钢的相变温度

合集下载

机械工程材料-3章 钢的热处理

机械工程材料-3章 钢的热处理

珠光体型转变,在A1~550℃等温; 贝氏体型转变,在550℃~Ms等温; 马氏体型转变,冷却至MS以下。
共析钢等温冷却转变曲线
随着过冷度的增大,奥氏体转 变温度降低,生成的珠光体片层间 距变小。依据片层间距的大小,将 其分别称为珠光体、索氏体、屈氏 体。珠光体片越细,HB↑,Rm↑。
珠光体 符 号:P 等温温度: A1 ~ 650℃ 层片间距:>0.4μm
①钢加热温度由冷却前希望得到的组 织决定。如果希望得到单相奥氏体组织, 需要在Ac3和Accm以上温度加热,过共析钢 如果不希望二次渗碳体全部溶解到奥氏体 中,需要在Ac1和Accm之间温度加热。 ②加热温度越高,保温时间越长,奥 氏体成分均匀,但晶粒越粗大。 ③加热速度越快,相变的过热度增大, 奥氏体实际形成温度越高,生成的奥氏体 晶粒度愈小。 ④生成的奥氏体晶粒大小也与钢的化 学成分和原始组织有关,有的钢晶粒长大 倾向小。
表 面 热处理 化学热处理
渗碳 渗氮 碳氮共渗 渗金属等
3.1 钢的热处理原理
3.1.1 钢在加热时的组织转变
1 钢的组织转变温度
对不同成分和组织的钢,在 进行加热或冷却时,如果加热或 冷却速度非常缓慢,钢的组织变 化规律和铁碳相图一致。
经过PSK线(A1)时,发生 A P 转变 经过GS线(A3)时,发生 A F 转变 经过ES线(Acm)时,发生 A A+Fe3CⅡ
则A1、A3、Acm被称为碳钢固 态平衡组织转变临界温度。
铁碳相图
由于实际加热或冷却不可能非常 缓慢,加热时相变需要具有一定的过 热度,冷却时相变需要具有一定的过 冷度,组织转变才能进行。 习惯上,将碳钢加热时的相变温 度分别标记为Ac1、Ac3、Accm,其冷却 时的相变温度分别标记为Ar1、Ar3、 Arcm。 例如:对亚共析钢,当加热到 Ac1时发生P→A,加热到Ac3时才全部 转变为A;对共析钢当加热到Ac1时发 生P→A;对过共析钢加热到Ac1时发 生P→A,加热到Accm以上时渗碳体才 全部转变为A。

45钢完全退火、正火、淬火、淬火+低温回火、调质处理温度

45钢完全退火、正火、淬火、淬火+低温回火、调质处理温度

45钢完全退火、正火、淬火、淬火+低温回火、调质处理温度摘要:1.钢的完全退火处理2.钢的正火处理3.钢的淬火处理4.钢的淬火+低温回火处理5.钢的调质处理6.各种处理方式的温度要求及应用场景正文:在金属材料加工中,热处理是关键的环节,它直接影响着金属材料的性能和用途。

本文将介绍钢的完全退火、正火、淬火、淬火+低温回火、调质处理五种常见热处理方法,以及它们在实际应用中的温度要求。

一、钢的完全退火处理钢的完全退火是一种将钢加热到Ac3或Ac1以上适当温度,保持一段时间后冷却至室温的热处理工艺。

其主要目的是消除钢中的残余应力,提高塑性和韧性,为后续加工和使用提供良好的基础。

完全退火的温度一般在800-900℃左右,具体取决于钢的成分和所需的性能。

二、钢的正火处理钢的正火处理是将钢加热到Ac3或Ac1以上适当温度,保温一段时间后,以适当速度冷却至室温的热处理工艺。

正火处理可以改善钢的组织形态,提高硬度和强度,同时保持一定的韧性。

正火处理的温度一般在800-900℃左右,与完全退火相似。

三、钢的淬火处理钢的淬火处理是将钢加热到相变温度以上,保温一段时间后,迅速冷却至室温的热处理过程。

淬火处理可以使钢获得高硬度、高强度和良好的耐磨性,但韧性相对较低。

淬火处理的温度根据钢的成分和性能要求有所不同,一般在800-1000℃之间。

四、钢的淬火+低温回火处理钢的淬火+低温回火处理是在淬火的基础上,将钢加热到低温回火温度(一般为150-250℃),保温一段时间后冷却至室温的热处理工艺。

这种处理方式旨在提高钢的韧性和稳定性,平衡强度与韧性的关系。

五、钢的调质处理钢的调质处理是将钢加热到Ac3或Ac1以上适当温度,保温一段时间后,以适当速度冷却至室温的热处理工艺。

调质处理可以获得较高的综合性能,既具有良好的强度,又具有较高的韧性。

调质处理的温度一般在800-900℃左右。

总之,钢的热处理方法多种多样,针对不同的性能要求和应用场景选择合适的处理方式至关重要。

t8钢过冷奥氏体等温转变曲线

t8钢过冷奥氏体等温转变曲线

t8钢过冷奥氏体等温转变曲线一、引言t8钢是一种常用的工业材料,其性能优异,广泛应用于机械制造、汽车制造等领域。

t8钢的过冷奥氏体等温转变曲线是评价其性能的重要指标之一。

本文将详细介绍t8钢过冷奥氏体等温转变曲线的相关知识。

二、t8钢的组织结构t8钢是一种碳素工具钢,其主要成分为碳、铬、锰等元素。

在室温下,t8钢的组织结构为珠光体和铁素体混合体,其中珠光体占比较大。

随着温度的升高,珠光体逐渐消失,最终形成完全铁素体结构。

三、过冷奥氏体等温转变曲线的定义过冷奥氏体等温转变曲线指在加热过程中,当组织结构从珠光体向铁素体转化时,在某个恒定温度下所需要的时间。

该曲线可以反映出材料的相变规律和相变特性。

四、影响t8钢过冷奥氏体等温转变曲线的因素1. 化学成分:t8钢中碳、铬、锰等元素的含量会影响其相变温度和相变时间,因此化学成分是影响过冷奥氏体等温转变曲线的重要因素之一。

2. 加热速率:加热速率越快,相变时间越短,因此加热速率也是影响过冷奥氏体等温转变曲线的因素之一。

3. 冷却方式:不同的冷却方式会对组织结构产生不同的影响,从而影响相变时间。

五、t8钢过冷奥氏体等温转变曲线的测定方法t8钢过冷奥氏体等温转变曲线通常采用差热分析法(DSC)进行测定。

该方法通过测量材料在加热或冷却过程中所释放或吸收的能量来确定其相转化温度和相转化时释放或吸收的潜热。

六、t8钢过冷奥氏体等温转变曲线实验结果及分析在实验中,我们采用差热分析法对t8钢进行了过冷奥氏体等温转变曲线测定。

实验结果显示,在1000℃恒温下,t8钢的相变时间为30秒左右。

随着温度的升高,相变时间逐渐缩短。

同时,我们还发现t8钢的化学成分对其过冷奥氏体等温转变曲线有着明显的影响。

七、结论t8钢过冷奥氏体等温转变曲线是评价其性能的重要指标之一。

化学成分、加热速率和冷却方式是影响其过冷奥氏体等温转变曲线的主要因素。

通过差热分析法可以准确地测定t8钢的过冷奥氏体等温转变曲线,并得到相关结论。

相变对两相区连续退火带钢温度和屈曲变形的影响

相变对两相区连续退火带钢温度和屈曲变形的影响

相变对两相区连续退火带钢温度和屈曲变形的影响吴雯;米振莉;苏岚;孙蓟泉;陈银莉【摘要】Low-carbon Al-killed steel was selected and finite element method (FEM) was used to investigate the influence of phase transformation on strip temperature distribution and buckling in the heating and slow cooling sections of the continuous annealing furnace. The results show that in the heating section, phase transformation can inhibit the increase of transverse compressive stress caused by thermal stress and reduce temperature and transverse temperature difference of strip effectively, and thus it is helpful to prevent the strip buckling. Inhibition of phase transformation on strip buckling firstly increases and then decreases when annealed at 760−820 ℃. In the slow cooling section, phase transformation weakens the decrease of transverse compressive stress caused by thermal stress and reduces temperature of strip, which promotes the probability of strip buckling. Strip buckling is more likely to occur at higher annealing temperature.%以低碳铝镇静钢对研究对象,利用有限元数值模拟方法,分别对连退炉内加热段和缓冷段中带钢相变对带钢温度分布和带钢屈曲变形的影响进行研究。

钢在实际加热条件下的临界点为

钢在实际加热条件下的临界点为

钢在实际加热条件下的临界点为钢在实际加热条件下的临界点,是指钢材在加热过程中会发生物
理或化学变化的温度点。

一旦达到临界点,钢材的结构、硬度、塑性
和抗拉强度等性质会发生明显的变化。

钢材的临界点取决于所选的钢种、加工工艺和应用环境等因素。

临界点温度一般是指钢材开始进行淬火变质的温度。

在这个温度范围内,钢的晶格结构开始产生相变,从而导致钢材的硬度和强度逐渐增加,但塑性会受到影响。

对于不同的钢材,其临界点温度也有所不同。

例如,碳素钢的临
界点通常在700℃到800℃之间。

当钢在加热处理过程中超过其临界点
温度,就需要进行淬火处理,以达到所要求的硬度和强度。

同时,还
需要对钢材进行回火处理,以恢复其塑性。

此外,钢材在加热过程中的临界点还受到其他因素的影响,如加
热速率、冷却速率、加热时间和温度控制等。

因此,在进行钢材的加
工和处理时,需要仔细控制加热过程,以避免超过钢材的临界点温度,从而保证钢材的质量和性能。

总之,了解钢材的临界点,有助于正确处理钢材,在保证其质量
和性能的同时,有效提高工作效率和生产效益。

上转变温度和下转变温度之间的热处理

上转变温度和下转变温度之间的热处理

上转变温度和下转变温度之间的热处理
热处理是一种通过控制金属材料的温度来改变材料的性质和组织结构的方法。

在金属材料中,上转变温度和下转变温度是两个重要的参数。

上转变温度是指在加热过程中,材料发生结构或相变的临界温度。

在上转变温度以上,材料的晶体结构或相组成会发生改变,导致材料性质的变化。

例如,铁的上转变温度是770摄氏度,超过这个温度,铁会从铁素体转变为奥氏体。

这个转变会改变铁的硬度、强度和磁性等性质。

下转变温度是指在冷却过程中,材料发生结构或相变的临界温度。

在下转变温度以下,材料的晶体结构或相组成会再次发生变化,导致材料性质的进一步改变。

如铁的下转变温度是910
摄氏度,超过这个温度,铁会从奥氏体转变为铁素体。

这个转变会再次改变铁的硬度、强度和磁性等性质。

通过上转变温度和下转变温度之间不同的热处理过程,可以控制材料的晶体结构和组织,从而改变材料的性质。

常见的热处理过程包括退火、淬火、回火等,它们可以使材料获得不同的晶体结构和组织状态,从而达到不同的性能要求。

例如,通过控制铁的上转变温度和下转变温度之间的热处理过程,可以制备出具有不同硬度和强度的钢材。

什么是金属临界点

开始转变
AC1——加热时P A温度
开始转变
Ar1——冷却时A P温度
全部转变
AC3——加热时F A终了温度
开始析出
Ar3——冷却时A F温度
全部溶入
ACcm——加热时Fe3CⅡA终了温度
开始析出
Arcm——冷却时A Байду номын сангаасe3CⅡ温度
各种钢的临界点可在热处理手册中查到。
1.金相组织状态
奥氏体--用A表示
Ac1---是一般加热条件下珠光体向奥氏体转变的临界温度,它高于A1线,Ac1不是固定值,但在确定工艺参数时有很好的指导作用。
这个状态图主要是以温度和含碳量分别为纵、横坐标为图形,研究在不同的含碳量和不同温度状态下的钢和铸铁内部组织变化的规律。
Acm-过共析钢加热时,先共析渗碳体完全溶入奥氏体的温度,或冷却时先共析渗碳体开始从奥氏体中析出的温度
3.退火:把钢加热到临界点(Ac1或Ac3)或再结晶温度以上,保温一定时间,然后缓慢冷却,使组织达到接近平衡状态。
4.热处理
1).淬火:把钢加热到Ac3或Ac1以上30~50℃,保温后以大于临界冷却速度的速度快速5.冷却。得到马氏体组织,使钢得到强化。
2).正火:把钢加热到Ac3或Acm以上30~50℃,保温后在空气中冷却,得到珠光体型组织的热处理工艺称为正火。提高机械性能、细化晶粒、改善组织。正火速度比退火快。
3).回火:把已淬火的钢重新加热到Ac1以下某一温度,保温后机械冷却。可分为低温回火、中温回火和高温回火。
4).调质:通常把淬火加高温回火的热处理工艺称为调质。可以得到索氏体组织,可以得到强度与韧性相配合的良好综合性能。
铁素体--用F表示
渗碳体--用Fe3C表示

钢的奥氏体晶粒度与加热温度的关系


2
(4) 网状渗碳体法 适用于过共析钢的奥氏体晶粒的显示。将试样加热到 820±10℃, 保温 30~60min 后,炉冷到 600℃(冷却速度约 80~100℃/h)出炉,以保证渗碳体呈网状 分布。除去试样表面氧化层,制成金相试样,用 3%~4%硝酸酒精溶液或苦味酸酒精溶液浸 蚀,此时晶界网状碳化物呈现白色。根据碳化物沿奥氏体晶界析出的网络。测定钢的奥氏体 晶粒度,晶粒内部是珠光体。 (5) 网状珠光体法(一端淬火法) 适用于淬透性较低的碳素钢和低合金钢以及不能获 得完整铁素体或渗碳体网的钢。如含碳量接近共析成分的钢。 实验时,可采用Φ 20mm×40mm 的圆柱形试样,现将试样加热到 900±10℃,保温 1h, 然后自炉中取出,一端淬入水中冷却(约入水 1/3~2/5 长度) ,冷却时不要上下运动,只可 水平移动;试样另一端在空气中冷却。由于试样从下端之上端冷却速度逐渐减小,因而沿轴 向的组织依次由马氏体向珠光体过渡。 经过这样处理的试样, 沿纵向磨去约 2~3mm 厚以后, 制成金相试样, 在淬硬与未淬硬的过渡区, 则可以找到黑色屈氏体优先沿奥氏体晶界析出的 区域。在屈氏体网所包围的内部则为灰白色的马氏体。根据黑色屈氏体网,可以测定钢的晶 粒度,所用浸蚀剂与网状铁素体法相同。 (6) 化学试剂腐蚀法 此方法分为直接腐蚀法和马氏体腐蚀法。 1)直接腐蚀法。将试样加热到 900±10℃,保温 1h 后水冷淬火,获得马氏体和贝氏体 组织,有的钢种还需经过一定温度的回火。除去试样表面脱碳层和氧化层,制成金相试样, 选用具有强烈选择性腐蚀的腐蚀剂浸蚀,使原奥氏体组织晶界变黑,而基体组织腐蚀轻微, 从而直接显现奥氏体晶粒。 本法适用于合金化高的能直接淬硬的钢,如高淬透性的铬镍钼钢等。 直接显现奥氏体晶界的腐蚀剂成分与使用条件是: ① 含有 0.5%~1%烷基苯碘酸钠 100mL 饱和苦味酸水溶液(亦可用合成洗衣粉代替烷 基苯磺酸钠) ;浸蚀时间依温度不同(20~70℃) ,可选用 0.5min 至 3h,由试验确定。如再 向此腐蚀剂中加少量医用消毒剂新洁尔灭,则能更好控制腐蚀,使样品更加清晰。 ② 含有 0.1~0.15g 十二醇硫酸钠的 100mL 饱和苦味酸水溶液,加热到 30℃,浸蚀约 100min 即可。 上述两种腐蚀剂都可抑制马氏体组织出现,促使奥氏体晶界的显示。 采用直接腐蚀法显示奥氏体晶粒的常用钢种热处理工艺列于表 1-1。 表 1-1 直接显示奥氏体晶粒的热处理艺 钢号 12CrNi3A 12Cr2Ni4A 20CrNi3A 40Cr 或 45Cr 60 碳钢 38CrMoAlA 18Cr2Ni4WA 40CrNiMoA 18CrMnTi 38CrA 30CrMnSiA 30CrMnSiNi2A 30CrMnNi2MoA

经验公式确定钢的热处理温度

钢的热处理工艺设计经验公式------------根据经验公式确定热处理的保温温度------------1 钢的热处理正火加热时间加热时间t=KD (1)式中t为加热时间(s);D使工件有效厚度(mm);K是加热时间系数(s/mm)。

K值的经验数据见表1。

表1 K值的经验数据正火加热温度根据钢的相变临界点选择正火加热温度低碳钢:T=Ac+(100~150℃)(2)3+(50~100℃)(3)中碳钢:T=Ac3+(30~50℃)(4)高碳钢:T=ACm+(30~80℃)(5)亚共析钢:T=Ac3+(30~50℃)(6)共析钢及过共析钢:T=ACm淬火加热时间为了估算方便起见,计算淬火加热时间多采用下列经验公式:t=a· K ·D︱ (不经预热) (7)t=(a+b)· K ·D︱(经一次预热) (8)t=(a+b+c)· K ·D︱(经二次预热) (9)式中t—加热时间(min);a —到达淬火温度的加热系数(min/mm );b —到达预热温度的加热系数(min/mm );c —到达二次预热温度的加热系数(min/mm );K —装炉修正系数;D ︱--工件的有效厚度(mm )。

在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a 多采用1~mm ;b 为~2min/mm (高速钢及合金钢一次预热a=~;b=~;二次预热a=~;b=~;c=~),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a 约为~20秒/毫米,系数b 不用另加。

若用盐浴加热,则所需时间,应较箱式炉中加热时间少五分之一(经预热)至三分之一(不经预热)左右。

工件装炉修正系数K 的经验值如表2: 表2 工件装炉修正系数K淬火加热温度按常规工艺,亚共析钢的淬火加热温度为Ac 3+(30~50℃); (10)共析和过共析钢为Ac 1+(30~50℃); (11)合金钢的淬火加热温度常选用Ac 1(或Ac 3)+(50~100℃) (12) 回火加热时间对于中温或高温回火的工件,回火时间是指均匀透烧所用的时间,可按下列经验公式计算:t=aD+b (13)式中t—回火保温时间(min);D—工件有效尺寸;(mm);a—加热系数(min/mm);b—附加时间,一般为10~20分钟。

热处理知识及工艺介绍

热处理的相关名词介绍
1. 正火normalizing:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2. 退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺 3. 淬火quenching:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺 4. 回火tempering:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺
相区
(1)单相区 简化的Fe- Fe3C相图中有F、A、L和Fe3C 四个单相区。 (2)两相区 简化的Fe- Fe3C相图中有五个两相区,即 L+A两相区、L+Fe3C两相区、A+Fe3C两相区、A+F两相 区和F+ Fe3C两相区。 每个两相区都与相应的两个单相区相邻;两条三相共存线, 即共晶线ECF,L、A和Fe3C三相共存,共析线PSK,A、F 和Fe3C三相共存。
4)合金工具钢
(1)低合金刃具钢 车、铣、铰刀等 性能要求: 回火稳定性 a) 硬度和耐磨性;b)强度和韧性;c)红硬性 ;d)工艺性 (2)高速钢 淬透性好,红硬性高,小截面刀具空气中能淬透 典型牌号: W18Cr4V (3)模具钢 a)冷作模具钢 b)热作模具钢 P70性能 (4)量具钢 多选用碳素工具钢、低合金工具钢(9SiCr、CrMn)、轴承钢(GCr15)制作
3、奥氏体的形成速度
43
(1)温度:加热温度越高,晶粒越大; (2)合金成分: ① 碳含量增高,晶粒长大倾向增大,残余渗碳体增加,则倾向减小; ② 形成碳化物、氮化物、氧化物的元素增加,则阻碍晶粒长大; ③ 锰、磷元素增加,晶粒增大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)Ac1 钢加热时,开始形成奥氏体的温度。

(2)Ac3 亚共析钢加热时,所有铁素体都转变为奥氏体的温度。

(3)Ac4 低碳亚共析钢加热时,奥氏体开始转变为δ相的温度。

(4)Accm 过共析钢加热时,所有渗碳体和碳化物完全溶入奥氏体的温度。

(5)Arl 钢高温奥氏体化后冷却时,奥氏体分解为铁素体和珠光体的温度。

(6)Ar3 亚共析钢高温奥氏体化后冷却时,铁素体开始析出的温度。

(7)Ar4 钢在高温形成的δ(铁素体区)相在冷却时,开始转变为奥氏体的温度。

(8)Arcm 过共析钢高温完全奥氏体化后冷却时,渗碳体或碳化物开始析出的温度。

(9)A1 也写做Ae1,是在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度,也就是一般所说的下临界点。

(10)A3 也写做Ae3,是亚共析钢在平衡状态下,奥氏体和铁素体共存的最高温度,也就是说亚共析钢的上临界点。

(11)A4 也写做Ae4,是在平衡状态下,δ相和奥氏体共存的最低温度。

(12)Acm 也写做Aecm,是过共析钢在平衡状态下,奥氏体和渗碳体或碳化物共存的最高温度,也就是过共析钢的上临界点。

(13)Mb 马氏体爆发形成温度,以Mb表示(Mb≤ MS)。

当奥氏体过冷至MS 点以下时,瞬间爆发式形成大量马氏体,并伴有响声,同时释放相变潜热,使温度回升。

(14)Md 马氏体机械强化稳定化临界温度。

(15)MF马氏体相变强化临界温度。

(16)Mf 有的文献以Mf表示奥氏体转变为马氏体的终了温度。

(17)MG 奥氏体发生热稳定化的一个临界温度。

(18)MS 钢奥氏体化后冷却时,其中奥氏体开始转变为马氏体的温度,符号中的“S”是“始”字汉语拼音第一个字母,也就是俄文书籍中的MH和英文书籍中的MS。

(19)MZ奥氏体转变为马氏体的终了温度,符号中的“Z”是“终”字的汉语拼音第一个字母,也就是俄文书籍中的MK和英文书籍中的Mf。

注:AC1、AC3、AC4和ACCm随加热速度而定,加热越快,其越高;Ar1、Ar3、A r4和Arcm则随冷却速度的加快而降低,当冷却速度超过一定值(临界冷却速度)时,它们将完全消失。

一般情况下,Ac1>A1>Ar1,Ac3>A3>Ar3,Ac4>A4>A r4,Accm>Acm>Arcm。

相关文档
最新文档