高三数学导数专题讲座

合集下载

高三数学导数的几何意义ppt课件.ppt

高三数学导数的几何意义ppt课件.ppt
通过讨论、交流、合作、实验操作等活动激发 学生学习数学的兴趣;培养学生合作学习和数 学交流的能力。
四. 教学过程
(一)教学流程图 (二)教学过程与设计思路
(一)教学流程图
问题 系列
几何 意义
具体 应用
概念 建构
复习 引入
演 练 拓
小结
作业
类似“卡通形象” 的教学流程图以 “模块”为基本单 元,从新课引入到 概念建构,从技能 演练到小结作业。 层层展开,逐层突 破。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一. 教材分析 (二)重点与难点
教学重点:运用导数的几何意义研究函数 教学难点:导数几何意义的推导思路
一. 教材分析
(三)课时安排
导数的几何意义可安排两课时。本节作为 第一课时,重在探求曲线上某点处切线的斜率 和导数的关系,理解导数的几何意义,体会几 何意义在研究函数性质应用中的作用。
学生分组讨论交流,计算切 观,易于突破难点;学生在过程中,
点的导数值,自主合作探求 可以体会逼近的思想方法。最后的
导数与斜率的关系,教师请 证明环节,能够同时从数与形两个 学生证明导数就是切线斜率。 角度强化学生对导数概念的理解。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
教材分析
教法分析
教学目标
教学过程
评价反思
一. 教材分析
(1) 教材的地位和作用 (2)重点难点 (3) 课时安排
一. 教材分析
(一)教材的地位和作用
微积分学是人类思维的伟大成果之一,是人类经历 了2500多年震撼人心的智力奋斗的结果,它开创了 向近代数学过渡的新时期 ,为研究变量和函数提 供了重要的方法。导数是微积分的核心概念之一, 有极其丰富的实际背景和广泛的应用。导数的几何 意义是学生在学习了瞬时变化率就是导数之后的内 容,通过这部分内容的学习,可以帮助学生更好的 理解导数的概念及导数是研究函数的单调性、变化 快慢和极值等性质最有效的工具,是本章的关键内 容。

高中数学导数讲义完整版

高中数学导数讲义完整版

高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度t s ∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy ∆∆当x ∆趋近于0时的极限;边际成本是平均成本qC∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本.4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题六《导数》讲义6.3导数与函数的极值、最值知识梳理.极值与最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.题型一. 极值、最值的概念1.函数y=x sin x+cos x的一个极小值点为()A.x=−π2B.x=π2C.x=πD.x=3π22.(2017·全国2)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 3.(2013·全国2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(﹣∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0 )=04.已知函数f (x )=x 3+ax 2﹣4x +5在x =﹣2处取极值(a ∈R ). (1)求f (x )的解析式;(2)求函数f (x )在[﹣3,3]上的最大值.题型二.已知极值、最值求参 考点1.利用二次函数根的分布1.若函数f (x )=x 3﹣3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(﹣1,0)2.已知函数f (x )=13x 3−12ax 2+x 在区间(12,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞)C .(2,52)D .(2,103)考点2.参变分离3.若函数f (x )=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103) D .[2,103)4.已知函数f(x)=e xx 2+2klnx −kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A .(−∞,e 24] B .(−∞,e 2]C .(0,2]D .[2,+∞)考点3.分类讨论5.已知函数f (x )=ax −1x −(a +1)lnx +1在(0,1]上的最大值为3,则实数a = . 6.已知函数f(x)=(12x 2−ax)lnx −12x 2+32ax .(1)讨论函数f (x )的极值点;(2)若f (x )极大值大于1,求a 的取值范围.7.已知函数f (x )=lnx −a x(a ∈R ) (1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e ]上的最小值为32,求a 的值.考点4.初探隐零点——设而不求,虚设零点8.(2013·湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.f(x1)>0,f(x2)>−12B.f(x1)<0,f(x2)<−12C.f(x1)>0,f(x2)<−12D.f(x1)<0,f(x2)>−129.已知f(x)=(x﹣1)2+alnx在(14,+∞)上恰有两个极值点x1,x2,且x1<x2,则f(x1)x2的取值范围为()A.(−3,12−ln2)B.(12−ln2,1)C.(−∞,12−ln2)D.(12−ln2,34−ln2)10.(2017·全国2)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.课后作业.极值、最值1.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,﹣2]C .(﹣∞,﹣3)D .(﹣∞,﹣3]2.已知函数f(x)=xe x −13ax 3−12ax 2有三个极值点,则a 的取值范围是( ) A .(0,e )B .(0,1e)C .(e ,+∞)D .(1e,+∞)3.已知f (x )=e x ,g (x )=lnx ,若f (t )=g (s ),则当s ﹣t 取得最小值时,f (t )所在区间是( ) A .(ln 2,1)B .(12,ln 2)C .(13,1e)D .(1e,12)4.已知函数f (x )=lnx +x 2﹣ax +a (a >0)有两个极值点x 1、x 2(x 1<x 2),则f (x 1)+f (x 2)的最大值为( ) A .﹣1﹣ln 2B .1﹣ln 2C .2﹣ln 2D .3﹣ln 25.已知函数f(x)=lnx +12ax 2+x ,a ∈R . (1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.。

高三数学第二轮专题讲座复习:导数的应用问题

高三数学第二轮专题讲座复习:导数的应用问题

值点,取决于这个点左、右两边的增减性,即两边的
y′的符号,若改变符号,则该点为极
值点;若不改变符号,则非极值点,一个函数的极值点不一定在导数为
0 的点处取得,但可
得函数的极值点一定导数为 0
3 可导函数的最值可通过 ( a, b) 内的极值和端点的函数值比较求得,但不可导函数的
极值有时可能在函数不可导的点处取得, 因此, 一般的连续函数还必须和导数不存在的点的
3 5cos 40a sin2
令 f′ (θ )=0, 得 cosθ= 3 根据问题的实际意义,当 cosθ = 3 时,函数取得最小值,
5
5
此时 sinθ = 4 ,∴ cotθ = 3 ,∴ AC=50- 40co t θ=20(km), 即供水站建在 A、 D 之间距甲厂
5
4
20 km 处,可使水管费用最省 例 3 已知 f (x)=x2+c,且 f[ f(x) ]=f (x2+1)
高三数学第二轮专题讲座复习:导数的应用问题
高考要求
利用导数求函数的极大 (小 )值,求函数在连续区间[ a,b]上的最大最小值,或利用求导
法解决一些实际应用问题是函数内容的继续与延伸, 这种解决问题的方法使复杂问题变得简
单化,因而已逐渐成为新高考的又一热点
本节内容主要是指导考生对这种方法的应用
重难点归纳
1 f(x)在某个区间内可导, 若 f′(x)> 0,则 f(x)是增函数; 若 f′ (x)< 0,则 f(x)
2 求函数的极值点应先求导,然后令 y′ =0 得出全部导数为 0 的点, (导数为 0 的点不
一定都是极值点,例如
y=x3,当 x=0 时,导数是 0,但非极值点 ),导数为 0 的点是否是极

高中数学《导数的概念》公开课优秀课件

高中数学《导数的概念》公开课优秀课件

高中数学《导数的概念》公开课优秀课件标题:高中数学《导数的概念》公开课优秀课件尊敬的各位老师,大家好!今天我们将一起学习高中数学中一个非常重要的概念——导数的概念。

这个概念在微积分学中占据了重要的地位,对于我们理解函数的变化率,以及在科学、工程、经济和计算机科学等领域都有广泛的应用。

一、导数的定义首先,让我们来看看导数的定义。

假设有一个函数f(x),在某一点x0的附近取一系列的点,这些点的横坐标是x0+Δx。

那么,函数f(x)在点x0的导数就是这一系列点的纵坐标f(x0+Δx)与横坐标之商的极限,记作f'(x0)。

二、导数的几何意义从几何意义上来看,导数表示函数在某一点处的切线的斜率。

当我们把函数在x0附近的点沿着横坐标逐渐移动时,该点的纵坐标会相应地变化,这个变化率就是导数。

三、导数的应用导数的应用非常广泛,它可以用来解决很多实际问题。

例如,在物理学中,导数被用来描述物体的运动学和动力学问题,如速度和加速度;在经济学中,导数被用来分析成本、收益和价格的变化;在计算机科学中,导数被用来研究图像处理和人工智能的问题。

四、导数的计算导数的计算有很多方法,其中最常见的方法是使用导数的定义。

我们可以根据定义来推导出一些基本的导数公式,如常数函数的导数为0,幂函数的导数与其指数有关,三角函数的导数与其角度有关等。

五、总结与复习今天我们学习了导数的概念和计算方法。

导数是微积分学的基础,它描述了函数在某一点处的变化率。

通过学习导数的定义和基本公式,我们可以解决很多实际问题。

六、作业与扩展阅读为了加深对导数概念的理解,请大家完成以下作业:1、复习并熟练掌握导数的基本定义和公式;2、自行寻找并解决一到两个与导数相关的问题(可以从物理、经济或计算机科学等领域寻找)。

同时,我推荐大家阅读《微积分的概念》这本书,作者是著名的数学家Richard Courant。

这本书对微积分的概念有深入且生动的解释,对于我们深入理解导数的概念非常有帮助。

3.1导数的概念及运算课件高三数学一轮复习

3.1导数的概念及运算课件高三数学一轮复习
×
解析 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错. (2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错. (3)求f′(x0)时,应先求f′(x),再代入求值,(3)错. (4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值 为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方 程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切 线可以不止一条,(4)错.
f′(x)=___e_x__
1
f′(x)=__x_l_n_a__
1
f′(x)=__x___
4.导数的运算法则
若 f′(x),g′(x)存在,则有: [f(x)±g(x)]′=______f′_(_x_)±_g_′_(_x_) _______; [f(x)g(x)]′=____f′_(_x_)g_(_x_)_+__f(_x_)_g_′(_x_)____; gf((xx))′=__f_′(__x_)__g_(__x[_g)_(_-_x_)f_(_]_2x_)__g_′_(__x_)__ (g(x)≠0); [cf(x)]′=_____c_f_′(_x_)_____.
训练1 (1)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图
象如图所示,则该函数的图象是( B )
解析 由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率 先增大后减小,故选B.
(2)曲线f(x)=2ln x在x=t处的切线l过原点,则l的方程是( )
A.f(x)=x2
B.f(x)=e-x
C.f(x)=ln x
D.f(x)=tan x
解析 若f(x)=x2,则f′(x)=2x,令x2=2x,得x=0或x=2,方程显然有解, 故A符合要求; 若f(x)=e-x,则f′(x)=-e-x,令e-x=-e-x,此方程无解,故B不符合要求;

《高中数学导数讲解》课件

《高中数学导数讲解》课件

积分
导数是积分的基础,通过 求导可以推导出原函数的 表达式。
微分方程
导数在解决微分方程问题 中起到关键作用,如物理 中的动力学问题。
THANKS
感谢观看
பைடு நூலகம்
高中数学导数讲解
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的实际应用 • 导数的扩展知识
01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示函数在该点的切线斜率。
详细描述
导数是微积分中的一个基本概念,用于描述函数在某一点附近的变化率。对于可导函数$f(x)$,其在点$x_0$处 的导数定义为$f'(x_0) = lim_{Delta x to 0} frac{Delta y}{Delta x}$,其中$Delta y = f(x_0 + Delta x) - f(x_0)$ 。导数表示函数在点$x_0$处的切线斜率。
01
02
03
起源
导数最初由牛顿和莱布尼 茨在17世纪分别独立发现 ,为微积分学奠定了基础 。
早期发展
18世纪,欧拉、拉格朗日 等数学家进一步发展了导 数理论,将其应用于函数 研究。
现代应用
随着数学的发展,导数在 物理、工程、经济等领域 得到广泛应用,成为解决 实际问题的重要工具。
导数的其他性质
导数的几何意义
详细描述
在物理中,导数具有实际意义。例如,物体运动的瞬时速度 可以由速度函数的导数表示,物质扩散的瞬时速度可以由扩 散函数的导数表示。导数可以描述物体或物质在极短时间内 速度或加速度的变化。
02
导数的计算
切线斜率与导数
切线斜率
导数描述了函数在某一点的切线斜率 ,即函数在该点的变化率。

高三数学二轮复习专题讲解11 导数中的同构问题

高三数学二轮复习专题讲解11 导数中的同构问题

高三数学二轮复习专题讲解第11讲 函数与导数—导数中的同构问题专题综述同构法在近几年的模考中频繁出现,把等式或不等式变形为两个形式上一样的函数,利用函数的单调性转化成比较大小,或者解恒成立,求最值等问题.同构法在使用时,考验“眼力”,面对复杂的结构,仔细观察灵活变形,使式子两则的结构一致.构造函数,判断函数单调性,进一步求参数或证明不等式.专题探究探究1:指对跨阶型解决指对混合不等式时,常规的方法计算复杂,则将不等式变形为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦的结构,()f x 即为外层函数,其单调性易于研究.常见变形方式:①ln xx xxe e+=;②ln xx x e e x-=;③ln x xx x e e -=;④()ln ln x x x xe +=;⑤ln ln x e x x x -=. 答题思路:1.直接变形:(1)积型:b b ae aln ≤⇒()ln ln a b x a e b e f x xe ⋅≤⋅⇒=(同左);ln ln a a e e b b ⇒⋅≤⋅()ln f x x x ⇒=(同右); ⇒()ln ln ln ln a a b b +≤+⇒()ln f x x x =+(取对数).说明:取对数是最快捷的,而且同构出的函数,其单调性一看便知.(2)商型:b b a e a ln <⇒ln ln a b e e a b <()x e f x x⇒=(同左); ln ln a ae be b⇒<⇒x x x f ln )(=(同右); ⇒)ln(ln ln ln b b a a -<-⇒x x x f ln )(-=(取对数).(3)和差型:b b a e aln ±>±⇒ln ln abe a eb ±>±⇒x e x f x ±=)((同左);ln ln a a e e b b ⇒±>+⇒x x x f ln )(±=(同右).2.先凑再变形:若式子无法直接进行变形同构,往往需要凑常数、凑参数或凑变量,如两边同乘以x ,同加上x 等,再用上述方式变形.常见的有: ①x aeaxln >ln ax axe x x ⇒>;②[]ln 1ln()ln (1)1ln ln(1)1xxx a e a ax a a e a x e a x a->--⇒>--⇒->--ln ln(1)ln ln(1)1ln(1)x a x e x a x x e x --⇒+->-+-=+-;③ln ln ln log (ln )ln ln xx ax a a xa x e x a e x x a>⇒>⇒>;(2022重庆市市辖区模拟)若关于x 的不等式ln x a e x a -≥+对一切正实数x 恒成立,则实数a 的取值范围是( )A. 1,e ⎛⎫-∞ ⎪⎝⎭B. (],e -∞C. (],1-∞D. (],2-∞【审题视点】不等式中有指、对数结构,不等式两侧都加上x ,即能出现同构法中的“和差型”.【思维引导】由不等式的结构判断,通过将不等式变形为ln x a e x a x x -+-≥+,符合同构法中的指对同阶模型,或者直接构造含参函数,分类讨论.【规范解析】解:ln x a e x a -+…,ln x a e x a x x -∴+-+…,ln ln x a x e x a e x -∴+-+…设()t f t e t =+,则()10t f t e '=+>∴()f t 在R 上单调递增故ln ln x ax ex a e x -+-+…即()()ln f x a f x -…,即ln x a x -…即ln x x a -…设()ln g x x x =-,则()111x g x x x-'=-=,令()0g x '>,则1x > ∴()g x 在()1,+∞上单调递减,在()0,1上单调递减故()()min 11g x g ==,故1a …故选.C【探究总结】不等式或函数中指对数结构都存在时,仔细观察结构特征,可优先考虑放缩或同构,化繁为简,降低单调性判断的难度.故要对常见不等关系的结论(专题1.3.8)及上述的常见变形方法牢记于心,能够熟练变形,构造相应函数.(2022山东省泰安市一模)已知()2ln 12a f x x x x =++.(1)若函数()()cos sin ln 1g x f x x x x x x =+---在0,2π⎛⎤⎥⎝⎦上有1个零点,求实数a 的取值范围;(2)若关于x 的方程()212x aa xef x x ax -=-+-有两个不同的实数解,求a 的取值范围.探究2:双变量型含有同等地位的两个变量12,x x 的等式或不等式,同构后使等式或不等式两侧具有一致的结构,便于构造函数解决问题.答题思路:常见的同构类型有:①[]12211121()()()()()()()()g x g x f x f x g x f x g x f x λλλ->-⇒+>+()()()h x g x f x λ⇒=+; ②12121212112212()()()()()()()f x f x k x x f x f x kx kx f x kx f x kx x x -><⇒-<-⇒-<--()()h x f x kx ⇒=-;③1212121212121221()()()()()()f x f x k x x k k k x x f x f x x x x x x x x x --<<⇒->=--1212()()k k f x f x x x ⇒+>+()()k h x f x x⇒=+. (2022江西省萍乡市联考)已知函数()()21ln011x ax f x a x e -=+>--, (1)求函数()f x 的定义域;(2)对1x ∀,21(0,)2x ∈,当21x x >时,都有212111()()11x x f x f x e e -<---成立,求实数a 的取值范围.【审题视点】第(2)问中的双变量不等式,若变量能分离且结构相同,不等式转化函数单调性问题.【思维引导】双变量的恒成立不等式,分离变量,不等式变形212111()()11x x f x f x e e -<---,构造函数()h x,由不等式得出函数()h x 的单调性.【规范解析】解:(1)由题意得 20110x ax x e -⎧>⎪-⎨⎪-≠⎩,即2()(1)00a x x ax ⎧-->⎪⎨⎪≠⎩,①当02a <<时,21a >,函数()f x 的定义域为2(,0)(0,1)(,)a-∞+∞;②当2a =时,21a=,函数()f x 的定义域为{|1x x ≠且0}x ≠,③当2a >时,21a<,函数()f x 的定义域为2(,0)(0,)(1,)a -∞+∞;(2)由题意得1x ∀,21(0,)2x ∈,当21x x >时,212111()()11x x f x f x e e -<---设()12()ln 11x ax h x f x e x -=-=--,则()()21h x h x < ()h x ∴在区间10,2⎛⎫⎪⎝⎭上单调递减设2(1)22()111ax a x a a u x a x x x --+--===+---,即函数()u x 在1(0,)2上是减函数,且1()02u …,2012201120a a a ->⎧⎪⎪-⎪∴⎨⎪-⎪⎪>⎩…,解得24a <…,∴实数a 的取值范围为(2,4].【探究总结】典例2中出现的双边量问题是同构法中较为典型的情况,思路明确.针对上述类型的不等式,分离变量,构造函数得出单调性.构造的函数可能是抽象函数,也可能是具体函数,利用函数单调性,解不等式.(2022江苏省苏州市联考)已知函数21()ln 2f x x a x =+,若对任意1x ,212[2,)()x x x ∈+∞≠,存在3[1,]2a ∈,使1212()()f x f xm x x ->-成立,则实数m 的取值范围是()A. (,2]-∞B. (-∞C. 5(,]2-∞D. 11(,]4-∞探究3:同构放缩或同构换元共存型有些更复杂的指对不等式,利用常见的变形方法(探究一)先进行同构变形再换元,使构造的函数较为简单,或者本身不等式的结构不特殊,可以先结合常用不等结论(专题1.3.8)放缩,使结构特殊再同构,但要注意取等号的条件等. 常见的放缩模型:(1)利用1x e x ≥+放缩:①ln ln 1x x xxe ex x +=≥++ ;②ln ln 1xx x e e x x x-=≥-+;③ln ln 1n x x n x x e e x n x +=≥++(2)利用xe ex ≥放缩:①ln (ln )xx xxe ee x x +=≥+;②ln ln 1x xx x e x x e-=≥-+;③ln (ln )n x x n x x e e e x n x +=≥+.(3)利用ln 1x x ≤-放缩:①ln ln()1x x x x xe xe +=≤-;②ln ln()1n x n xx n x x e x e +=≤-. (4)利用ln x x e≤放缩:①1ln ln()x x x x xe xe -+=≤;②1ln ln()n x n x x n x x e x e -+=≤.(2022河北省石家庄市联考)已知函数()()1ax f x x ea R -=⋅∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 的图象经过点(1,1),求证:0x >时,1ln ()0.xf x x e+⋅… 【审题视点】待证明的不等式中有x xe ,ln x x +,容易联系到指对同阶的常见变形,将不等式同构.【思维引导】第(2)问,求出1a =,显化不等式()1ln 0xf x xe +≥,进行指对变形,换元简化函数. 【规范解析】解:(1)由题意知,函数()f x 的定义域为.R 当0a =时,()exf x =,函数()f x 在(,)-∞+∞上单调递增.当0a ≠时,1111()ee e ()ax ax axf x ax a x a ---'=+=+,令()0f x '>,即1()0a x a+>①当0a <时,1x a <-∴()f x 在区间1(,)a -∞-上单调递增;在区间1(,)a -+∞上单调递减.②当0a >时,1x a >-∴()f x 在区间1(,)a -∞-上单调递减,在区间1(,)a-+∞上单调递增.(2)若函数()f x 的图象经过点(1,1),则1(1)1a f e -==,得1a =,则111ln ()ln 1ln 1e e exx x x f x x x xe x x x +=++-=+-, 设xt xe =,则当0x >时,()0,t ∈+∞ 设()1ln 1g t t t =+-,则()22111t g t t t t-'=-+= 令()0g t '>,则1t >∴()g x 在区间()0,1上单调递减,在区间()1,+∞上单调递增∴()()()min 10g x g x g ≥== ∴当0x >时,1ln ()0x f x xe+…恒成立. 【探究总结】同构法让复杂的函数式在指对结构上呈现“一致性”,再换元,大大降函数研究的难度.但这类问题,方法不唯一,也可利用其他方法,比如不等式证明问题,直接构造函数求最值,或着变形为()()f x g x >的结构,比较最值.(2022江苏省南京市模拟)已知函数()ln f x x ax =-.(1)讨论()f x 的单调性; (2)设1()()x g x exf x -=+,若()0g x …恒成立,求a 的取值范围. 专题升华同构思想不仅仅应用于导数部分,整个高中数学中,在方程、不等式、解析几何、数列部分都有体现,本质上是变形,使结构一致,转化为其它知识点求解.①方程中的应用:()()00f a f b ==⎧⎨⎩⇒两式结构相同,转化为,a b 为方程()0f x =的两根;如:若函数()f x m =在区间[],a b 上的值域为(),122a b b a ⎡⎤>≥⎢⎥⎣⎦,则实数m 的取值范围是.思路:由()f x 单调递增⇒()()22a f a bf b ==⎧⎪⎪⎨⎪⎪⎩⇒,a b 为方程()2x f x =的两个根. ②不等式中的应用:不等式两侧化为相同结构,利用函数单调性,比较大小,或解不等式;如:若()[)5533cos sin 7cos sin ,0,2θθθθθπ-<-∈,则θ的取值范围是.思路:()55335353cossin 7cos sin cos 7cos sin 7sin θθθθθθθθ-<-⇒-<-,构造函数()537f x x x =-研究单调性.③解析几何中的应用:如点()()1122,,,A x y B x y 的坐标满足相同的关系式,即01102211y y mx y y mx =-⎧⎨=-⎩则直线AB 的方程为01y y mx =-,或得出两点在同一条曲线上;④数列中的应用:将递推公式变形为关于(),n a n 与()1,1n a n --的同构式,如()113121311n n n n a a a a n n n n ++⎛⎫⎛⎫=++⇒+=+ ⎪ ⎪+⎝⎭⎝⎭,可以构造辅助数列1n a n ⎧⎫+⎨⎬⎩⎭解题.解题时,针对除变量外完全相同的结构式,要灵活的利用其同构的特点,寻求与问题的某种内在联系,从而找到解决问题的思路方法.同构法体现了发现、类比、化归等思想,是一种富有创造性的解决问题的方法.同构法为解题提供了突破口,从同构式中挖掘隐含条件,能让数学难题豁然开朗.【答案详解】 变式训练1【解答】解:(1)由题意得2()cos sin 2a g x x x x x =+-,(0x ∈,]2π, 则()(sin )g x x a x '=-,①当1a …时,sin 0a x -…,()0g x '>∴所以()g x 在(0,]2π单调递增, (0)0g =,故()g x 在(0,]2π上无零点;②当01a <<时,0(0,)2x π∃∈,使得0sin x a =,∴()g x 在0(x ,]2π上单调递减,在0(0,)x 上单调递增,又(0)0g =,2()128a g ππ=-故()()000g x g >= ∴()g x 在区间()00,x 上无零点i )当21028a g ππ⎛⎫=-> ⎪⎝⎭即28a π>时,()g x 在(0,]2π上无零点,ii )当21028a g ππ⎛⎫=-≤ ⎪⎝⎭即280a π<…时,()g x 在(0,]2π上有一个零点, ③当0a …时,sin 0a x -<,()0g x '<∴()g x 在(0,]2π上单调递减,()g x 在(0,]2π上无零点,综上所述:当280a π<…时,()g x 在(0,]2π上有一个零点;(2)由2()1(0)2x a a xe f x x ax x -=-+->得x a xe xlnx ax -=+, 即x a e lnx a -=+,则有()ln x a x a e e x lnx --+=+, 令()h x x lnx =+,0x >,1()10h x x'=+>,∴函数()h x 在(0,)+∞上递增, ∴方程()()x a h e h x -=即为方程x a e x -=即ln a x x =-有2个不同的正实根设()x x lnx ϕ=-,则11()1x x x xϕ-'=-=, 当01x <<时,()0x ϕ'<,当1x >时,()0x ϕ'>, 所以函数()x x lnx ϕ=-在(0,1)上递减,在(1,)+∞上递增, 所以()min x ϕϕ=(1)1=,当0x →时,()x ϕ→+∞,当x →+∞时,()x ϕ→+∞,∴当1a >时,方程ln a x x =-有2个不同的正实根综上所述:()1,a ∈+∞.变式训练2【解析】解:令21()()ln 2g x f x mx x a x mx =-=+-,由1212()()f x f x m x x ->-得()1212()0g x g x x x ->-∴()g x 在[2,)+∞递增,[)()2,,0a x g x x m x '∴∀∈+∞=+-≥,即am x x+…恒成立,设()a h x x x =+,[)2,x ∈+∞,3[1,]2a ∈,则()ah x x x=+在[2,)+∞上单调递增,∴11 / 11 min ()(2)22a h x h ==+,故有22a m +…,3[1,]2a ∃∈,使得22a m +…成立,故(2)max 2a m +…,即11.4m …故选:D . 变式训练3【解析】解:(1)由题意得1().f x a x'=- ①当0a …时,()0f x '>,则()f x 在(0,)+∞上单调递增;②当0a >时,令()0f x '=得到1x a =, 当10x a <<时,()0f x '>,()f x 单调递增;当1x a>时,()0f x '<,()f x 单调递减;综上:当0a …时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在1(0,)a 上单调递增,在1(,)a+∞上单调递减;(2)12()ln x g x e x x ax -=+-,令1x =,则(1)10g a =-…,故1a …, 当1a …时,()l 2n 1211()ln 1ln ln 1x x x x g x e x x ax e x x x e x x x ----⎡⎤=--=+--⎦-+⎣-…, 设()ln 1h x x x =--,则()111x h x x x-'=-= 令()0h x '>,则1x > ∴()h x 在()0,1上单调递减,在()1,+∞上单调递增设()[)1,0,x t x e x x =--+∞,则()10x t x e '=-≥∴()t x 在[)0,+∞上单调递增()()00t x t ∴≥=故()ln 1ln 110x x e x x ------≥,即()ln 1ln 110x x x e x x --⎡⎤----≥⎣⎦综上所述:当1a …时,()0g x ≥.()()()min 10h x h x h ∴≥==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

芦溪中学2008年复课备考《导数》(文科)专题讲座一、基础训练:1. 曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形面积为( ) A .19 B .29 C .13 D .23解:曲线32112,3y x x y x k '=+⇒=+⇒=在点4(1,)3处的切线方程是42(1)3y x -=-,它与坐标轴的交点是(31,0),(0,-32),围成的三角形面积为19,选A 。

2.设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解:()f x 在()-∞+∞,内单调递增,则()f x '在()-∞+∞,上恒成立。

23400x x m ⇒++≥∆≤⇒从而43m ≥;反之,4:3q m ⇒≥()0f x '≥,()f x ∴在()-∞+∞,内单调递增,选C 。

3.曲线32242y x x x =--+在点(1,一3)处的切线方程是___________解:点(1,-3)在曲线32242y x x x =--+上,故切线的()'211|344|5x x k y x x ====--=-∴切线方程为()351y x +=--,即520x y +-=4.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -= .解:令123)('2-=x x f =0,得1x =2,2x =-2,)3(-f =17,f (3)=-1, f (-2)=24,f (2)=-8,所以,M -m =24-(-8)=32。

二、例题精讲:例1.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;(2)若对于任意的[0,3]x ∈,都有2()f x c <成立,求c 的取值范围。

解:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,. 解得3a =-,4b =.(2)由(1)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,.例2.设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。

(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间;(3)求函数()f x 在[1,3]-上的最大值和最小值。

解:(1)∵()f x 为奇函数,∴()()f x f x -=-即33ax bx c ax bx c --+=--- ∴0c = ∵2'()3f x ax b =+的最小值为12-∴12b =-,又直线670x y --=的斜率为16,因此,'(1)36f a b =+=-∴2a =,12b =-,0c =.(2)3()212f x x x =-,2'()6126(f x x x x =-=,列表如下:所以函数()f x 的单调增区间是(,-∞和)+∞(3)∵(1)10f -=,f =-(3)18f =∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是f =-例3.已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明: 0a >;(2)求z=a+2b 的取值范围。

解:求函数()f x 的导数2()22f x ax bx b '=-+-.(1)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以ba 2 12 4O 4677A ⎛⎫ ⎪⎝⎭, (42)C ,(22)B ,12()()()f x a x x x x '=-- 当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >. (2)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫⎪⎝⎭,,,,,. z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫⎪⎝⎭,.例4.设函数2()()f x x x a =--(x ∈R ),其中a ∈R . (1)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (2)当0a ≠时,求函数()f x 的极大值和极小值。

解:(1)当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.(2)2322()()2f x x x a x ax a x =--=-+-,22()34(3)()f x x ax a x a x a '=-+-=---. 令()0f x '=,解得3ax =或x a =.由于0a ≠,以下分两种情况讨论. 若0a >,当x 变化时,()f x '的正负如下表:因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫ ⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =.若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3ax =处取得极大值3a f ⎛⎫ ⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.例5.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为x (m ),则长为2x(m),高为181234.53(m)042x h x x -⎛⎫==- ⎪⎝⎭<<. 故长方体的体积为22333()2(4.53)96(m )(0).2V x x x x x x =-=-<< 从而).1(18)35.4(1818)(2x x x x x x V -=--='令V ′(x )=0,解得x=0(舍去)或x=1,因此x=1. 当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x=1处V (x )取得极大值,并且这个极大值就是V (x )的最大值。

从而最大体积V =V ′(x )=9×12-6×13(m 3),此时长方体的长为2 m ,高为1.5 m. 答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3。

例6.设函数22()21(0)f x tx t x t x t =++-∈>R ,.(1)求()f x 的最小值()h t ;(2)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 解:(1)23()()1(0)f x t x t t t x t =+-+-∈>R ,,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,即3()1h t t t =-+-.(2)令3()()(2)31g t h t t m t t m =--+=-+--,由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时()g t ',()g t 的变化情况如下表:()g t ∴在(02),内有最大值(1)1g m =-.()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,即等价于10m -<,所以m 的取值范围为1m >.例7.某商品每件成本9元,售价为30元,每星期卖出432件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?解:(1)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x ,则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,.(2)根据(1),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.三、反馈训练:1、设函数f (x )= -cos 2x -4tsin2x cos 2x+4t 3+t 2-3t+4,x ∈R,其中t ≤1,将f(x)的最小值记为g(t). (1)求g(t)的表达式;(2)讨论g(t)在区间(-1,1)内的单调性并求极值. 解:(1)232()cos 4sincos 43422x xf x x t t t t =--++-+ 222sin 12sin 434x t t t t =--++-+223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+. 由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+. (2)2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:t121⎛⎫-- ⎪⎝⎭,12-1221⎛⎫- ⎪⎝⎭, 12 112⎛⎫ ⎪⎝⎭, ()g t ' +-+()g t极大值12g ⎛⎫-⎪⎝⎭极小值12g ⎛⎫⎪⎝⎭由此可见,()g t 在区间112⎛⎫--⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小, 极小值为122g ⎛⎫=⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭.2、已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;(2)当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 解:(1)因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点, 所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=,且2104x x <-≤.于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(2)由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 3、 已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数, 又.23)21(='f (1)求)(x f 的解析式;(2)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围. 解:(1)2()32f x ax bx c '=++,由已知(0)(1)0f f ''==,即0320c a b c =⎧⎨++=⎩,,解得032c b a =⎧⎪⎨=-⎪⎩,.2()33f x ax ax '∴=-,13332422a a f ⎛⎫'∴=-= ⎪⎝⎭,2a ∴=-,32()23f x x x ∴=-+.(2)令()f x x ≤,即32230x x x -+-≤,(21)(1)0x x x ∴--≥,102x ∴≤≤或1x ≥. 又()f x x ≤在区间[]0m ,上恒成立,102m ∴<≤.。

相关文档
最新文档