网实时监控学生对每个章节掌握情况,另一方面也时刻
监督学生的规范答题。
二、强化时间意识,制定科学实际的教学进度
第一阶段:一轮复习,时间为2021年5月下旬至2022年3月中旬。
3.练习与测试:
(2)周练习与小题限时训练:从一轮复习开始到2022年10月底,
于纠错我们没有单独组编训练,一方面是穿插在周练,小
题训练和补充练习之中。另一方面是,所有的练习都通过
智学网扫描,智学网每周出一次个性化手册。高三上学期
百分之九十的学生都订了个性化手册,每周五下午安排两
节课的时间让学生完成落实个性化手册。
二、强化时间意识,制定科学实际的教学进度
第一阶段:一轮复习,时间为2021年5月下旬至2022年3月中旬。
不会做的尽量得步骤分”是我们一直追求的目标。
①平时训练中,要求学生看题时要审题要规范,读题要慢,关键字眼、重
点条件标上记号;想题时要思维规范,常规题型很快找到最优解题思路、
解题方法;解题时要运算规范,准确、简洁、快速,掌握必要的运算技巧,
立足一次成功;答题时要书写规范,包含文字、符号、字母等,力求解题
是我们复习备考的指南。
一、认真学习新课程标准,高考评价体系,把握备考方向
3、研究课本和2021年高考试题
研究课本和高考试题活动,是我们常规教研活动之一,研究的
内容主要有:
(1)学习新教材与旧教材之间的变化,准确把握重点知识;
对于新教材上的一些典型例题与习题,我们还会摘选出来给
学生做;
(2)研究高考试题命题要求和原则,寻找命题规律和特点;
高三数学第二轮专题讲座复习:综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题

张喜林制[选取日期]高三数学第二轮专题讲座复习:综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题 高考要求函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样 本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力 重难点归纳在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用 综合问题的求解往往需要应用多种知识和技能 因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件 学法指导 怎样学好函数 学习函数要重点解决好四个问题 准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识(一)准确、深刻理解函数的有关概念概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终 数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数 近十年来,高考试题中始终贯穿着函数及其性质这条主线(二)揭示并认识函数与其他数学知识的内在联系 函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容 在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式所谓函数观点,实质是将问题放到动态背景上去加以考虑 高考试题涉及5个方面 (1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点;(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中 (三)把握数形结合的特征和方法函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换 (四)认识函数思想的实质,强化应用意识函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决 纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识典型题例示范讲解 例1设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0(1)求f (21)、f (41); (2)证明f (x )是周期函数; (3)记a n =f (2n +n21),求).(ln lim n n a ∞→ 命题意图本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力 知识依托认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2) 错解分析不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形 技巧与方法 由f (x 1+x 2)=f (x 1)·f (x 2)变形为()()()()2222x xx x f x f f f =+=⋅是解决问题的关键解 因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=()()()02222x x x x f f f +=≥, x ∈[0,1]又因为f (1)=f (21+21)=f (21)·f (21)=[f (21)]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21, f (41)=a 41 (2)证明 依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即 f (x )=f (2-x ),x ∈R 又由f (x )是偶函数知 f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R 将上式中-x 以x 代换得f (x )=f (x +2),这表明f (x )是R 上的周期函数,且2是它的一个周期(3)解 由(1)知f (x )≥0,x ∈[0,1]∵f (21)=f (n ·n 21)=f (n 21+(n -1) n 21)=f (n 21)·f ((n -1)·n21)=…… =f (n 21)·f (n 21)·……·f (n 21)=[f (n 21)]n =a 21∴f (n21)=a n 21 又∵f (x )的一个周期是2 ∴f (2n +n 21)=f (n 21), ∴a n =f (2n +n 21)=f (n 21)=a n 21因此a n =a n 21∴.0)ln 21(lim )(ln lim ==∞→∞→a na n n n 例2甲、乙两地相距S 千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶? 命题意图 本题考查建立函数的模型、不等式性质、最值等知识,还考查学生综合运用所学数学知识解决实际问题的能力 知识依托运用建模、函数、数形结合、分类讨论等思想方法 错解分析不会将实际问题抽象转化为具体的函数问题,易忽略对参变量的限制条件 技巧与方法 四步法 (1)读题;(2)建模;(3)求解;(4)评价 解法一 (1)依题意知,汽车从甲地匀速行驶到乙地所用时间为vS ,全程运输成本为y =a ·v S +bv 2·v S =S (v a +bv ) ∴所求函数及其定义域为y =S (va +bv ),v ∈(0,c ] (2)依题意知,S 、a 、b 、v 均为正数 ∴S (va +bv )≥2S ab ① 当且仅当v a =bv ,即v =b a 时,①式中等号成立若b a ≤c 则当v =b a 时,有y min =2S ab ;若b a >c ,则当v ∈(0,c ]时,有S (v a +bv )-S (ca +bc ) =S [(v a -c a )+(bv -bc )]=vcS (c -v )(a -bcv )∵c -v ≥0,且c >bc 2, ∴a -bcv ≥a -bc 2>0 ∴S (v a +bv )≥S (c a +bc ),当且仅当v =c 时等号成立,也即当v =c 时,有y min =S (ca +bc ); 综上,为使y 最小,当b ab ≤c 时,行驶速度应为v =b ab , 当b ab >c 时速度应为v =c 解法二 (2)∵函数y =S (v a +bv ), v ∈(0,+∞),当x ∈(0, ba )时,y 单调减小,当x ∈(b a ,+∞)时y 单调增加,当x =b a 时y 取得最小值,而全程运输成本函数为y =Sb (v +vb a), v ∈(0,c ∴当b a ≤c 时,则当v =b a 时,y 最小,若ba >c 时,则当v =c 时,y 最小例3 设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4(1)求证 f (x )为奇函数;(2)在区间[-9,9]上,求f (x )的最值(1)证明 令x =y =0,得f (0)=0令y =-x ,得f (0)=f (x )+f (-x ),即f (-x )=-f (x )∴f (x )是奇函数(2)解 1°,任取实数x 1、x 2∈[-9,9]且x 1<x 2,这时,x 2-x 1>0,f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 1)=-f (x 2-x 1)因为x >0时f (x )<0,∴f (x 1)-f (x 2)>0∴f (x )在[-9,9]上是减函数 故f (x )的最大值为f (-9),最小值为f (9)而f (9)=f (3+3+3)=3f (3)=-12,f (-9)=-f (9)=12∴f (x )在区间[-9,9]上的最大值为12,最小值为-12 学生巩固练习1 函数y =x +a 与y =log a x 的图象可能是( )2定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)其中成立的是( )A①与④B②与③C①与③D②与④3若关于x的方程22x+2x a+a+1=0有实根,则实数a的取值范围是____4设a为实数,函数f(x)=x2+|x-a|+1,x∈R(1)讨论f(x)的奇偶性;(2)求f(x)的最小值参考答案:1解析分类讨论当a>1时和当0<a<1时答案 C2解析用特值法,根据题意,可设f(x)=x,g(x)=|x|,又设a=2,b=1,则f(a)=a,g(a)=|a|,f(b)=b,g(b)=|b|,f(a)-f(b)=f(2)-f(-1)=2+1=3g(b)-g(-a)=g(1)-g(-2)=1-2=-1∴f(a)-f(-b)>g(1)-g(-2)=1-2=-1又f(b)-f(-a)=f(1)-f(-2)=1+2=3g(a)-g(-b)=g(2)-g(1)=2-1=1,∴f(b)-f(-a)=g(a)-g(-b)即①与③成立答案 C3解析设2x=t>0,则原方程可变为t2+at+a+1=0 ①方程①有两个正实根,则⎪⎩⎪⎨⎧>+=⋅>-=+≥+-=∆1)1(421212attattaa解得a∈(-1,2-22]4解(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数;当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a)此时函数f(x)既不是奇函数也不是偶函数(2)①当x≤a时,函数f(x)=x2-x+a+1=(x-21)2+a+43,若a≤21,则函数f(x)在(-∞,a]上单调递减,从而,函数f(x)在(-∞,a]上的最小值为f(a)=a2+1若a>21,则函数f(x)在(-∞,a]上的最小值为f(21)=43+a,且f(21)≤f(a)②当x≥a时,函数f(x)=x2+x-a+1=(x+21)2-a+43;当a≤-21时,则函数f(x)在[a,+∞)上的最小值为f(-21)=43-a,且f(-21)≤f(a)若a>-21,f(x)在[a,+∞)上单调递增,f(x)在[a,+∞]上的最小值为f(a)=a2+1综上,当a≤-21时,函数f(x)的最小值是43-a,当-21<a≤21时,函数f(x)的最小值是a2+1;当a>21时,函数f(x)的最小值是a43。
高三数学第二轮专题讲座复习 求解函数解析式的几种常用方法 试题

卜人入州八九几市潮王学校望城区白箬高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法高考要求求解函数解析式是高考重点考察内容之一,需引起重视本节主要帮助考生在深入理解函数定义的根底上,掌握求函数解析式的几种方法,并形成才能,并培养考生的创新才能和解决实际问题的才能重难点归纳求解函数解析式的几种常用方法主要有1待定系数法,假设函数解析式的构造时,用待定系数法;2换元法或者配凑法,复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3消参法,假设抽象的函数表达式,那么用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法典型题例示范讲解例1(1)函数f (x )满足f (log a x )=)1(12x x a a --(其中a >0,a ≠1,x >0),求f (x )的表达式(2)二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式此题主要考察函数概念中的三要素定义域、值域和对应法那么,以及计算才能和综合运用知识的才能知识依托利用函数根底知识,特别是对“f 〞的理解,用好等价转化,注意定义域错解分析此题对思维才能要求较高,对定义域的考察、等价转化易出错技巧与方法(1)用换元法;(2)用待定系数法解(1)令t=log a x (a >1,t >0;0<a <1,t <0),那么x =a t因此f (t )=12-a a (a t -a -t) ∴f (x )=12-a a (a x -a -x)(a >1,x >0;0<a <1,x <0)(2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a 并且f (1)、f (-1)、f (0)不能同时等于1或者-1,所以所求函数为f (x )=2x 2-1或者f (x )=-2x 2+1或者f (x )=-x 2-x +1或者f (x )=x 2-x -1或者f (x )=-x 2+x +1或者f (x )=x 2+x -1例2设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一局部是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象此题主要考察函数根本知识、抛物线、射线的根本概念及其图象的作法,对分段函数的分析需要较强的思维才能因此,分段函数是今后高考的热点题型知识依托函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线错解分析此题对思维才能要求很高,分类讨论、综合运用知识易发生混乱技巧与方法合理进展分类,并运用待定系数法求函数表达式解(1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0)∴0=-2+b 即b =2,∴f (x )=x +2(2)当-1<x <1时,设f (x )=ax 2+2∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1∴f (x )=-x 2+2(3)当x ≥1时,f (x )=-x +2综上可知f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成例3f (2-cos x )=cos2x +cos x ,求f (x -1)解法一(换元法〕∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1令u =2-cos x (1≤u ≤3),那么cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4)解法二(配凑法〕f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x 〕+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4)学生稳固练习1假设函数f (x )=34 x mx (x ≠43)在定义域内恒有f [f (x )]=x ,那么m 等于() A 3B 23C -23 D -32设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,那么x >1时f (x )等于()A f (x )=(x +3)2-1B f (x )=(x -3)2-1C f (x )=(x -3)2+1D f (x )=(x -1)2-13f (x )+2f (x1)=3x ,求f (x )的解析式为_________ 4f (x )=ax 2+bx +c ,假设f (0)=0且f (x +1)=f (x )+x +1,那么f (x )=_________5设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式6设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x-3)2+4,求当x ∈[1,2]时f (x )的解析式假设矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值7动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示PA 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图8函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数获得最小值,最小值为-5(1)证明f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式; (3)试求y =f (x )在[4,9]上的解析式参考答案1解析∵f (x )=34-x mx ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3答案A 2解析利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1答案B3解析由f (x )+2f (x 1)=3x 知f (x 1)+2f (x )=3x1 由上面两式联立消去f (x 1)可得f (x )=x 2-x 答案f (x )=x2-x4解析∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b 〕x +a +b =bx +x +1故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x 答案21x 2+21x 5解f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x 6解设x ∈[1,2],那么4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4(2)设x ∈[0,1],那么2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1〕可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0〕,(1+t ,0)(0<t ≤1),那么|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764, 当且仅当2t 2=2-t 2,即t =36时取等号∴S 2≤27864⨯即S ≤9616,∴S max =96167解(1)如原题图,当P 在AB 上运动时,PA =x ;当P 点在BC 上运动时,由Rt △ABD可得PA =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得PA =2)3(1x -+;当P 点在DA 上运动时,PA =4-x ,故f (x )的表达式为f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43( 4)32( 106)21( 22)10( 22x x x x x x x x x x(2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进展分类求解如原题图,当P 在线段AB 上时,△ABP 的面积S =0; 当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1〕; 当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时,即3<x ≤4时,S △ABP =21(4-x )故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x8(1)证明∵y =f (x )是以5为周期的周期函数,1124321oyxDPCDPCA∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0(2)解当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4)(3)解∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0, 又y =f (x )(0≤x ≤1)是一次函数, ∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,f (1)=k ·1=k ,∴k =-3∴当0≤x ≤1时,f (x )=-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15, 当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5∴f (x )=⎩⎨⎧≤<--≤≤+-)96( 5)7(2)64( 1532x x x x。
高中数学复习专题讲座

高中数学复习专题讲座
前言
本次数学复专题讲座旨在帮助高中学生全面复和巩固数学知识,提高数学应试能力。
在这个讲座中,我们将对高中数学的各个知识
点进行系统性讲解和练。
专题一:代数与函数
1.1 一次函数与二次函数
- 理解一次函数与二次函数的定义及性质
- 掌握一次函数与二次函数的图像的绘制方法
- 学会解一次方程与二次方程
1.2 指数与对数函数
- 理解指数与对数函数的定义与性质
- 掌握指数与对数函数的图像的绘制方法
- 学会解指数与对数方程
专题二:几何与三角
2.1 三角函数
- 了解三角函数的定义及其基本性质
- 掌握正弦、余弦和正切函数在单位圆上的性质和应用- 学会解三角方程和利用三角函数求解实际问题
2.2 平面几何
- 熟悉平面几何的基本概念和性质
- 掌握平面几何中的重要定理和推理方法
- 学会运用平面几何解决实际问题
专题三:概率与统计
3.1 概率
- 理解概率的基本概念和性质
- 掌握概率计算的基本方法和技巧
- 学会应用概率解决实际问题
3.2 统计
- 了解统计学的基本概念和方法
- 掌握统计分布的计算和数据分析的技巧
- 学会运用统计学方法研究实际问题
结语
本次高中数学复专题讲座涵盖了代数与函数、几何与三角、概率与统计三个专题,重点讲解了各个知识点的定义、性质和应用。
通过参与讲座并积极实践,相信您的数学水平会有明显提高,为应对高考做好准备。
祝愿大家在数学学习中取得优异成绩!。
高中数学题型讲座:二次函数与一元二次方程、不等式
第2讲:二次函数与一元二次方程、不等式(重点题型方法与技巧)目录类型一:一元二次不等式(不含参)的求解 类型二:一元二次不等式(含参)的求解 角度1:两根大小不确定,从两根相等开始讨论角度2:最高项系数含参从0开始讨论 角度3:不可因式分解型,从开始讨论 类型三:一元二次不等式与对应函数、方程的关系类型四:二次不等式恒成立问题 类型五:一元二次函数求最值(含参数)类型六::根据不等式的解求参数1、四个二次的关系 1.1一元二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.1.2次函数与一元二次方程的根、一元二次不等式的解集的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图象与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.判别式ac b 42-=∆ 0∆>0∆=0∆<二次函数2y ax bx c =++(0a >的图象一元二次方程20ax bx c ++=(0a >)的根有两个不相等的实数有两个相等的实数根没有实数根根1x ,2x (12x x <)122b x x a==-20ax bx c ++>(0a >)的解集 12{|}x x x x x <>或 {|}2b x x a≠-R20ax bx c ++<(0a >)的解集12{|}x x x x <<∅ ∅2、一元二次不等式的解法1:先看二次项系数是否为正,若为负,则将二次项系数化为正数; 2:写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用十字相乘法); ②0∆=时,求根ab x x 221-==; ③0∆<时,方程无解 3:根据不等式,写出解集.类型一:一元二次不等式(不含参)的求解典型例题例题1.(2022·全国·高一课时练习)不等式21560x x +->的解集为( ) A .{1x x 或1}6x <-B .116x x ⎧⎫-<<⎨⎬⎩⎭C .{1x x 或3}x <-D .{}32x x -<<【答案】B【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D . 故选:B .例题2.(2022·陕西省丹凤中学高一期末(理))不等式2280x x +-≤的解集是________. 【答案】{|42}x x -≤≤【详解】解:因为2280x x +-≤,即()()420x x +-≤, 解得42x -≤≤,所以原不等式的解集为{|42}x x -≤≤; 故答案为:{|42}x x -≤≤同类题型演练1.(2022·广东珠海·高一期末)不等式()()130x x ++<的解集是( )A .RB .∅C .{31}x x -<<-∣D .{3xx <-∣,或1}x >- 【答案】C【详解】解:由()()130x x ++<,解得31x -<<-,即不等式的解集为{31}xx -<<-∣; 故选:C2.(2022·四川成都·高一期末(文))不等式()()120x x +->的解集为___________. 【答案】{}|12x x -<<【详解】不等式()()120x x +->可化为()()120x x +-<, 解得:12x -<<.所以原不等式的解集为{}|12x x -<<. 故答案为:{}|12x x -<<类型二:一元二次不等式(含参)的求解 角度1:两根大小不确定,从两根相等开始讨论 典型例题例题1.(2022·全国·高一课时练习)解不等式()2220x c x c -++<.【答案】解:不等式化为()2220x c x c -++<,即()(2)0x c x --<当2>c 时,不等式的解集为{}2x x c <<, 当2c =时,不等式的解集为∅, 当2c <时,不等式的解集为{}2x c x <<例题2.(2022·全国·高三专题练习)求不等式2212x ax a ->(a R ∈)的解集. 【答案】当a>0时,不等式的解集为{|}43a ax x x <->或 当a =0时,不等式的解集为{x|x ∈R 且x≠0}; 当a<0时,不等式的解集为{|}34a ax x x <>-或 【详解】试题分析:解含参数的二次不等式,通常要比较其对应方程的两根大小才能写出不等式的解集.本题对应方程两根为13a x =,24ax =-比较这两个根的大小,只需讨论与零的大小关系就可以了.试题解析:原不等式可化为(3x -a )(4x +a )>0. 当a>0时,不等式的解集为{|}43a a x x x <->或 当a =0时,不等式的解集为{x|x ∈R 且x≠0}; 当a<0时,不等式的解集为{|}34a a x x x <>-或 例题3.(2022·广东·高一期末)设函数2()(1)1f x ax a x =-++. (1)当a +∈R 时,求关于x 的不等式()0f x <的解集.【答案】(1)当1a =时,解集为∅;当01a <<时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当1a >时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭. ()0f x <,即()2110ax a x -++<,当a +∈R 时,原不等式可化为()110x x a⎛⎫--< ⎪⎝⎭,其解得情况应由1a与1的大小关系确定, 当1a =时,解得x ∈∅; 当1a >时,解得11x a<<; 当01a <<时,解得11x a<<. 综上所述:当1a =时,解集为∅;当01a <<时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当1a >时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 同类题型演练1.(2022·福建南平·高一期末)当0a <时,求关于x 的不等式2(24)80ax a x +-->的解集. 【答案】2(24)80ax a x +-->,因为0a <,所以不等式可化为2(4)0x x a ⎛⎫+-< ⎪⎝⎭当24a <-时,即102a -<<,原不等式的解集24,a ⎛⎫- ⎪⎝⎭当24a =-时,即12a =-,原不等式的解集为∅当24a >-时即12a <-原不等式的解集2,4a ⎛⎫- ⎪⎝⎭.综上所述,当102a -<<时,原不等式的解24,a ⎛⎫- ⎪⎝⎭;当12a =-时,原不等式的解集为∅;当12a <-时,原不等式的解集2,4a ⎛⎫- ⎪⎝⎭.2.(2022·四川成都·高一期末)设函数()()3y x x a =--,R a ∈. (1)解关于x 的不等式0y <; 【答案】(1)答案见解析.当3a <时,不等式()0f x <的解集为(),3a , 当3a =时,不等式()0f x <的解集为∅, 当3a >时,不等式()0f x <的解集为()3,a .3.(2022·甘肃省武威第一中学高一开学考试)解关于x 的不等式:()2230x a a x a -++<.【答案】答案见解析【详解】解:()2230x a a x a -++<即()()20x a x a --<, 则对应方程的根为212,==x a x a ,①当0a <或1a >时,原不等式的解集为{}2x a x a <<,②当0a =或1a =时,原不等式的解集为∅,③当01a <<时,原不等式的解集为{}2x a x a <<.角度2:最高项系数含参从0开始讨论典型例题例题1.(2022·湖南·新邵县第二中学高一开学考试)解关于x 的不等式2(1)21(R)ax a x a a a +-+-<-∈.【答案】由题意可得22(1)21(1)10ax a x a a ax a x +-+-<-⇒+--<,当0a =时,不等式可化为1x <,所以不等式的解集为{}1x x <,当0a >时,21(1)10(1)(1)01ax a x ax x x a+--<⇒+-<⇒-<<,当0a <时,2(1)10(1)(1)0ax a x ax x +--<⇒+-<,①当1a =-,解集{}1x x ≠,②当10a -<<,解集为{1x x <或1x a ⎫>-⎬⎭,③当1a <-,解集为{1x x >或1x a ⎫<-⎬⎭.综上所述,当1a <-,不等式的解集为{1x x >或1x a ⎫<-⎬⎭,当1a =-,不等式的解集为{}1x x ≠,当10a -<<,不等式的解集为{1x x <或1x a ⎫>-⎬⎭,当0a =时,不等式的解集为{}1x x <,当0a >时,不等式的解集为11x x a ⎧⎫-<<⎨⎬⎩⎭.例题2.(2022·陕西·西安高新第三中学高一期中)已知函数()2(2)()f x ax a x a =+-∈R .若2a >-,解关于x 的不等式()2f x ≥.【答案】20a -<<时,解集为2|1x x a ⎧⎫≤≤-⎨⎬⎩⎭;0a =时,解集为{}1x x ≤-; 0a >时,解集为2{|x x a≥或1}x ≤- 不等式()2f x ≥,可化为:()2220ax a x +--≥.当0a =时,原不等式即为220x --≥,∴1x ≤-.当0a >时,原不等式化为()210a x x a ⎛⎫-+≥ ⎪⎝⎭,∴2x a ≥或1x ≤-.当20a -<<时,原不等式为()210a x x a ⎛⎫-+≥ ⎪⎝⎭,可化为()210x x a ⎛⎫-+≤ ⎪⎝⎭因21a<-,∴21x a ≤≤-.综上,20a -<<时,原不等式的解集为2|1x x a ⎧⎫≤≤-⎨⎬⎩⎭;0a =时,原不等式的解集为{}1x x ≤-; 0a >时,原不等式的解集为2{|x x a≥或1}x ≤- 同类题型演练1.(2022·全国·高一专题练习)若R a ∈,解关于x 的不等式2(1)10ax a x +++>.【答案】答案见解析.【详解】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>,当0a <时,1()(1)0x x a ++<,解得11x a-<<-,当0a >时,1()(1)0x x a++>,若1a =,则1x ≠-,若01a <<,则1x a <-或1x >-,若1a >,则1x <-或1x a>-,所以当0a <时,原不等式的解集是{}|11x x a -<<-;当0a =时,原不等式的解集是{|1}x x >-;当01a <≤时,原不等式的解集是1{|x x a <-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-.2.(2022·福建·莆田一中高一期末)已知函数2()(1)2f x ax a x a =+-+-. 若0a <,解关于x 的不等式()1f x a <-. 【答案】依题意,因0a <,则2()1(1)101()(1)0f x a ax a x x x a<-⇔+-⇔--+><,当1a =-时,11a-=,解得1x ≠, 当10a -<<时,11a ->,解得1x <或1x a>-, 当1a <-时,101a <-<,解得1x a<-或1x >,所以,当1a =-时,原不等式的解集为{R |1}x x ∈≠;当10a -<<时,原不等式的解集为{|1x x <或1}x a>-;当1a <-时,原不等式的解集为1{|x x a<-或1}x >.角度3:不可因式分解型,从开始讨论典型例题例题1.(2022·全国·高一专题练习)解关于x 的不等式:2220()x ax a R ++>∈. 【答案】答案见解析.【详解】关于x 的不等式:2220()x ax a R ++>∈中,∆2242216a a =-⨯⨯=-,当4a >或4a 时,∆0>,对应的一元二次方程有两个实数根2164a a x ---=和2164a a x -+-=,且22161644a a a a ----+-<, 故不等式的解集为216{|4a a x x ---<或216}4a a x -+->;当4a =±时,∆0=,对应的一元二次方程有两个相等的实数根4ax =-,∴不等式的解集为{|}4ax x ≠-;当44a -<<时,∆0<, ∴不等式的解集为R ;综上,4a >或4a时,不等式的解集为216{|4a a x x ---<或216}4a a x -+->;4a =±时,不等式的解集为{|}4ax x ≠-;44a -<<时,不等式的解集为R .同类题型演练1.(2022·山东滨州·高二期中)已知一元二次函数2()f x x bx c =++,满足(0)2,(1)(1)=-=f f f .(1)求()f x 的解析式;(2)解关于x 的不等式()2≤f x ax . 【答案】(1)2()2f x x =+(2)解集见解析(1)解:函数2()f x x bx c =++,由(0)2f =,得2,c = 因为(1)(1)f f -=,所以1212,++=-+b b 解得0b =; 所以2()2f x x =+.(2)关于x 的不等式()2≤f x ax 可化为2220,-+≤x ax 因为248,∆=-a所以当0,∆<即22a -<<时,原不等式对应的方程无实数根, 又二次函数222y x ax =-+的图像开口向上,所以原不等式的解集为∅; 当0∆=,即2a =±时,原不等式对应的方程有两个相等的实数根, 2a =时,原不等式的解集为{}|2=x x ;2a =-时,原不等式的解集为{}|2=-x x ;当0,∆>即2a <-或2a >时,原不等式对应的有两个相等的实数根, 分别为22122,2,=--=+-x a a x a a 且12,x x <所以原不等式解集为{}22|22--≤≤+-x a a a a a .综上所知,当22a -<<时,原不等式的解集为∅; 当2a =时,原不等式的解集为{}|2=x x ; 当2a =-时,原不等式的解集为{}|2=-x x ;当2a <-或2a >时,原不等式解集为{}22|22--≤≤+-x a a a a a .类型三:一元二次不等式与对应函数、方程的关系典型例题例题1.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥【答案】A【详解】由二次函数图象知:20ax bx c ++>有21x -<<. 故选:A例题2.(2022·黑龙江·大庆实验中学高二期末)已知220x kx m -+<的解集为()1,t -(1t >-),则k m +的值为( ) A .1- B .2- C .1 D .2【答案】B【详解】解:因为220x kx m -+<的解集为()1,t -(1t >-), 所以1x =-为220x kx m -+=的根,所以2k m +=-. 故选:B例题3.(2022·黑龙江·大庆中学高二期末)若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则0ax b +>的解集为( )A .1,6⎛⎫-∞- ⎪⎝⎭B .1,6⎛⎫-∞ ⎪⎝⎭C .1,6⎛⎫-+∞ ⎪⎝⎭D .1,6⎛⎫+∞ ⎪⎝⎭【答案】A【详解】不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭则根据对应方程的韦达定理得到:112311223ba a⎧⎛⎫-+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⋅= ⎪⎪⎝⎭⎩,解得122a b =-⎧⎨=-⎩,则1220x -->的解集为1,6⎛⎫-∞- ⎪⎝⎭故选:A同类题型演练1.(2022·浙江·高三专题练习)已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是( )A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞【答案】A【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-, 故选:A.2.(2022·全国·高一单元测试)若方程()200ax bx c a ++=<有唯一的实数根3,则不等式20ax bx c ++≥的解集为______.【答案】{}3x x =【详解】由已知得抛物线()20y ax bx c a =++<的开口向下,与x 轴交于点()3,0,故不等式20ax bx c ++≥的解集为{}3x x =. 故答案为:{}3x x =3.(2022·江苏·高一)若关于x 的不等式28210mx mx ++<的解集为{}71x x -<<-,则实数m 的值为______. 【答案】3【详解】由题可知,-7和-1是二次方程28210mx mx ++=的两个根, 故()21713m m=-⨯-⇒=.经检验满足题意 故答案为:3.类型四:二次不等式恒成立问题典型例题例题1.(2022·江西吉安·高二期末(文))若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0-D .()(),20,-∞-⋃+∞【答案】B【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立, 等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-. 故选:B .例题2.(2022·黑龙江·鸡东县第二中学高二期中)已知命题“[1,2]x ∃∈-,230x x a +>-”是假命题,则实数a 的取值范围是________. 【答案】(,4]-∞-【详解】由题意得,“[1,2]x ∀∈-,230x x a -+≤”是真命题, 则23a x x ≤-+对[1,2]x ∀∈-恒成立,在区间[]1,2-上,23x x -+的最小值为()()21314--+⨯-=-,所以()2min 34a x x ≤-+=-,即a 的取值范围是(,4]-∞-. 故答案为:(,4]-∞-例题3.(2022·全国·高一课时练习)已知关于x 的不等式244x mx x m +>+-. (1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【答案】(1)(0,4) (2)()()(),00,22,-∞⋃⋃+∞(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立 则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<, 即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4). (2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤,所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.同类题型演练1.(多选)(2022·全国·高一课时练习)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则( ) A .2440b c -+≤ B .0b ≤ C .1c ≥ D .0b c +≥【答案】ACD【详解】22x bx c x b ++≥+可整理为()220x b x c b +-+-≥,则()()2224440b c b b c ∆=---=-+≤,故A 正确. 当1b =,2c =时,满足0∆≤,即原不等式成立.B 错误;由0∆≤,得214b c ≥+,所以1c ≥.C 正确;2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭.D 正确.故选:ACD .2.(2022·江苏南京·高二期末)2R,10x x x λ∀∈-+>,则λ的取值范围为__________. 【答案】22λ-<<【详解】由题设240λ∆=-<,可得22λ-<<. 故答案为:22λ-<<3.(2022·四川广安·高一期末(理))已知不等式()21460a x x +--<的解集是{}13x x -<<.(1)求常数a 的值;(2)若关于x 的不等式240ax mx ++≥的解集为R ,求m 的取值范围. 【答案】(1)1a =(2)[]4,4-(1)因为不等式()21460a x x +--<的解集是{}13x x -<<.所以-1和3是方程()21460a x x +--=的解,把1x =-代入方程解得1a =.经验证满足题意(2)若关于x 的不等式240ax mx ++≥的解集为R ,即240x mx ++≥的解集为R , 所以2160m ∆=-≤,解得44m -≤≤,所以m 的取值范围是[]4,4-.4.(2022·四川·盐亭中学高二阶段练习(文))已知函数()()211f x x a x =-++.(1)若关于x 的不等式的()0f x <的解集是{}2x m x <<,求a ,m 的值; (2)设关于x 不等式的()0f x >在[]0,1上恒成立,求实数a 的取值范围. 【答案】(1)32a =,12m =(2)(),1-∞ (1)根据二次不等式的解集与系数的关系可得x m =和2x =是方程()2110x a x -++=的两根,故()221210a -+⨯+=,解得32a =,由韦达定理有21m =,解得12m =. 故32a =,12m = (2)()0f x >在[]0,1上恒成立,即()211x a x +>+恒成立.当0x =时满足题意,当(]0,1x ∈时,min 11x a x ⎛⎫+>+ ⎪⎝⎭恒成立,因为1122x x x x+≥⋅=,当且仅当1x =时取等号.故12a +<,即a的取值范围为(),1-∞.5.(2022·浙江·镇海中学高二期末)已知函数2()4f x x x b =-+,若()0f x <的解集为{}1|x x m <<.(1)求b ,m 的值;(2)当a 为何值时,2()2()10a b x a b x +++-<的解集为R ? 【答案】(1)3m =,3b = (2)(]4,3--(1)解:由题意可知,240x x b -+<的解集为{}1|x x m <<, 所以1x =与x m =为方程240x x b -+=的两根,141m m b +=⎧∴⎨⋅=⎩,33m b =⎧∴⎨=⎩; (2)解:()()2210a b x a b x +++-<的解集为R ,①当0a b +=时,10-<的解集为R ,30a ∴+=,3a ∴=-;②当0a b +<时,()20Δ4()40a b a b a b +<⎧⎨=+++<⎩,10a b ∴-<+<,130a ∴-<+<,43a ∴-<<-综上所述,a 的取值范围为(]4,3--.类型五:一元二次函数求最值(含参数)典型例题例题1.(2022·全国·高一专题练习)已知函数()222f x x ax =++.(1)当1a =时,求函数()f x 在区间[)23-,上的值域; (2)当1a =-时,求函数()f x 在区间[]1t t +,上的最大值;(3)求()f x 在[]55-,上的最大值与最小值. 【答案】(1)[)1,17(2)221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,(3)答案见解析(1)当1a =时,()()222211f x x x x =++=++,函数在[)21-,-上单调递减,在()1,3-上单调递增, ()()min 11317x f x f ∴===-,,,∴函数()f x 在区间[)23-,上的值域是[)1,17;(2)当1a =-时,()()222211f x x x x =-+=-+,12t,函数()f x 在区间[]1t t +,上的最大值()()211f t t =-+; 12t ≥,函数()f x 在区间[]1t t +,上的最大值()211f t t +=+; ∴函数()f x 在区间[]1t t +,上的最大值221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,;(3)函数()()222222f x x ax x a a =++=++- 的对称轴为x a =-,①当5a -<-,即5a >时,函数y 在[]55-,上是增函数, 当5x =-时,函数y 取得最小值为2710a -;当5x =时,函数y 取得最大值为2710a +. ②当50a -≤<,即05a <≤时,当x a =-时,函数y 取得最小值为22-a ;当5x =时,函数y 取得最大值为2710a +.③当05a ≤≤-,即50a ≤≤-时,x =-a 时,函数y 取得最小值为22a -;当5x =-时,函数y 取得最大值为2710a -.④当5a >-,即5a <-时,函数y 在[]55-,上是减函数, 故当5x =-时,函数y 取得最大值为2710a -;当5x =时,函数y 取得最小值为2710a +. 综上,当5a >时,函数的最大值为2710a +,最小值为2710a -,当05a <≤时,函数的最大值为2710a +,最小值为22-a ,当50a ≤≤-时,函数的最大值为2710a -,最小值为22a -,当5a <-时,函数的最大值为2710a -,最小值为2710a + 例题2.(2022·黑龙江·大庆市东风中学高二期末)已知二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+. (1)求函数()f x 的解析式;(2)当[,2]x t t ∈+(R t ∈)时,求函数()f x 的最小值()g t (用t 表示). 【答案】(1)2()2f x x =+ (2)222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+, 所以2c =,且22(1)(1)()21a x b x c ax bx c x ++++-++=+,由22(1)(1)()21a x b x c ax bx c x ++++-++=+,得221ax b a x ++=+,所以221a b a =⎧⎨+=⎩,得10a b =⎧⎨=⎩,所以2()2f x x =+.(2)因为2()2f x x =+是图象的对称轴为直线0x =,且开口向上的二次函数, 当0t ≥时,2()2f x x =+在[,2]x t t ∈+上单调递增,则2min ()()2f x f t t ==+;当20t +≤,即2t ≤-时,2()2f x x =+在[,2]x t t ∈+上单调递减,则22min ()(2)(2)246f x f t t t t =+=++=++;当01t t <<+,即20t -<<时,min ()(0)2f x f ==, 综上222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩同类题型演练1.(2021·全国·高一专题练习)已知函数()22f x x mx n =++的图象过点(0,1)-,且满足()()12f f -=.(1)求函数()f x 的解析式;(2)求函数()f x 在[],2a a +上的最小值; 【答案】(1)2()221f x x x =--(2)2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩(1)解:因为函数2()2f x x mx n =++的图象过点(0,1)-, 所以1n =- 又(1)(2)f f -=, 所以1224m -+=-, 解得2m =-,所以2()221f x x x =--;(2)2213()221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[,2]x a a ∈+,当122a +≤时,即32a ≤-时,函数()f x 在[],2a a +上单调递减,所以2min [()](2)263f x f a a a =+=++,当122a a <<+时,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,所以min 13[()]22f x f ⎛⎫==- ⎪⎝⎭;当12a ≥时,函数()f x 在[],2a a +上单调递增, 所以2min [()]()221f x f a a a ==--.综上:2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩2.(2021·江西·兴国县将军中学高一期中)已知二次函数()2f x x bx c =++,且()()31f f -=,()00=f .(1)求函数()f x 的解析式;(2)若函数()()()422g x f x a x =-++,[]1,2x ∈,求函数()g x 的最小值. 【答案】(1)2()2f x x x =+;(2)2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩. (1)由(3)(1),(0)0f f f -==,则(0)0f c ==,又931b b -=+,解得2b =, ∴函数()f x 的解析式为2()2f x x x =+.(2)由(1)知,2()2(1)2g x x a x =-++, 其对称轴1x a =+,而[]1,2x ∈, 当11a +≤,即0a ≤时,()g x 在[]1,2上单调递增,min ()(1)12g x g a ==-, 当12a +≥,即1a ≥时,()g x 在[]1,2上单调递减,min ()(2)24g x g a ==-,当01a <<时,2min ()(1)21g x g a a a =+=--+,∴2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩. 类型六::根据不等式的解求参数典型例题例题1.(2021·福建三明·高一期中)已知函数2()2f x ax x c =++,若不等式()0f x <的解集是{|53}x x -<< (1)求()f x 的解析式;(2)若函数()f x 在区间[,2]m m +上的最小值为20,求实数m 的值. 【答案】(1)2()215f x x x =+- (2)-9或5(1)125,3x x =-=是对应方程ax 2+2x +c =0的两根.由韦达定理得12122211515x x a ac c x x a ⎧+=-=-⎪=⎧⎪∴⎨⎨=-⎩⎪==-⎪⎩,2()215f x x x ∴=+-;(2)22()215(1)16f x x x x =+-=+-,对称轴为1x =-,当21m +≤-,即3m ≤-时,2min ()(2)(3)16f x f m m =+=+-,由已知得:2(3)1620m +-=, 解得:m =3或-9,又3m ≤-,9m ∴=-,当1m ≥-时,2min ()()(1)16f x f m m ==+-,由已知得:2(1)1620m +-=, 解得:m =5或-7,又1m ≥-,5m ∴=,当12m m <-<+时,min ()1620f x =-≠,(舍去), 综上所述,m =-9或5.例题2.(2021·河南开封·高一阶段练习)已知函数()221f x x ax =-+,[]1,2x ∈,R a ∈.(1)若()0f x ≤恒成立,求a 的取值范围; (2)若()f x 最小值为4-,求a 的值. 【答案】(1)54a ≥; (2)94. (1)因为2()21f x x ax =-+开口向上,由[]1,2x ∈时,()0f x ≤恒成立,可得()max 0f x ≤,所以(1)0(2)0f f ≤⎧⎨≤⎩,即220540a a -≤⎧⎨-≤⎩,解得:54a ≥,所以a 的取值范围为54a ≥. (2)()221f x x ax =-+对称轴为x a =,开口向上,当1a ≤时,()()min 1224f x f a ==-=-,解得:3a =(舍);当12a <<时,2min ()()14f x f a a ==-+=-,5a =±(舍);当2a ≥时,min ()(2)544f x f a ==-=-,94a =; 所以a 的值为94.同类题型演练1.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【答案】(1)(1,1)(5,7)-⋃ (2)0,2t a ==或2,2t a ==(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.2.(2022·全国·高三专题练习(理))已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a的值.【答案】a=-1或a=2.【详解】函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.(1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1.(2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=125(舍去).(3)当a>1时,f(x)max=f(1)=a,∴a=2.综上可知,a=-1或a=2.。
高三数学教研讲座
尊敬的各位老师,亲爱的同学们:大家好!今天,我很荣幸能够在这里与大家共同探讨高三数学的教学策略,分享一些关于如何精准教学、助力学生冲刺高考的经验和思考。
高三数学作为高考的重要组成部分,对学生综合素质的提升具有重要意义。
以下是我对高三数学教研的一些心得体会。
一、明确教学目标,把握高考方向1. 深入研究高考大纲和历年真题,把握高考命题趋势和方向。
通过对高考大纲和历年真题的研究,我们可以发现,高考数学注重考查学生的基础知识和基本技能,同时也考查学生的创新意识和实践能力。
2. 结合学校和学生实际情况,制定切实可行的教学目标。
在教学过程中,我们要明确高三数学的教学目标,既要关注学生的基础知识,又要注重培养学生的思维能力和解题技巧。
二、夯实基础知识,提高学生能力1. 强化基础知识教学。
高三数学教学要重视基础知识,从课本入手,帮助学生掌握基本概念、基本方法和基本原理。
教师应引导学生系统复习,形成知识体系。
2. 注重解题技巧训练。
在高三数学教学中,我们要注重解题技巧的培养,通过典型例题、变式训练等方式,提高学生的解题能力。
同时,要鼓励学生进行独立思考,培养他们的创新意识。
3. 关注学生个体差异。
在教学过程中,教师要根据学生的实际情况,进行分层教学,关注学生的个体差异,使每个学生都能在原有基础上得到提高。
三、优化教学方法,提高课堂效率1. 采用多样化的教学方法。
在高三数学教学中,教师可以采用启发式教学、探究式教学、合作学习等多种教学方法,激发学生的学习兴趣,提高课堂效率。
2. 加强课堂互动。
教师要善于调动学生的积极性,鼓励学生参与课堂讨论,提高学生的思维能力和表达能力。
3. 利用现代教育技术。
教师可以运用多媒体教学、网络资源等现代教育技术,丰富教学内容,提高教学效果。
四、关注心理健康,助力学生成长1. 关注学生的心理健康。
高三阶段,学生面临巨大的学习压力,教师要注意观察学生的心理变化,及时发现和解决学生的心理问题。
高考数学总复习考点知识专题讲解8 排列与组合
高考数学总复习考点知识专题讲解专题8 排列与组合知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列相同的条件两个排列相同的充要条件:(1)两个排列的元素完全相同.(2)元素的排列顺序也相同.【例1】判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互打电话.知识点三 排列数的定义从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 知识点四 排列数公式及全排列 1.排列数公式的两种形式(1)A m n =n (n -1)(n -2)…(n -m +1),其中m ,n ∈N *,并且m ≤n .(2)A m n =n !(n -m )!. 2.全排列:把n 个不同的元素全部取出的一个排列,叫做n 个元素的一个全排列,全排列数为A n n =n !(叫做n 的阶乘).规定:0!=1. 【例2】(2023•泰州期末)678910⨯⨯⨯⨯可以表示为()A .410AB .510AC .410CD .510C【例3】(2023•莱州市开学)已知18934x x A A -=,则x 等于() A .6B .13C .6或13D .12【例4】(2023•浑南区期末)12320222232022232022M A A A A =++++,20232023N A =,则M 与N 的大小关系是()A .M N =B .M N >C .M N <D .M N …知识点五“相邻”与“不相邻”问题相邻问题捆绑法,不相邻问题插空法.【例5】3名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法? (1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻.【例6】(2023•香坊区期末)加工某种产品需要5道工序,分别为A,B,C,D,E,其中工序A,B必须相邻,工序C,D不能相邻,那么有()种加工方法.A.24B.32C.48D.64【例7】(2023•沈阳模拟)甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有() A.24种B.48种C.72种D.96种知识点六定序问题用除法对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.【例8】7人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少不同的排列方法?知识点七特殊元素的“在”与“不在”问题分析法对于“在”与“不在”问题,可采用“特殊元素优先考虑,特殊位置优先安排”的原则解决.【例9】(2023•卧龙区月考)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端、丙和丁相邻的不同排列方式有() A .24种B .36种C .48种D .144种【例10】(2023•宜宾月考)“四书”“五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为() A .622622A A A B .6262A A C .622672A A A D .622662A A A【例11】(2023•武强县期中)用数字0,1,2,3,4,5组成没有重复数字的四位数. (1)可组成多少个不同的四位数? (2)可组成多少个不同的偶数?【例12】从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题.(1)甲不在首位的排法有多少种?(2)甲既不在首位也不在末位的排法有多少种? (3)甲与乙既不在首位也不在末位的排法有多少种? (4)甲不在首位,同时乙不在末位的排法有多少种?同步训练(一)1.(2023•宿迁期末)下列各式中,不等于n !的是()A .n n AB .1n n A -C .1n n nA +D .11n n nA --2.(2023•宿迁月考)(1998)(1999)(2021)(2022)(n n n n n N ----∈,2022)n >可表示为()A .241998n A -B .251998n A -C .242022n A -D .252022n A -3.(2023•河南模拟)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a ,b ,共可得到lga lgb -的不同值的个数是()A .6B .8C .12D .164.(2023•揭阳期末)已知甲、乙两个家庭排成一列测核酸,甲家庭是一对夫妻带1个小孩,乙家庭是一对夫妻带2个小孩.现要求2位父亲位于队伍的两端,3个小孩要排在一起,则不同的排队方式的种数为()A.288B.144C.72D.365.(2023•海淀区校级期末)某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.126.(20123•会宁县期中)用0,1,2,3,4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.7.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?知识点八组合及组合数的定义1.组合一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.知识点九排列与组合的关系【例13】(1)某铁路线上有4个车站,则这条铁路线上共需准备多少种车票?(2)把5本不同的书分给5个学生,每人一本;(3)从7本不同的书中取出5本给某个学生.【例14】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?知识点十组合数公式规定:C 0n =1.知识点十一 组合数的性质 性质1:C mn =C n -mn .性质2:C m n +1=C m n +C m -1n .【例15】(2023•朝阳区期末)已知2188m m C C -=,则m 等于() A .1B .3C .1或3D .1或4【例16】(2023•吉水县期末)计算33334562015C C C C ++++的值为()A .42015CB .32015C C .420161C -D .520151C -【例17】(2023•崂山区期末)对于伯努利数()n B n N ∈,有定义:001,(2)nk n n k k B B C B n ===∑….则()A .216B =B .4130B =C .6142B =D .230n B +=【例18】(2023•沙坪坝区模拟)某项活动安排了4个节目,每位观众都有6张相同的票,活动结束后将票全部投给喜欢的节目,一位观众最喜欢节目A,准备给该节目至少投3张,剩下的票则随机投给其余的节目,但必须要A节目的得票数是最多的,则4个节目获得该观众的票数情况有()种A.150B.72C.20D.17【例19】(2023•东湖区期末)某校举行科技文化艺术节活动,学生会准备安排6名同学到两个不同社团开展活动,要求每个社团至少安排两人,其中A,B两人不能分在同一个社团,则不同的安排方案数是()A.56B.28C.24D.12知识点十二分组、分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等,均匀分成n组,最后必须除以n!;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.1 平均分组【例20】(1)6本不同的书,分给甲、乙、丙三人,每人两本,有多少种方法?(2)6本不同的书,分为三份,每份两本,有多少种方法?2 不平均分组【例21】(1)6本不同的书,分为三份,一份一本,一份两本,一份三本,有多少种方法?(2)6本不同的书,分给甲、乙、丙三人,一人一本,一人两本,一人三本,有多少种不同的方法?3 分配问题【例22】6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种不同的方法?【例23】(2022秋•浑南区期末)将6本不同的书分给甲、乙、丙、丁4个人,每人至少一本的不同分法共有种.(用数字作答)【例24】(2022秋•浑南区期末)某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.720【例25】(2023•云南模拟)中国空间站()ChinaSpaceStation的主体结构包括天和核心舱、问天实验舱和梦天实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设中国空间站要安排甲、乙等5名航天员进舱开展实验,其中“天和核心舱”安排2人,“问天实验舱”安排2人,“梦天实验舱”安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有()A.9种B.24种C.26种D.30种知识点十三相同元素分配问题之隔板法隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”,每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法,隔板法专门解决相同元素的分配问题.将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法,可描述为(n-1)个空中插入(m -1)块板.【例26】6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.【例27】(2023•浦东新区期末)10个相同的小球放到6个不同的盒子里,每个盒子里至少放一个小球,则不同的放法有种.【例28】(2023•海淀区期末)没有一个冬天不可逾越,没有一个春天不会来临.某街道疫情防控小组选派7名工作人员到A ,B ,C 三个小区进行调研活动,每个小区至少去1人,恰有两个小区所派人数相同,则不同的安排方式共有() A .1176B .2352C .1722D .1302【例29】(2023•多选•玄武区期末)甲、乙、丙、丁、戊共5位志愿者被安排到A ,B ,C ,D 四所山区学校参加支教活动,要求每所学校至少安排一位志愿者,且每位志愿者只能到一所学校支教,则下列结论正确的是() A .不同的安排方法共有240种 B .甲志愿者被安排到A 学校的概率是14C .若A 学校安排两名志愿者,则不同的安排方法共有120种D .在甲志愿者被安排到A 学校支教的前提下,A 学校有两名志愿者的概率是25【例30】(2023•多选•营口期末)某校的高一和高二年级各10个班级,从中选出五个班级参加活动,下列结论正确的是()A .高二六班一定参加的选法有420C 种B .高一年级恰有2个班级的选法有231010C C 种C .高一年级最多有2个班级的选法为52012C 种D .高一年级最多有2个班级的选法为231451*********C C C C C ++种【例31】(2023•福建模拟)近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A ,B 角色各1人,C 角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A ,B 角色不可同时为女生.则店主共有348种选择方式.【例32】(2023•和平区校级模拟)我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为1,2,3,⋯,1n +的1n +个球的口袋中取出m 个球(0m n <…,m ,)n N ∈,共有1m n C +种取法.在1m n C +种取法中,不取1号球有m n C 种取法;取1号球有1m n C -种取法.所以11m m m n n n C C C -++=.试运用此方法,写出如下等式的结果:323232323142241n n n n n C C C C C C C C ----+⋅+⋅++⋅+=.同步训练(二)8.(多选)下列问题是组合问题的有()A .10个朋友聚会,每两人握手一次,一共握手多少次B .平面上有2 021个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段C .集合{a 1,a 2,a 3,…,a n }中含有三个元素的子集有多少个D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法9.(2023•宣城期中)关于排列组合数,下列结论错误的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .11m m mn n n A mA A -++=10.(2023•多选•朝阳区期末)关于排列组合数,下列结论正确的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .!()!mn n A n m =-11.课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.12.将4个编号为1,2,3,4的小球放入4个编号为1,2,3,4的盒子中.(1)有多少种放法?(2)每盒至多1个球,有多少种放法?(3)恰好有1个空盒,有多少种放法?(4)每个盒内放1个球,并且恰好有1个球的编号与盒子的编号相同,有多少种放法?(5)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法?13.(多选)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数可能为()A.1 B.2 C.3 D.414.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有的4件次品,则这样的不同测试方法数是多少?15.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?16.空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为()A.205 B.110 C.204 D.20017.4名优秀学生全部保送到3所学校去,每所学校至少去1名,则不同的保送方案有______种.18.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)19.(2023•长沙期末)6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有() A .540种B .360种C .180种D .120种20.(2023•多选•罗湖区期末)在10件产品中,有7件合格品,3件不合格品,从这10件产品中任意抽出3件,则下列结论正确的有()A .抽出的3件产品中恰好有1件是不合格品的抽法有1237C C 种 B .抽出的3件产品中至少有1件是不合格品的抽法有1239C C 种 C .抽出的3件产品中至少有1件是不合格品的抽法有1221337373C C C C C ++种D .抽出的3件产品中至少有1件是不合格品的抽法有33107C C -种。
高三数学第二轮专题讲座复习:关于求空间的角的问题
张喜林制[选取日期]高三数学第二轮专题讲座复习:关于求空间的角的问题高考要求空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想 重难点归纳空间角的计算步骤 一作、二证、三算1 异面直线所成的角 范围 0°<θ≤90°方法 ①平移法;②补形法2 直线与平面所成的角 范围 0°≤θ≤90° 方法 关键是作垂线,找射影3 二面角方法 ①定义法;②三垂线定理及其逆定理;③垂面法注1 二面角的计算也可利用射影面积公式S ′=S cos θ来计算注2 借助空间向量计算各类角会起到事半功倍的效果 4.三种空间角的向量法计算公式:⑴异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>; ⑶锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。
典型题例示范讲解例1在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点(1)求证 四边形B ′EDF 是菱形;(2)求直线A ′C 与DE 所成的角;(3)求直线AD 与平面B ′EDF 所成的角;(4)求面B ′EDF 与面ABCD 所成的角命题意图 本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强知识依托 平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角 错解分析 对于第(1)问,若仅由B ′E =ED =DF =FB ′就断定B ′EDF 是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B ′、E 、D 、F 四点共面技巧与方法 求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法(1)证明 如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=25a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG AB A ′B ′知,B ′EGA ′是平行四边形 ∴B ′E ∥A ′G ,又A ′FD G ,∴A ′GDF 为平行四边形∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面故四边形B ′EDF 是菱形(2)解 如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角在△A ′CP 中, 易得A ′C =3a ,C P =DE =25a ,A ′P =213a 由余弦定理得cos A ′CP =1515 故A ′C 与DE 所成角为另法(向量法) 如图建立坐标系,则(0,0,),(,,0),(0,,0),(,,0)2aA a C a a D a E a '(,,),(,,0)2aA C a a a DE a '⇒=-=-15cos ,15||||A C DE A C DE A C DE ''⇒<>==' 故A ′C 与DE 所成角为 (3)解 ∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′ 在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a则cosADB ′=33故AD 与平面B ′EDF 所成的角是 另法(向量法)∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示 又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线,故直线AD 与平面B ′EDF 所成的角为∠ADB ′, 如图建立坐标系,则 (0,0,0),(,0,),(0,,0)A B a a D a '(0,,0),(,,)DA a DB a a a '⇒=-=-3cos ,3||||DA DB DA DB DA DB ''⇒<>==',故AD 与平面B ′EDF 所成的角是 (4)解 如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心, 再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE ,B故∠OMH 为二面角B ′—DE ′—A 的平面角在Rt △DOE 中,OE =22a ,OD =23a ,斜边DE =25a , 则由面积关系得OM =1030=⋅DEOEOD a 在Rt △OHM 中,sin OMH =630=OM OH 故面B ′EDF 与面ABCD 所成的角为 另法(向量法) 如图建立坐标系,则(0,0,0),(0,0,),(,0,),(0,,0),(,,0)2aA A aB a a D a E a '',所以面ABCD 的法向量为(0,0,),m AA a '==下面求面B ′EDF 的法向量n设(1,,)n y z =,由(,,0),(0,,),22a aED a EB a '=-=- 00221002a a y nED y a z nED y az ⎧-+=⎪⎧==⎧⎪⎪⇒⇒⎨⎨⎨==⎩⎪⎪⎩-+=⎪⎩∴(1,2,1)n =∴6cos ,||||6n m n m n m <>==故面B ′EDF 与面ABCD 所成的角为 例2如下图,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方形,侧棱AA 1长为b ,且AA 1与AB 、AD 的夹角都是120°求 (1)AC 1的长;(2)直线BD 1与AC 所成的角的余弦值技巧与方法 数量积公式及向量、模公式的巧用、变形用21111111222111:(1)||()()()()||||||222AC AC AC AA AC AA AC AA AB AD AA AB AD AA AB AD AA AB AA AD AB AD=⋅=++=++++=+++⋅+⋅+⋅解22222111112221:||,||||,,120,,9011cos120,cos120,0,22||2AA b AB AD aAA AB AA AD AB AD AA AB b aab AA AD b a ab AB AD AC a b ===<>=<>=︒<>=︒∴⋅=⋅︒=-⋅=⋅︒=-⋅=∴=+-由已知得12,||ab AC ∴=1111112211(2),||2,()()AC a AC AB AD BD AD BA AA AD AB AC BD AB AD AA AD AB AB AA AD AA AB AD AD AB ==+=+=+-∴⋅=++-=⋅+⋅+⋅+-依题意得21111122222111||()()||||||2222AB AD ab BD BD BD AA AD AB AA AD AB AA AD AB AA AD AB AD AA AB a b -⋅=-=⋅=+-+-=+++⋅-⋅-⋅=+2212||b a BD +=∴111cos ,||||4BD AC BD AC BD AC ⋅<>==∴BD 1与AC例3如图,l αβ--为60°的二面角,等腰直角三角形MPN 的直角顶点P 在l 上,M ∈α,N ∈β,且MP 与β所成的角等于NP 与α (1)求证 MN 分别与α、β所成角相等; (2)求MN 与β所成角(1)证明 作NA ⊥α于A ,MB ⊥β于B ,连接AM ,再作AC ⊥l 于C ,BD ⊥l 于D ,连接NC 、∵NA ⊥α,MB ⊥β,∴∠MPB 、∠NP A 分别是及NP 与α所成角,∠MNB ,∠NMA 分别是MN 与角,∴∠MPB =∠NP A在Rt △MPB 与Rt △NP A 中,PM =PN ,∠MPB =∠NPA ,∴△MPB ≌△NPA ,∴MB =NA在Rt △MNB 与Rt △NMA 中,MB =NA ,MN 是公共边,∴△MNB ≌△NMA ,∴∠MNB =∠NMA ,即(1)结论成立(2)解 设∠MNB =θ,MN =2a ,则PB =PN =a ,MB =NA =2a sin θ,NB =2a cos θ,∵MB ⊥β,BD ⊥l ,∴MD ⊥l ,∴∠MDB 是二面角α—l —β的平面角,∴∠MDB =60°,同理∠NCA =60°,∴BD =AC =3633=MB a sin θ,CN =DM =63260sin 6=︒MB a sin θ, ∵MB ⊥β,MP ⊥PN ,∴BP ⊥PN∵∠BPN =90°,∠DPB =∠CNP ,∴△BPD ∽△PNC ,∴PBBDPN PC ===整理得,16sin 4θ-16sin 2θ+3=0解得sin 2θ=4341或,sin θ=2321或,当sin θ=23时,CN =632a sin θ= 2a >PN 不合理,舍去 ∴sin θ=21,∴MN 与β所成角为30°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010届高三数学复习专题讲座数列复习建议江苏省睢宁高级中学北校袁保金数列是高中数学的重点内容之一,是初等数学与高等数学的重要衔接点,由于它既具有函数特征,又能构成独特的递推关系,使得它既与高中数学其他部分的知识有着密切的联系,又有自己鲜明的特点.而且具有内容的丰富性、应用的广泛性和思想方法的多样性,所以数列一直是高考考查的重点和热点.纵观江苏省近几年高考数学试卷,数列都占有相当重要的地位,一般情况下都是以一道填空题和一道解答题形式出现,填空题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,具有“小、巧、活、新”的特点,解答题属于中高档难度的题目,甚至是压轴题.具有综合性强、变化多、难度较大特点,重点以等差数列和等比数列内容为主,考查数列内在的本质的知识和推理能力,运算能力以及分析问题和解决问题的能力.一、考纲解读2、考纲解读(1)考纲中对数列的有关概念要求为A级,也就是说只要了解数列概念的基本含义,并能解决相关的简单问题.(2)等差数列和等比数列要求都为C级,2010年数学科考试说明中共列出八个C级要求的知识点,等差数列、等比数列占了其中两个,说明这两个基本数列在高考中的地位相当重要.具体要求我们对这两个数列的定义、性质、通项公式以及前n项和公式需要有深刻的认识,能够系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.这也说明涉及等差数列和等比数列的综合题在高考中一定出现.(3)由于数列这一章含有两个C级要求的知识点,可以命制等差数列、等比数列以及它们之间相互联系的综合题,也可以命制数列与函数、方程、不等式等知识点相融合的综合题,以及数列应用问题,着重考查思维能力、推理论证能力以及分析问题,解决实际问题的能力.二、考题启示1、考题分布自2004年江苏省单独命题以来,对数列知识的考查一直是命题的重2、考题启示(1)数列在高考试卷中占的比重较大,分值约为13%左右,呈一大一小趋势,对等差数列和等比数列都有考查,纵观近几年江苏省高考试题,我们会发现江苏考题与全国卷、其他省市卷数列题有很大区别,具有十分明显的特色,对数列的考查不与其他知识综合,同时也回避了递推数列和不等式,主要揭示等差数列和等比数列内在的本质性的知识,形成江苏卷的一大特色.因此复习中在递推数列方面,特别是利用递推数列求通项,要大胆取舍,不要深挖.(2)客观题主要考查了等差、等比数列的基本概念和性质,突出了“小、巧、活、新”的特点,属容易题或中档题.主观题年年都考,且以中等和难度较大的综合题出现,常放在压轴题的位置.回顾江苏省单独命题以来,对数列的考查可以称得上到了极致.如2007年、2008年在倒数第二题,2005年、2006年在最后一题,2009年数列题前移到第17题,以中等题形式出现,这一显著地变化似乎一种信号,具有一定的导向作用.(3)数列题常考常新,每年命题很有新意,不落浴套,考生看到这样的考题,初看亲切、熟悉,但顺利解决很须动一番脑筋,需要有扎实的数学功底,极强的推理运算和论证能力.这类试题对概念和思维的考查力度较大,对学生探索能力、思维能力、运算能力和推理论证能力要求较高,具有较强的选拔功能.以数列题考查推理论证能力成为江苏考题的又一大特点.如2007年(20)题:已知{a n}是等差数列,{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记S n为数列{b n}的前n项和.(1)若b k=a m(m,k是大于2的正整数),求证:S k-1=(m-1)a1;(2)若b3=a i(i是某一正整数),求证:q是整数,且数列{b n}中每一项都是数列{a n}中的项;(3)是否存在这样的正数q,使等比数列{b n}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由; 如2008年高考试题(19)题:(Ⅰ)设a1,a2,…,a n是各项均不为零的等差数列(n≥4),且公差d ≠0,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:①当n=4时,求a1/d的数值;②求n的所有可能值;(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列b1,b2,…,b n,其中任意三项(按原来顺序)都不能组成等比数列.如(17)设{a n}是公差不为零的等差数列,S n为其前n项和,满足a22+a32=a42+a52,S7=7(1)求数列{a n}的通项公式及前n项和S n.(2)试求所有的正整数m,使得a m a m+1/a m+2为数列{a n}中的项.2008年考题是典型难题,作为压轴题,对思维能力和推理能力要求较高.2009年是中等题,主要考查等差数列通项公式和前n项和公式,但在第(2)问中考查学生思维能力和推理能力.三、复习建议1、夯实基础知识(1)数列的概念⏹了解数列的概念及其表示方法.⏹掌握数列前n项和与第n项之间的关系:a n=S n-S n-1(n≥2),给出与数列的前n项和有关的问题,我们要能根据这一关系求出数列的通项公式.(2)等差数列⏹掌握等差数列的定义,能够根据定义判定一个数列是否为等差数列.⏹掌握等差数列的通项公式a n=a1+(n-1)d;推广形式为a n=a m+(n-m)d.⏹掌握等差数列的前n项和公式S n=n(a1+a n)/2=n a1+n(n-1)d/2,公式的推导方法为倒序相加法.⏹等差数列的前n项和可表示为S n=A n2+B n的形式,它是{a n}为等差数列的充要条件.⏹掌握等差数列的一些性质:⏹在等差数列{a n}中,对于正整数m,n,p,q,若m+n=p+q,则a m+a n=a p+a q.特别地,2a n+1=a n+a n+2.⏹在等差数列{a n}中,依次k项的和仍成等差数列,即S k,S2k-S k,S3k-S2k,…成等差数列,其公差为k d.⏹若等差数列{a n}的公差d>0,{a n}为递增数列;d<0,{a n}为递减数列.(3)等比数列⏹掌握等比数列的定义,能够根据定义判定一个数列是否为等比数列.⏹掌握等比数列的通项公式a n=a1q n-1;推广形式为a n=a m q n-m.⏹掌握等比数列的前项和公式S n=(a1-a n q)/1-q=a1(1-q n)/1-q,(q≠1),公式的推导方法为错位相减法.特别地,当q=1时,S n=n a1.⏹掌握等比数列的一些性质:⏹在等比数列{a n}中,对于正整数m,n,p,q,若m+n=p+q,则a m a n=a p a q.特别地,a n+12=a n a n+2.⏹在等比数列{a n}中,若q≠-1,依次k项的和仍成等比数列,即S k,S2k-S k,S3k-S2k,…成等比数列,其公比为q k.2、掌握基本方法(1)基本量法:由于等差(等比)数列是由首项与公差(比)确定的,故称首项与公差(比)为等差(比)数列的基本量.因此,大凡涉及等差(等比)数列的数学问题,我们总希望通过等差(等比)数列的基础知识并结合条件去求出首项与公差(比)、或它们间关系,从而认识数列,达到解决问题的目的,这种方法就是等差(等比)数列特有的基本量方法.简言之,就是用基本量去统一条件与结论而达到解决等差(比)数列相关问题的方法.基本量法常涉及“知三求二”题型,所谓“知三求二”就是等差(或等比)数列有五个参量:项数、通项、前n项和、首项、公差(比),只要已知这五个量中的任意三个,就可以利用通项公式和前n项和公式求出其余两个.对于“知三求二”的题型训练要适度,不要人为做那些太难、太繁题目,这样不仅增加学习负担,而且淡化数学本质.运用基本量法必须与等差(比)数列的性质密切配合,只有这样才能达到灵活应用的程度,才能发挥无穷的活力.两个重要数列问题都可以运用基本量法解决,有人认为解题过程较繁,想寻找解题技巧.我们不能对计算追求表面上少一步,或不容易设想的计算技巧,而冲淡了对基本数列和基本量法的认识.(2)数列通项公式的常见求法:观察归纳法、累加消项法、累积消项法、迭代法等已知数列的前几项,写出它的一个通项公式时,通常用观察法,然后归纳猜想.我们有时未必能观察出它的通项公式,这时不妨尝试观察它们任意相邻两项间的相依关系,如对于数列:1,3,7,13,21,31,…,若不能直接发现a n=n(n-1)+1,则通过观察出递推关系a n-a n-1=2(n-1),再用迭加或迭代法便可求出通项公式.总之,观察是一切能力的基础,在数列学习中显得尤其重要珍贵.已知数列{a n}的前n项和S n,求a n,用公式法,即a n=S n-S n-1(n ≥2),具体解题时需看清问题的本质并注意分类讨论.(3)数列求和的常见方法:公式法、拆项求和法、转化求和法、裂项求和法、错位相减法、倒序相加法等.如:求a+2a2+3a3+…+n a n用错位相减法;求等差数列相邻(或间隔)两项倒数和用裂项求和法;非等差(等比)数列问题可以转化为等差(或)等比数列求和问题.3、把握基本思想数列中涉及很多数学思想,在复习中需要同学们很好地把握以下几个数学思想.(1)函数思想:数列作为一种特殊的函数,是反映自然规律的基本数学模型.复习中在理解等差数列的概念,掌握等差数列的通项公式,弄清等差数列与一次函数的关系,抓住等差数列的特征,掌握前n项和公式,弄清它与二次函数的关系.理解等比数列的概念,掌握等比数列的通项公式,弄清等比数列与指数函数的关系.(2)方程思想:运用数列基本量法解题就需根据题设条件,结合数列通项公式和求和公式构建方程或方程组求解,方程思想贯穿于数列学习和解题的始终.(3)转化与化归思想:解决等差(比)数列问题都可以归结为研究首项和公差(比)问题;非等差、等比数列的问题常通过构造辅助数列转化为等差或等比数列求解;求和问题也是常见的题型,一些非等差、等比数列求和可以转化为等差、等比数列求和问题解决;有些数列应用题转化为等差、等比数列问题解决.通过两个基本数列的学习,在化归与转化过程中可以认识更多的数列,是数列学习的隐性目标.⏹(4)递推思想:递推是数列的本质性的内涵,是数列的一大特色.我们这里讲递推,并不是要深入研究递推数列,教材中没有递推数列的概念和题型,课标和考试说明中都没有一提到递推数列,因此递推数列已经不是高考涉及的内容,近几年江苏高考一直回避这一问题.但是递推思想和方法在解决数列问题中的作用是很大的,涉及数列前n和S n与的a n关系问题,常采用递推思想来解决.⏹一般地涉及数列前n和S n与的a n关系问题,常采用递推思想来解决.⏹如江苏05年(23)题:设数列{a n}的前项和为S n,已知a1=1,a2=6,a3=11,且(5n-8)S n+1-(5n+2)S n=A n+B,其中A,B为常数.(Ⅰ)求A与B的值;(Ⅱ)证明:数列{a n}为等差数列;解决此题需要进行两次递推解决.再如:已知数列{a n}满足2S n=3(a n-1),证明:数列{a n}为等比数列.利用递推思想解决.(5)分类讨论思想:数列中渗透分类讨论的思想.如由S n求a n,要对n=1和n≠1讨论;在运用等比数列求和公式时,若公比q没有明确给出,需要分q=1和q≠1讨论;在数列求和中有时需要进行奇偶分析讨论;有些数列的通项公式是分段表示,解题过程需要讨论;在数列解题中有时根据过程需要进行讨论.(6)特殊化思想:有些数列问题,在一般情况下解决思维受阻或者解决比较困难繁杂,这时我们可以把问题退到特殊情形,研究在特殊情况下的问题,从中寻找规律,或探求问题成立的条件,然后再将结果代到一般问题中去检验或验证,也可以借鉴研究特殊情形的方法去研究一般性问题.这种“从一般到特殊再到一般”的方法,在研究数列问题中很有效果.4、关注重点题型作为高考复习,适当强化题型训练是很有必要的.(1)“知三求二”题“知三求二”是等差数列和等比数列的重要题型,通常涉及等差数列(或等比数列)的通项公式,前n项和公式,运用基本量法解决.要注意这两个重要数列之间的相互渗透、融合构成综合题.如子数列型、并列型、类比型、生成型、融合型.这类题型是数列复习的重点.(2)推理论证题通过数列题考查思维能力,考查推理能力,是江苏高考题的一大特点,近几年江苏高考数列题都涉及这一问题.如2007年(19)题,2008年(19)题,即使2009年数列题难度有所降低,但是(14)题需要分析判断哪些项可以为等比数列中的项;(17)题第(2)小问也考查了思维和推理能力.(3)数列应用题数列应用题大致有三类:一是有关等差数列的应用题;二是有关等比数列的应用题;三是有关递推数列中可转化为等差、等比数列的问题.通常涉及增长率、银行信贷利率、浓度匹配、养老保险、圆钢对垒等问题.解决数列应用题需要认真理解题意,弄清各项之间的关系,确定模型的类型,明确是求a n还是求S n?项数n是多少?数列应用题尽管在历年高考中考查较少,但由于数列在实际生活中有广泛应用,因此需要引起对这类题型的重视.(4)情境创新题研究全国或其它省市高考试题,可以发现数列试题丰富多彩,有时通过数阵形式给出,如三角数阵、正方形数阵等,2008年江苏卷第(10)题就是三角形数阵.有些数列问题是在几何背景给出的;有些是引入新概念定义新数列给出的,如周期数列、等和(积)数列、对称数列、等差比数列等.解决这类问题只要认真理解题意,信息迁移,根据题设条件解决就可以了.总之,在数学复习的过程中,研究考纲,研究考题,注重双基,强化能力,重视通性通法的复习与训练是数列复习的重点.要突出两条主线:一条是基础知识主线,一条是思想方法主线.要以等差数列、等比数列两个主干知识为载体,以通项公式和求和公式为主渠道,用好数列中基本量的关系,灵活运用等差(比)数列的性质,将最基本的解题方法训练好,注重在两个重要数列内在的知识体系中挖潜,还数列的本来面目.重视数列与函数的联系,以及方程思想在数列中的应用,通过分析典型例题和习题,加强数列与其他知识点结合的综合性问题、探索性问题、应用性问题的训练,提高运算能力、思辨能力、转化能力、探究能力以及分析问题与解决问题的能力.。