上海市七年级数学上学期期中试题新人教版
人教版七年级上册数学期中试卷含答案-(沪科版通用)

七年级上册数学期中考试试题评卷人得分一、单选题1.﹣45的相反数是()A .﹣45B .54C .﹣54D .452.在﹣212、+710、﹣3、2、0、4、5、﹣1中,负数有()A .1个B .2个C .3个D .4个3.若(a +3)2+|b -2|=0,则a b 的值是()A .6B .-6C .9D .-94.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A .0.21×108B .21×106C .2.1×107D .2.1×1065.下列关于单项式235xy -的说法中,正确的是()A .系数是25-,次数是2B .系数是35,次数是2C .系数是一3,次数是3D .系数是35-,次数是36.下面计算正确的是()A .6a -5a =1B .a +2a 2=3a 2C .-(a -b )=-a +bD .2(a +b )=2a +b7.给出下列各数式,①2 --()②2--③2 2-④22-()计算结果为负数的有()A .1个B .2个C .3个D .4个8.下列各题去括号所得结果正确的是()A .x 2﹣2(x ﹣3)=x 2﹣2x ﹣3B .x 2﹣2(x ﹣3)=x 2﹣2x+3C .x 2﹣2(x ﹣3)=﹣x 2﹣2x+6D .x 2﹣2(x ﹣3)=x 2﹣2x+69.若2x 2+x m +4x 3﹣nx 2﹣2x+5是关于x 的五次四项式,则﹣n m 的值为()A.﹣25B.25C.﹣32D.32评卷人得分二、填空题10.如果“节约10%”记作+10%,那么“浪费6%”记作:_____.11.比较大小:12 ﹣5;﹣|﹣2|﹣(﹣2).12.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是_____,最小的积是_____.13.已知|a|=4,那么a=_____.14.若m2+3n-1的值为5,则代数式2m2+6n+5的值为.15.用棋子摆出下列一组三角形,三角形每边有n枚棋子,每个三角形的棋子总数为s,如图按此规律推断,当三角形的边上有n枚棋子时,该三角形棋子总数s=__(用含n的式子表示).评卷人得分三、解答题16.计算:(1)﹣3﹣(﹣4)+7(2)(﹣4)2×(﹣34)+30÷(﹣6)17.三个队植树,第一队种a棵,第二队种的比第一队种的树的2倍还多8棵,第三队种的比第二队种的树的一半少6棵,问三个队共种多少棵树?18.化简:(1)4ab﹣b2﹣2a2+4ab﹣2b2;(2)3(2x2﹣xy)+4(x2+xy﹣6).19.化简求值:3(x2-2xy)-(2x2-xy),其中x=2,y=3.20.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示1km画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?21.某一食品厂从生产的袋装食品中抽出样品6袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如表:与标准质量的差值(单位:g)﹣5﹣20136袋号①②③④⑤⑥若标准质量为45克,则抽样检测的总质量是多少?22.若a、b互为相反数,c、d互为倒数,x的绝对值为2,且x<0,求x﹣(a+b+cd)+a b cd的值.23.已知有理数a、b、c在数轴上的对应点如图所示.(1)用“<”号把a,b,c连接起来;(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|.24.有这样一道题:当a=0.35,b=﹣0.28时,求7a3﹣6a3b+3a3+6a3b﹣3a2b﹣10a3+3a2b+1的值.小明说:本题中a=0.35,b=﹣0.28是多余的条件,小强马上反对说:这多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.25.已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==14×2×2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+313+143+153+163+…+393+403.参考答案1.D【解析】根据只有符号不同的两个数互为相反数可得,﹣45的相反数是45,故选D.2.C 【解析】在﹣212、+710、﹣3、2、0、4、5、﹣1中,负数有﹣212、﹣3、﹣1,共3个.故选C.3.C【解析】【分析】根据平方以及绝对值的非负性可得关于a、b的方程,求得a、b的值后再根据乘方的意义即可求得答案.【详解】∵(a+3)2+|b-2|=0,∴a+3=0,b-2=0,∴a=-3,b=2,∴a b=(-3)2=9,故选C.【点睛】本题考查了非负数的性质,有理数的乘方,熟练掌握几个非负数的和为0,那么每个非负数都为0是解题的关键.4.D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯的形式,其中110a ≤<,n 是比原整数位数少1的数.5.D 【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy -的系数是35-,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.6.C 【解析】试题分析:A .6a ﹣5a=a ,故此选项错误;B .a 与22a 不是同类项,不能合并,故此选项错误;C .﹣(a ﹣b )=﹣a+b ,故此选项正确;D .2(a+b )=2a+2b ,故此选项错误;故选C .考点:1.去括号与添括号;2.合并同类项.7.B 【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=;∴上述各式中计算结果为负数的有2个.故选B.8.D 【解析】试题分析:根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.解:A、x2﹣2(x﹣3)=x2﹣2x+6.故本选项错误;B、x2﹣2(x﹣3)=x2﹣2x+6.故本选项错误;C、x2﹣2(x﹣3)=x2﹣2x+6.故本选项错误;D、x2﹣2(x﹣3)=x2﹣2x+6.故本选项正确;故选D.考点:去括号与添括号.9.C【解析】试题解析:由于2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,∴多项式中最高次项x m的次数是5次,故m=5;又二次项2x2-nx2的系数2-n的值是0,则2-n=0,解得n=2.则-n m=-32.故选C.10.﹣6%.【解析】试题分析:明确“正”和“负”所表示的意义:节约用+号表示,则浪费一定用﹣表示,据此即可解决.解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为﹣6%.考点:正数和负数.11.>,<.【解析】试题分析:∵|12-|=12,|﹣5|=5,又∵12<5,∴12->﹣5;∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|<﹣(﹣2);∵﹣23=﹣8,﹣32=﹣9,∴﹣23>﹣32.考点:实数的大小的比较12.75-30【解析】【分析】要确定相乘最大的积所要符合的条件是同号且绝对值最大;最小的积的条件为异号且绝对值解:任取三个相乘最大的积所要符合的条件是负号有偶数个,且绝对值最大,即-5×(-3)×5=75;最小的积的条件是负号有奇数个,且绝对值最大,即-5×(-3)×(-2)=-30.要先根据有理数的比较方法来确定乘积最大的数和乘积最小的数,要掌握乘法法则和有理数的比较方法.【详解】请在此输入详解!13.±4.【解析】在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.所以绝对值等于4的数有2个,即+4和﹣4,所以a=±4.故答案为:±4.14.17【解析】试题分析:由题意得到m2+3n=6,原式变形后代入计算即可求出值.解:由题意得:m2+3n﹣1=5,即m2+3n=6,则原式=2(m2+3n)+5=12+5=17,故答案为1715.s=3n﹣3.【解析】【分析】观察不难发现,用每一条边上的棋子数乘以边数3,再减去三角形顶点处公共棋子,列式整理即可得解.【详解】解:n=2时,s=3×2﹣3=3,n=3时,s=3×3﹣3=6,n=4时,s=3×4﹣3=9,n=5时,s=3×5﹣3=12,依此类推,三角形的边上有n 枚棋子时,s=3n ﹣3.故答案为s=3n ﹣3.【点睛】考点:规律型:图形的变化类.16.(1)8(2)-17【解析】试题分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.试题解析:(1)原式=﹣3+4+7=8;(2)原式=﹣12﹣5=﹣17.17.4a+6【解析】试题分析:已知第一队种a 棵,根据题意分别表示出第二队、第三队所种数的棵树,再把它们加在一起即可.试题解析:第二队种树的棵数:2a+8;第三队种树的棵数:12(2a+8)-6;三个队共种棵树:a+2a+8+12(2a+8)-6=a+2a+8+a+4-6=4a+6(棵).答:三个队共种(4a+6)棵树.18.(1)8ab ﹣2a 2﹣3b 2;(2)10x 2+xy ﹣24【解析】试题分析:(1)直接合并同类项即可;(2)去括号后合并同类项即可.试题解析:(1)原式=4ab +4ab -b 2-2b 2-2a 2=22 32ab b a --;(2)原式=6x 2-3xy +4x 2+4xy -24=21024x xy +-.19.x2-5xy,-26.【解析】试题分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解:原式=3x2﹣6xy﹣2x2+xy=x2﹣5xy,当x=2,y=3时,原式=4﹣30=﹣26.考点:整式的加减—化简求值.20.(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.21.抽样检测的总质量是273(克)【解析】试题分析:先求出(﹣5)+(﹣2)+0+1+3+6的值,再求出总质量即可.解:∵(﹣5)+(﹣2)+0+1+3+6=3,∴抽样检测的总质量是45×6+3=273(克).考点:正数和负数.22.-3.【解析】【分析】根据相反数、倒数的定义求得a+b=0,cd=1,再由绝对值的性质求得x=-2,最后代入代数式求值即可.【详解】∵a 、b 互为相反数,∴a+b=0;∵c 、d 互为倒数,∴cd=1;∵x 的绝对值为2,且x <0,∴x=-2;∴()a b x a b cd cd+-+++-=-2-(0+1)+0=-2-1=-3.23.(1)c <a <b ;(2)2b ﹣2a .【解析】试题分析:(1)根据数轴上右边的点表示的数比左边的点表示的数大直接进行判断;(2)结合数轴,先判断a ﹣b ,b ﹣c ,c ﹣a 的正负,再计算绝对值进行化简.解:(1)由数轴得:c <a <b ;(2)|a ﹣b|+|b ﹣c|﹣|c ﹣a|=b ﹣a+b ﹣c ﹣a+c=2b ﹣2a .考点:数轴;绝对值;有理数大小比较;合并同类项.24.我同意小明的观点,理由见解析.【解析】试题分析:找出同类项再合并,由结果即可知道谁对谁错.试题解析:7a 3﹣6a 3b+3a 3+6a 3b ﹣3a 2b ﹣10a 3+3a 2b+1,=(7+3﹣10)a 3+(﹣6+6)a 3b+(﹣3+3)a 2b+1,=1,∴原式的值与a 、b 的值无关,∴我同意小明的观点.25.(1)225,5,6(2)猜想:14×n 2×(n+1)2(3)669375【解析】(1)(1)13+23+33+43+53=___225_____=14×(5)2×(6)2(2)14×n 2×(n+1)2(3)解:原式=13+23+33+……+393+403-(13+23+33+…+103)………………10分=14×402×412-14×102×112………………12分=672400-3025=669375认真分析,发现规律,按照规律求解。
上海市期中考试七年级数学试卷(含答案)

2020学年第一学期七年级期中考试数学试卷(满分100分 时间90分钟) 2020.9考生注意:本卷共有29题,请将所有答案写在相应答题区域内。
一、 填空题:(每题2分,共28分) 1. 用代数式表示“b a 、两数差的平方”: . 2. 当1,2x y ==-时,代数式2x y +的值是 .3. 单项式233x y -的系数是 ,次数是 .4. 把多项式22334325x y xy x y y -+- 按字母x 的降幂排列是 .5. 计算:20182019133⎛⎫-⨯ ⎪⎝⎭= .6. 计算:()()13x x ++ = .7. 计算:()23x y - = . 8. 因式分解:22xy x y -=________________. 9. 因式分解:2425x - = . 10. 因式分解:22x x --= .11. 若m y x 232-与42y x n 是同类项,则n m -= . 12. 若5,2=-=n m a a ,则n m a += .13. 若()()8222-=---y x x x ,则代数式xy y x -+222= __________. 14. 如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n 个图形中需用黑色瓷砖 块(用含n 的代数式表示).学校 班级 姓名 座位号……………………………………………装……………………………………订…………………………线………………………………(第14题图)二、选择题:(每题3分,共12分)15. 代数式 0,a b -,32y ,32y x +,)(222y x -,3x y a+,m ,π中,多项式有……………………………………………………………………………( )A 、1个B 、2个C 、3个D 、4个16. 下列计算中,正确的是………………………………………………( )A 、()a a a a +-=+-32313B 、()222b a b a +=+C 、()222242b ab a b a +-=- D 、()()2493232a a a -=---17.在下列各式中,从左到右的变形是因式分解的是………………………( ) A 、2323412ab ab b a ⋅= B 、223(2)3x x x x +-=+- C 、 2(3)(3)9x x x -+=- D 、()()832452+-=-+x x x x18. 多项式223x x -+与22x x a +-的积不含x 项,则a 的值为 ( ) A 、3 B 、-3 C 、4 D 、-4三、简答题:(每题5分,共40分)19. 计算:()23632)(x x x x x +--⋅⋅ 20. 计算:222)6()214131(xy x y xy -⋅-+21.计算:()()()()222123+----x x x x 22.计算:(-23)(23)a b c a b c +--23.若一个多项式加上xy y x 2322+-的和是22232x xy y -+,求这个多项式.24.因式分解:ab b a b a 3632233+- 25. 因式分解:4224910y y x x +-26.利用乘法公式计算:()()2020201820192-⨯+-四、解答题:(6分+6分+8分,共20分) 27. 先化简,再求值:()()()()2()222x y x y x y x y x y +---+--,其中1-=x ,1.2y =28.已知7张如图1所示的长为a ,宽为b ()b a >的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S 。
上海市嘉定区2022-2023学年七年级上学期数学期中考试卷(解析版)

2022学年第一学期七年级数学阶段性练习(考试时间90分钟,满分100分)一、选择题:(每题3分,共12分)1.在代数式1121,,2,0,12,23x x xy y x---中,单项式有()个.A.1B.2C.3D.4【答案】C【解析】【分析】根据单项式的定义即可进行解答.【详解】解:1,2,02x xy -是单项式,共3个,故选:C .【点睛】本题主要考查了单项式的定义,解题的关键是熟练掌握数字与字母的乘积是单项式,单独的一个数或字母也是单项式.2.下列运算,正确的是()A.2325a a a += B.5210a a a ⋅=C.222(2)4a b a b +=+ D.22(2)(2)4a b a b a b +-=-【答案】D【解析】【分析】根据合并同类项法则,同底数幂的乘法法则,乘法公式逐一判断各个选项即可.【详解】解:A .325a a a +=,故原选项错误;B .527a a a ⋅=,故原选项错误;C .222(2)44a b a ab b +=++,故原选项错误;D .22(2)(2)4a b a b a b +-=-,,故原选项正确,故选D .【点睛】本题主要考查合并同类项法则,同底数幂的乘法法则,乘法公式,掌握完全平方公式和平方差公式是关键.3.下列等式中,从左到右的变形属于因式分解的是()A.()()24313x x x x -+=-- B.()22234129x x x +=++C.()()2236x x x x -+=+-D.()23535x x x x -+=-+【答案】A【解析】【分析】根据因式分解的定义逐项判断即可.【详解】A 、右边为()()13x x --是两个整式的积的形式,符合题意;B 、C 选项是展开,与因式分解相反;D 选项还没有完全变成积的形式.故选A.【点睛】本题主要考查因式分解,熟练掌握因式分解的定义是关键.4.下列多项式中是完全平方式的为()A.24164x x -+B.21394525x x -+ C.244x x +- D.291216x x -+【答案】B【解析】【分析】先对各项进行配方,再判断哪项为完全平方即可.【详解】A 、原式配方得:24(2)12x --,故本选项不符合题意;B 、原式配方得:21645x ⎛⎫- ⎪⎝⎭,故本选项符合题意;C 、原式配方得:2(2)8x ---,故本选项不符合题意;D 、原式配方得:2(32)12x -+,故本选项不符合题意;故选B.【点睛】本题主要考查完全平方公式,熟练掌握公式是关键.二、填空题:(每题2分,共28分)5.用代数式表示“a 与b 的和的平方”为________.【答案】2()a b +【解析】【分析】根据题意,先列出x 与y 的和,再平方即可列出式子.【详解】解:根据题意,可列式2()a b +,故答案为:2()a b +.【点睛】此题主要考查根据题意列代数式,需注意先算加法时要带上括号提高优先级.6.当13,4a b ==时,代数式24a ab -+的值为______________【答案】6-【解析】【分析】把13,4a b ==代入式子直接求解即可.【详解】解:∵13,4a b ==,∴24a ab -+=213439364-+⨯⨯=-+=-,故答案为:6-.【点睛】本题主要考查代数式求值,熟练掌握有理数的混合运算法则是关键.7.单项式223x y -的次数是__________.【答案】3【解析】【分析】根据单项式次数的定义求解,单项式中所有字母的指数和叫做这个单项式的次数.【详解】解:单项式223x y -的次数是2+1=3,故答案为:3.【点睛】本题考查了单项式次数的定义,掌握基本概念是解题的关键.8.已知342n m x y +与923n x y -是同类项,那么m n +=________.【答案】5【解析】【分析】根据同类项的定义,列出关于m ,n 的方程组,即可求解.【详解】解:∵342n m x y +与923n x y -是同类项,∴3942n m n =⎧⎨+=⎩,解得:32n m =⎧⎨=⎩,∴m n +=5,故答案为:5.【点睛】本题主要考查同类项的定义,解二元一次方程组,掌握同类项:字母相同,相同的字母的指数也相同是关键.9.计算:234ab b -⋅=__________.【答案】312ab -##312b a-【解析】【分析】根据单项式乘单项式法则,即可求解.【详解】解:234ab b -⋅=312ab -,故答案为:312ab -.【点睛】本题主要考查单项式乘单项式法则,关键是掌握单项式乘单项式,系数相乘作为结果的系数,然后同底数幂相乘.10.计算(x+3)(x-5)=______________.【答案】x 2-2x-15【解析】【分析】根据多项式乘多项式的法则计算即可求解.【详解】解:原式=x 2-5x+3x-15=x 2-2x-15.故答案为x 2-2x-15.一个多项式的每一项,再把所得的积相加.11.计算:()()3211a a +⋅--=_________(结果用幂的形式表示).【答案】()51a +【解析】【分析】根据互为相反数的两个数的平方相等,可将()21--a 改写为()21+a ,再利用同底数幂的乘法法则计算.【详解】解:()()()()()323251111=1+⋅--=+++a a a a a 【点睛】本题考查同底数幂的乘法,底数不变,指数相加.12.把3322593xy x y x y -+-+按字母x 的降幂排列___________.【答案】3322593xy x y x y --+【解析】【分析】按x 的指数从大到小的顺序排列即可.【详解】解:多项式3322593xy x y x y -+-+按字母x 的降幂排列,结果是3322593xy x y x y --+,故答案为:3322593xy x y x y --+.【点睛】本题考查了多项式,关键是注意:把一个多项式按一个字母的指数从大到小的顺序排列,叫作把这个多项式按这个字母的降幂排列.13.多项式231+-x x 减去多项式22x x -+的差是________________.【答案】2321x x +-【解析】【分析】先根据题意列出代数式,再进行整式的加减运算即可.【详解】由题意得:2222231)2211233x x x x x x x x x x +--=+-=++--+-故填:2321x x +-.【点睛】本题主要考查列代数式和整式的加减运算,熟练掌握去括号和合并同类项的法则是关键.14.多项式3222236312x y x y x y -+的公因式是___________.【答案】223x y 【解析】【分析】根据找公因式的方法得出答案即可.【详解】解:多项式3222236312x y x y x y -+的公因式是223x y ,故答案为:223x y .【点睛】本题考查了公因式.确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.15.分解因式:32393x x x --=______________.【答案】23(31)x x x --【解析】【分析】提取公因式3x ,即可分解因式.【详解】解:32393x x x --=23(31)x x x --,故答案为:23(31)x x x --.【点睛】本题主要考查分解因式,掌握提取公因式法分解因式是关键.16.分解因式:219x -=______________.【答案】(13)(13)x x +-【解析】【分析】根据平方差公式直接分解因式即可.【详解】解:219x -=(13)(13)x x +-,故答案为:(13)(13)x x +-.【点睛】本题主要考查分解因式,掌握平方差公式是关键.17.若216x mx ++是完全平方式,则m =______.【答案】8±【解析】【分析】利用完全平方公式的结构特征判断即可得到m 的值.【详解】解:216x mx ++ 是完全平方式,8m ∴=±.故答案为:8±.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.由多项式与多项式相乘的法则可知:即:(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b 3=a 3+b 3即:(a +b )(a 2﹣ab +b 2)=a 3+b 3①,我们把等式①叫做多项式乘法的立方和公式.同理,(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3②,我们把等式②叫做多项式乘法的立方差公式.请利用公式分解因式:﹣64x 3+y 3=___.【答案】()()224416y x y xy x-++【解析】【分析】根据题意根据立方差公式因式分解即可.【详解】﹣64x 3+y 3()334y x =-()()224416y x y xy x =-++故答案为:()()224416y x y xy x -++【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.三、简答题:(每题5分,共40分)19.计算:(2)(2)6(3)x x x x -+--【答案】25184x x -+-【解析】【分析】根据平方差公式和单项式乘多项式法则去括号,再合并同类项即可求解.【详解】解:原式=224618x x x--+=25184x x -+-20.计算:212(3)2x x x ⋅-+【答案】3226x x x-+【解析】【分析】根据单项式乘多项式法则即可求解.【详解】解:212(3)2x x x ⋅-+=3226x x x -+.【点睛】本题主要考查单项式乘多项式法则,掌握单项式乘以多项式的每一项,是关键.21.计算:333224(2)(2)()x x x x x -⋅-+-⋅【答案】616x 【解析】【分析】根据积的乘方()m m m ab a b =、幂的乘方()m n mn a a =与同底数幂的乘法运算m n m n a a a +⋅=,再合并同类项求解.【详解】解:原式3366(2)(8)x x x x =-⋅-+-66616x x x =+-616x =【点睛】本题考查了积的乘方、幂的乘方、同底数幂乘法、合并同类项,解题关键是熟练掌握积的乘方公式及同底数幂的乘法.22.计算:(2a-b+3c)(2a+b-3c)【答案】2224+6bc-9a b c -【解析】【分析】把-3b c 看成一个整体,原式就可以看成是-3b c 2a和的平方差,就可以利用平方差公式计算;【详解】解:原式=[23[)2(3)]]a b c a b c --+-(=2223)a b c --()(=22246bc+9a b c --()=2224+6bc-9a b c -【点睛】本题主要考查乘法公式里的平方差公式,找出式子里的规律,把原式平方差的形式是解题的关键.23.利用乘法公式计算:220212020(2022)+⨯-【答案】1【解析】【分析】原式变形后,利用平方差公式计算即可求出值.【详解】解:220212020(2022)+⨯-22021(20211)(20211)=--+222021(20211)=--22202120211=-+1=.【点睛】此题考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.24.因式分解:22318122a b ab b -+【答案】22(3)b a b -【解析】【分析】先提公因式2b ,再利用完全平方公式继续分解即可【详解】解:22318122a b ab b -+222(96)b a ab b =-+22(3)b a b =-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.25.分解因式:516a a-【答案】2(41)(21)(21)a a a a +-+【解析】【分析】先提取公因式,再运用平方差公式继续分解即可.【详解】解:516a a-4(161)a a =-22(41)(41)a a a =+-2(41)(21)(21)a a a a =+-+.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.26.因式分解:26()2()()x y x y x y +-+-【答案】4(x +y )(x +2y ).【解析】【分析】首先提公因式2(x +y ),再整理括号里面的3(x +y )﹣(x ﹣y ),再提公因式2即可.【详解】原式=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).【点睛】本题考查了提公因式法分解因式,关键是公因式提取要彻底.四、解答题:(27、28题每题6分,29题8分,共20分)27.先化简,再求值:()()()()22325,a b a b a b a ------其中1,2a b =-=【答案】-3ab ;6.【解析】【分析】先根据多项式乘以多项式法则及完全平方公式展开,再合并同类项,得出最简结果,然后代入求值即可.【详解】()()()()22325a b a b a b a ------=6a 2-3ab-2ab+b 2-a 2+2ab-b 2-5a 2=-3ab.当a=-1,b=2时,原式=-3×(-1)×2=6.【点睛】本题考查整式的混合运算,多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加;熟练掌握完全平方公式及多项式乘以多项式的运算法则是解题关键.28.已知()2a b 17+=,()2a b 13-=,求下列各式的值:(1)22a b +(2)ab 【答案】(1)22a b 15+=;(2)1ab =【解析】【分析】(1)根据完全平方公式的变形即可求解;(2)根据完全平方公式的变形即可求解.【详解】(1)∵()()22a b a b ++-()222a b =+1713=+30=∴22a b 15+=(2)∵()()22a b a b +--4ab=1713=-4=∴1ab =.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的特点.29.有7张如图1规格相同的小长方形纸片,长为a ,宽为b (a b >),按如图2、3的方式不重叠无缝隙地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.(1)如图2,点E 、Q 、P 在同一直线上,点F 、Q 、G 在同一直线上,那么矩形ABCD 的面积为.(用含a 、b 的代数式表示)(2)如图3,点F 、H 、Q 、G 在同一直线上,设右下角与左上角的阴影部分的面积的差为S ,PC x =.①用a 、b 、x 的代数式直接表示AE②当BC 的长度变化时,按照同样的放置方式,如果S 的值始终保持不变,那么a 、b 必须满足什么条件?【答案】(1)22712a ab b ++或()()43a b a b ++;(2)①4AE x a b =-+;②30a b -=【解析】【分析】(1)根据43AD a b AB a b =+=+,,即可求解;(2)①根据AE CP BP DE =+-即可求解;②先求出()()2433312x a b a b x ab a b b S x -+---==+,进而即可得到结论.【小问1详解】解:由题意得:43AD a b AB a b =+=+,,矩形ABCD 的面积=(4)(3)a b a b ++=22712a ab b ++,故答案为:22712a ab b ++或()()43a b a b ++;【小问2详解】解:①4AE CP BP DE x a b =+-=-+;②∵右下角与左上角的阴影部分的面积的差为S ,∴()()2433312x a b a b x ab a b b S x -+---==+,∵当BC 的长度变化时,按照同样的放置方式,如果S 的值始终保持不变,∴当x 的值变化时,按照同样的放置方式,如果S 的值始终保持不变,∴30a b -=.【点睛】本题主要考查整式的混合运算的应用,根据题意列出整式,熟练掌握整式的混合运算法则是关键.第13页/共13页。
七年级数学上学期期中试卷3新版新人教版

期中试卷(3)一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.1.(3分)﹣2的相反数是()A.﹣ B.﹣2 C.D.22.(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A.B.C.D.3.(3分)在有理数﹣3,0,23,﹣85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个4.(3分)在数轴上,把表示﹣4的点移动2个单位长度,所得到的对应点表示的数是()A.﹣1 B.﹣6 C.﹣2或﹣6 D.无法确定5.(3分)已知|a+1|与|b﹣4|互为相反数,则a b的值是()A.﹣1 B.1 C.﹣4 D.46.(3分)a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a﹣b>0 D.b﹣c<07.(3分)每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米 C.15×107千米D.1.5×107千米8.(3分)绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.109.(3分)a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)10.(3分)2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为﹣4℃,峰顶的温度为(结果保留整数)()A.﹣26℃B.﹣22℃C.﹣18℃D.22℃二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中的横线上.11.(3分)如果节约16度电记作+16度,那么浪费5度电记作度.12.(3分)若a﹣5和﹣7互为相反数,则 a的值.13.(3分)在数轴上,﹣4与﹣6之间的距离是个单位长度.14.(3分)倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.15.(3分)计算|3.14﹣π|﹣π的结果是.16.(3分)观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:×+ =502.三、解答题(共72分)17.(24分)计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)(﹣83)+(+26)+(﹣17)+(+74).(3)(﹣)×(﹣30)(4)(﹣0.1)3﹣×(﹣)2(5)﹣23﹣3×(﹣2)3﹣(﹣1)4(6)﹣32+16÷(﹣2)﹣(﹣1)2015.18.(6分)河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,最后水位上升了还是下降了?多少厘米?19.(8分)把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣5 ⑦+108 ⑧﹣6.5 ⑨﹣6.(1)正整数集{ …}(2)正分数集{ …}(3)负分数集{ …}(4)有理数集{ …}.20.(7分)画一条数轴,并在数轴上表示:3.5和它的相反数,﹣4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.21.(6分)规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=(要求写出计算过程)22.(6分)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求的值.23.(6分)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1),另有四个有理数3,5,﹣7,﹣4,可通过运算式(2)使其结果等于24.24.(9分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.1.(3分)﹣2的相反数是()A.﹣ B.﹣2 C.D.2【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答】解:﹣2的相反数是2,故选:D.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A.B.C.D.【考点】正数和负数.【专题】计算题;实数.【分析】求出各足球质量的绝对值,取绝对值最小的即可.【解答】解:根据题意得:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,则最接近标准的是﹣0.8g,故选C【点评】此题考查了正数与负数,熟练掌握绝对值的代数意义是解本题的关键.3.(3分)在有理数﹣3,0,23,﹣85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个【考点】有理数.【分析】根据大于或等于零的数是非负数,可得答案.【解答】解:0,23,3.7是非负数,故选:B.【点评】本题考查了非负数,大于或等于零的数是非负数.4.(3分)在数轴上,把表示﹣4的点移动2个单位长度,所得到的对应点表示的数是()A.﹣1 B.﹣6 C.﹣2或﹣6 D.无法确定【考点】数轴.【专题】分类讨论.【分析】讨论:把表示﹣4的点向左移动2个单位长度或向右移动2个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.【解答】解:∵表示﹣4的点移动2个单位长度,∴所得到的对应点表示为﹣6或﹣2.故选C.【点评】本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.5.(3分)已知|a+1|与|b﹣4|互为相反数,则a b的值是()A.﹣1 B.1 C.﹣4 D.4【考点】非负数的性质:绝对值.【分析】根据非负数的性质可求出a、b的值,再将它们代入代数式中求解即可.【解答】解:根据题意得:,解得:,则原式=1.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.6.(3分)a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a﹣b>0 D.b﹣c<0【考点】数轴.【分析】先根据各点在数轴上的位置判断出a,b,c的符号,进而可得出结论.【解答】解:∵由图可知,a<b<0<c,|a|>c,∴a+b<0,故A正确;a+c<0,故B正确;a﹣b<0,故C错误;b﹣c<0,故D正确.故选C.【点评】本题考查的是数轴,熟知数轴上的特点是解答此题的关键.7.(3分)每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米 C.15×107千米D.1.5×107千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9﹣1=8.【解答】解:150 000 000=1.5×108.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8.(3分)绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10【考点】有理数的加法;绝对值.【分析】首先找出绝对值大于1小于4的整数,然后根据互为相反数的两数之和为0解答即可.【解答】解:绝对值大于1小于4的整数有:±2;±3.﹣2+2+3+(3)=0.故选:A.【点评】本题主要考查的是绝对值的定义、有理数的加法,找出所有符合条件的数是解题的关键.9.(3分)a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)【考点】相反数.【分析】依据相反数的定义以及有理数的乘方法则进行判断即可.【解答】解:A、a,b互为相反数,则a2=b2,故A错误;B、a,b互为相反数,则a3=﹣b3,故a3与b5不是互为相反数,故B错误;C\、a,b互为相反数,则a2n=b2n,故C错误;D、a,b互为相反数,由于2n+1是奇数,则a2n+1与b2n+1互为相反数,故D正确;故选D.【点评】本题考查了相反数和乘方的意义,明确只有符号不同的两个数叫做互为相反数,还要熟练掌握互为相反数的两个数的偶数次方相等,奇次方还是互为相反数.10.(3分)2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为﹣4℃,峰顶的温度为(结果保留整数)()A.﹣26℃B.﹣22℃C.﹣18℃D.22℃【考点】有理数的混合运算.【专题】应用题.【分析】由于“海拔每上升100米,气温就下降0.6℃”,因此,应先求得峰顶与珠峰大本营的高度差,进而求得两地的温度差,最后依据珠峰大本营的温度计算出峰顶的温度.【解答】解:由题意知:峰顶的温度=﹣4﹣(8844.43﹣5200)÷100×0.6≈﹣25.87≈﹣26℃.故选A.【点评】本题考查有理数运算在实际生活中的应用.利用所学知识解答实际问题是我们应具备的能力,这也是今后中考的命题重点.认真审题,准确地列出式子是解题的关键.本题的阅读量较大,应仔细阅读,弄清楚题意.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中的横线上.11.(3分)如果节约16度电记作+16度,那么浪费5度电记作﹣5 度.【考点】正数和负数.【分析】节约用+号表示,则浪费一定用﹣表示,据此即可解决.【解答】解:节约16度电记作+16度,那么浪费5度电记作:﹣5度.故答案是:﹣5.【点评】此题考查了正负数的表示,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.(3分)若a﹣5和﹣7互为相反数,则 a的值12 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:由题意,得a﹣5+(﹣7)=0,解得a=12,故答案为:12.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.13.(3分)在数轴上,﹣4与﹣6之间的距离是 2 个单位长度.【考点】数轴.【专题】计算题.【分析】数轴上两点间的距离等于这两点表示的两个数的差的绝对值,即较大的数减去较小的数.【解答】解:﹣4与﹣6之间的距离是|﹣4﹣(﹣6)|=2.【点评】考查了数轴上两点间的距离的求法.14.(3分)倒数是它本身的数是±1 ;相反数是它本身的数是0 ;绝对值是它本身的数是非负数.【考点】倒数;相反数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得倒数等于它本身的数,根据只有符号不同的两个数互为相反数,可得答案;根据非负数的绝对值是它本身,可得答案.【解答】解:倒数是它本身的数是±1;相反数是它本身的数是 0;绝对值是它本身的数是非负数,故答案为:1或﹣1,0,非负数.【点评】本题考查了倒数,倒数等于它本身的数是±1.15.(3分)计算|3.14﹣π|﹣π的结果是﹣3.14 .【考点】绝对值.【分析】利用绝对值的意义去绝对值符号,然后计算即可.【解答】解:|3.14﹣π|﹣π=π﹣3.14﹣π=﹣3.14.故答案为:﹣3.14.【点评】本题考查了绝对值的意义;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.16.(3分)观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:48 ×52 + 4 =502.【考点】规律型:数字的变化类.【分析】根据数字变化规律得出第n个算式为;n(n+4)+4=(n+2)2,进而得出答案.【解答】解:∵1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,∴第n个算式为;n(n+4)+4=(n+2)2,∴48×52+4=502.故答案为:48×52+4.【点评】此题主要考查了数字变化规律,根据数字变化得出数字规律是解题关键.三、解答题(共72分)17.(24分)计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)(﹣83)+(+26)+(﹣17)+(+74).(3)(﹣)×(﹣30)(4)(﹣0.1)3﹣×(﹣)2(5)﹣23﹣3×(﹣2)3﹣(﹣1)4(6)﹣32+16÷(﹣2)﹣(﹣1)2015.【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据有理数的加法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据幂的乘方、有理数的乘法和减法可以解答本题;(5)根据幂的乘方、有理数的乘法和减法可以解答本题;(6)根据幂的乘方、有理数的除法和减法可以解答本题.【解答】解:(1)(﹣3)×(﹣9)﹣8×(﹣5)=27+40=67;(2)(﹣83)+(+26)+(﹣17)+(+74)=(﹣83)+26+(﹣17)+74=0.(3)(﹣)×(﹣30)==(﹣10)+25=15;(4)(﹣0.1)3﹣×(﹣)2=(﹣0.001)﹣=(﹣0.001)﹣0.09=﹣0.091;(5)﹣23﹣3×(﹣2)3﹣(﹣1)4=﹣8﹣3×(﹣8)﹣1=﹣8+24﹣1=15;(6)﹣32+16÷(﹣2)﹣(﹣1)2015=﹣9+(﹣8)﹣(﹣1)=﹣9+(﹣8)+1=﹣16.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.18.(6分)河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,最后水位上升了还是下降了?多少厘米?【考点】有理数的加减混合运算.【分析】把上升的水位记作正数,下降的水位记作负数,运用加法计算即可.【解答】解:设上升的水位为正数,下降的水位为负数,根据题意,得8+(﹣7)+(﹣9)+3=11+(﹣16)=﹣5cm.故最后水位下降了5厘米.【点评】本题考查了有理数的加法和正负数表示相反意义的量,是一个基础的题目.19.(8分)把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣5 ⑦+108 ⑧﹣6.5 ⑨﹣6.(1)正整数集{ ①⑦…}(2)正分数集{ ③⑤…}(3)负分数集{ ②⑧⑨…}(4)有理数集{ ①②③④⑤⑥⑦⑧⑨…}.【考点】有理数.【分析】(1)根据大于0的整数是正整数,可得正整数集合;(2)根据大于0的分数是正分数,即可得出结果;(3)根据小于0的分数是负分数,即可得出结果;(4)由有理数的定义即可得出结果.【解答】解:①1 ②﹣③+3.2 ④0 ⑤⑥﹣5 ⑦+108 ⑧﹣6.5 ⑨﹣6.(1)正整数集{①⑦…};故答案为:①⑦;(2)正分数集{③⑤…};故答案为:③⑤;(3)负分数集{②⑧⑨…};故答案为:②⑧⑨;(4)有理数集{①②③④⑤⑥⑦⑧⑨…};故答案为:①②③④⑤⑥⑦⑧⑨.【点评】本题考察了有理数,根据有理数的意义解题是解题的关键.20.(7分)画一条数轴,并在数轴上表示:3.5和它的相反数,﹣4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.【考点】有理数大小比较;数轴.【分析】在数轴上表示出各数,再从左到右用“<”把它们连接起来即可.【解答】解:3.5的相反数是﹣3.5,﹣4的倒数是﹣,绝对值等于3的数是±3,最大的负整数是﹣1,(﹣1)2=1,在数轴上表示为:故﹣4<﹣3.5<﹣3<﹣1<﹣<1<3<3.5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.21.(6分)规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+= 0(要求写出计算过程)【考点】有理数的加减混合运算.【专题】新定义.【分析】根据题中的新定义化简,计算即可得到结果.【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0【点评】此题考查了有理数的加减混合运算,弄清题中的新定义是解本题的关键.22.(6分)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求的值.【考点】代数式求值.【分析】根据题意,找出其中的等量关系a+b=0 cd=1|m|=2,然后根据这些等式来解答即可.【解答】解:根据题意,知a+b=0 ①cd=1 ②|m|=2,即m=±2 ③把①②代入原式,得原式=0+4m﹣3×1=4m﹣3 ④(1)当m=2时,原式=2×4﹣3=5;(2)当m=﹣2时,原式=﹣2×4﹣3=﹣11.所以,原式的值是5或﹣11.【点评】主要考查倒数、相反数和绝对值的概念及性质.注意分类讨论思想的应用.23.(6分)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1)(10﹣6+4)×3=24;3×6﹣4+10=24;4+6÷3×10=24 ,另有四个有理数3,5,﹣7,﹣4,可通过运算式(2)3×[5+(﹣4)﹣(﹣7)]=24 使其结果等于24.【考点】有理数的混合运算.【专题】计算题;实数.【分析】利用“二十四点”游戏规则计算即可.【解答】解:(1)根据“二十四点”游戏规则得:(10﹣6+4)×3=24;3×6﹣4+10=24;4+6÷3×10=24;(2)根据“二十四点”游戏规则得:3×[5+(﹣4)﹣(﹣7)]=24.故答案为:(1)(10﹣6+4)×3=24;3×6﹣4+10=24;4+6÷3×10=24;(2)3×[5+(﹣4)﹣(﹣7)]=24【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(9分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0答:守门员最后回到了球门线的位置.(2)由观察可知:5﹣3+10=12米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54米.答:守门员全部练习结束后,他共跑了54米.【点评】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.。
沪科版七年级上册数学期中试题及答案(人教版通用)

七年级上册数学期中考试试题一、单选题1.下列各数中,比-3小的数是()A.-2 B.-1 C.0 D.-42.下列关于单项式235xy-的说法中,正确的是()A.系数是25-,次数是2 B.系数是35,次数是2C.系数是一3,次数是3 D.系数是35,次数是33.下列运算正确的是().A.2a2-3a2=-a2B.4m-m=3C.a2b-ab2=0 D.x-(y-x)=-y4.下列说法正确的是().A.两个负数的差,一定是一个负数B.0减去一个数,结果仍是这个数C.两个正数的差,一定是一个正数D.a+2的值一定大于a的值5.如果-2a m b2与12a5b n+1的和仍然是单项式,那么m+n的值为().A.5 B.6 C.7 D.86.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2B.−3C.−2D.−87.下列说法错误的是( )A.近似数16.8与16.80表示的意义不同B.近似数0.2900精确到万分位C.3.850×104是精确到十位的近似数D.49 564精确到万位是5.0×1048.下列各式计算正确的是()A.-7-2×5=-45 B.3÷54×45=3C.-22-(-3)3=31 D.2×(-5)-5÷1()2-=09.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是()A.200﹣60x B.140﹣15xC.200﹣15x D.140﹣60x10.观察下面一组数:-1,2,-3,4,-5,6,-7,….,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是()A.-90 B.90 C.-91 D.91二、填空题11.据中国旅游研究院数据,仅2018年10月1日当天全国就接待了国内游客1.22亿人次.用科学记数法表示1.22亿为___________________________.12.如果|a|=-a,那么a一定是_____.13.若|a+3|+(b-2)2=0,则-a b=_____________________.14.a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=﹣1,﹣1的差倒数是11(1)--=12.已知a1=﹣13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2018=_____.三、解答题15.请你先画出数轴,并用数轴上的点表示下列各数,然后用“<”把各数从小到大连起来.3,-12,0,-|-3|,1 3 216.计算:(1)-3.25-1()9-+(-6.75)+179;(2)-12018-6÷(-2)×12.17.化简:(1)2a-5b+3a+b;(2)3(2a2b-ab2)-4(ab2-3a2b).18.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.19.为疏导国庆假期交通,一辆交通巡逻车在南北公路上巡视.某天早上从A地出发,中午到达B地,行驶记录如下(规定向北为正方向,单位:千米):15+,8-,6+,12+,8-,5+,10-.请你解答下列问题:(1)B地在A地的什么方向?与A地相距多远?(2)巡逻车在巡逻中,离开A地最远多少千米?(3)若巡逻车行驶每千米耗油a升,这半天共耗油多少升?20.已知:A=2a2+3ab-2a-1,B=-a2+ab-1(1)求3A+6B的值;(2)若3A+6B的值与a的取值无关,求b的值.21.请观察下列定义新运算的各式:1⊙3=1×4+3=7;3⊙(﹣1)=3×4﹣1=11;5⊙4=5×4+4=24;4⊙(﹣3)=4×4﹣3=13.(1)请你归纳:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a﹣b)⊙(2a+b),其中a是最大的负整数,b是绝对值最小的整数.22.某文具店中,书包每只定价20元,水性笔每支定价5元.现推出两种优惠方法:①按定价购1只书包,赠送1支水性笔;②购书包、水性笔一律按9折优惠.班委会发奖品需买4只书包,水性笔x支(不少于4支).(1)若班委会按方案①购买,需付款元:(用含x的代数式表示并化简)若班委会按方案②购买,需付款元.(用含x的代数式表示并化简)(2)若x=10,则班委会按方案①购买,需付款元;若班委会按方案②购买,需付款元.(3)现班委会需买这种书包4只和水性笔12支,请你设计一种最合算...的购买方案.23.如图所示,已知一个面积为S的等边三角形,现将其各边n等分(n为大于2的整数),并以相邻等分点.....为顶点向外作小等边三角形.(1)当n=5时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和...为;(用含S的式子表示)(2)当n=k时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和...为;(用含k和S的式子表示)参考答案1.D【解析】【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【详解】∵-4<-3<-2<0,∴比-3小的数是-4,故选D .【点睛】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.2.D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy 的系数是35,次数是3. 故选D.【点睛】 本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.A【解析】根据整式加减法的运算方法,逐一判断即可.【详解】解:∵2a2-3a2=-a2,∴选项A正确;∵4m-m=3m,∴选项B不正确;∵a2b-ab2≠0,∴选项C不正确;∵x-(y-x)=2x-y,∴选项D不正确.故选A.【点睛】此题主要考查了整式的加减法,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.4.D【解析】【分析】根据有理数的加减运算法则进行逐项分析即可,通过进行举反例,运用排除法即可找到正确的选项.【详解】解:A. 例如,若(-1)-(-5)=-1+5=4>0,故本选项错误;B. 例如,0-9=-9,结果为这个数的相反数,故本选项错误;C. 例如,5-9=-4<0,故本选项错误;D. a+2的值一定大于a的值,此选项正确.故选D.【点睛】本题主要考查有理数的加减法法则和相关的性质,关键在于认真逐项分析,正确的列举出反例进行说明.5.B【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.6.B【解析】由题意可知36+12m=0,解得m=-3,故选B.7.D【解析】分析:有效数字,即从左边第一个不是的数字起,所有的数字.近似数最后的数字所在的数位在哪一位,即精确到哪一位.本题可对选项一一进行分析判断.详解:A. 16.8表示精确到了十分位,16.80表示精确到了百分位,正确;B. 近似数0.2900精确到万分位, 正确;C. 3.850×104是精确到十位的近似数,正确;D. 49564精确到万位是5×104,错误.故选D.点睛:本题考查了近似数和有效数字,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.近视数的最后一个数字实际在什么位上,即精确到了什么位;有效数字是从左边第一个不是0的数字起,所有的数字.取近似数的时候,要求精确到某一位,应当对下一位的数字进行四舍五入.8.D【解析】计算出各个选项中的式子的正确结果,然后对照即可得到哪个选项是正确的.【详解】解:∵-7-2×5=-7-10=-17,故选项A错误;∵3÷54×45=3×45×45=4825,故选项B错误;∵-22-(-3)3=-4+27=23,故选项C错误;∵2×(-5)-5÷1 2⎛⎫-⎪⎝⎭=-10+10=0,故选项D正确.故选D.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.9.C【解析】∵学校租用45座的客车x辆,则余下20人无座位,∴师生的总人数为45x+20,又∵租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:45x+20﹣60(x﹣3)=45x+20﹣60x+180=200﹣15x.故选C.10.B【解析】试题分析:观察图形可知:奇数为负,偶数为正,第一行有1个数,第二行有3个数,第三行有5个数,第四行有7个数,...所以第九行有17个数,因为1+3+5+...+17=81,所以第九行最后一个数的是-81,因此第10行中从左边数第9个数是90,故选B.考点:数字规律.11.1.22×108【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1.47亿用科学记数法表示为1.22×108,故答案为1.22×108.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.非正数【解析】试题解析:∵|a|≥0∴-a≥0,即a≤0∴如果a a=-,那么a一定是非正数.13.-9【解析】【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,-a b=-(-3)2=-9.故答案为-9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.还考查了有理数的乘方.14.3 4【解析】【分析】先依次计算出a2、a3、a4、a5,即可发现每3个数为一个循环,然后用2018除以3,即可得出答案.【详解】解:根据题意得:a1=﹣13,a2=34,a3=4;a4=﹣13;则三个数是一个周期,则2018÷3=672…2,故a2018=a2=34.故答案为:3 4【点睛】此题主要考查了数字的变化类,考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4,找出数字变化的规律.15.见解析.【解析】【分析】在数轴上把各个数表示出来,再按在数轴上右边的数总比左边的数大比较即可.【详解】21310332--<-<<<【点睛】本题考查了数轴和有理数的大小比较,注意:在数轴上右边的数总比左边的数大.16.(1)-8;(2)1 2【解析】【分析】(1)先去括号,再根据加法结合律进行计算即可;(2)先算乘方,再算乘除,最后算加减即可.【详解】解:(1)原式=-3.25+19+(-6.75)+179=-10+2 =-8;(2)原式=-1-(-3)×12=-1+32=12.【点睛】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.17.(1)5a-4b;(2)18a2b-7ab2【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【详解】解:(1)原式=(2a+3b)+(-5b+b)=5a-4b(2)原式=6a2b-3ab2-4ab2+12a2b =18a2b-7ab2【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.(1)5a+3b;2a+3b;(2)9a+11b.【解析】【分析】(1)根据题意表示出第二边与第三边即可;(2)三边之和表示出周长,化简即可;【详解】(1)则第二边的边长为5a+3b,第三边的边长为2a+3b;故答案为5a+3b;2a+3b;(2)周长为:2a+5b+5a+3b+2a+3b=9a+11b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(1)B 地在A 地正北方向,相距12km ;(2)离开A 地最远25千米;(3)总耗油量为64aL .【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次与A 地的距离,根据有理数的大小比较,可得答案; (3)根据单位耗油量乘以行驶路程等于总耗油量,可得答案.【详解】解:(1)158612851012+-++-+-=+由于正方向表示正北方向,故B 地在A 地正北方向,相距12km .(2)15+(表示距A 地15km )1587+-=+(表示距A 地7km ,下同)7613++=+131225++=+25817+-=+17522++=+221012+-=+其中绝对值最大的为25+,即离开A 地最远25千米.(3)()158612851064km ++-+++++-+++-=.总耗油量为64a(L).【点睛】本题考查了正数和负数,利用有理数的加法是解题关键.20.(1)5ab -2a -3;(2)b 的值为25【解析】试题分析:(1)将A 与B 代入3A +6B 中去括号,合并同类项即可得到结果;(2)把(1)中a 看成是字母,b 看成是已知数,合并同类项,因为结果与a 无关,所以a的系数等于0,即可求出b的值.试题解析:(1)3A+6B=3(2a2+3ab-2a-1)+6(-a2+ab-1) =6a2+9ab-6a-3-6a2+6ab-6=15ab-6a-9;(2)3A+6B=15ab-6a-9=(15b-6)a-9,因为3A+6B的值与a的取值无关,所以15b-6=0,所以b=25.21.(1)4a+b;(2)≠;(3)-6.【解析】【分析】(1)根据题目中的式子可以猜出a⊙b的结果;(2)根据(1)中的结果和a≠b,可以得到a⊙b和b⊙a的关系;(3)根据(1)中的结果可以得到(a-b)⊙(2a+b)的值,【详解】解:(1)由题目中的式子可得,a⊙b=4a+b,故答案为4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,∴(a⊙b)-(b⊙a)=(4a+b)-(4b+a)=4a+b-4b-a=4(a-b)+(b-a),∵a≠b,∴4(a-b)+(b-a)≠0,∴(a⊙b)≠(b⊙a),故答案为≠;(3)(a-b)⊙(2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b.由题意a=-1,b=0∴原式=6×(-1)-3×0=-6.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.(1)5x+60,4.5x+72;(2)110,117;(3)共用去116元.【解析】【分析】(1)根据两种优惠方案列式子即可;(2)将x=10代入,分别计算即可;(3)哪种方案花费少,那么这种方案就合理.【详解】(1)按方案①购买花费:5x+60(元);按方案②购买花费:4.5x+72(元);故答案为5x+60;4.5x+72;(2)当x=10时,5x+60=50+60=110,4.5x+72=45+72=117,故答案为110;117;(3)运用方案①购买4个书包,得到免费4支水性笔,再运用方案②购买8支水性笔,这样共用去80+8×5×0.9=116(元).【点睛】本题考查了列代数式以及代数式求值的知识,解答本题的关键是仔细审题,得出两种方案下需要的花费.23.(1)9,125S,925S;(2)3(k-2),21kS,()232kk-S.【解析】【分析】结合图形正确数出前面几个具体值,从而发现等边三角形的个数和等分点的个数之间的关系:是n等分点的时候,每条边可以作(n-2)个三角形,共有3(n-2)个三角形;再根据相似三角形面积的比是边长的比的平方进行计算.【详解】解:(1)当n=5时,共有3×(5-2)=9个小等边三角形,∴每个小三角形与大三角形边长的比=15,∵大三角形的面积是S,∴每个小三角形的面积为1 25;(2)由(1)可知,当n=k时,共有3×(k-2)=3(k-2),每个小三角形的面积为()2 32 kk-S.故答案为(1)9,125;(2)3(k-2),()232kk-S.【点睛】此题考查了规律型:图形的变化类,此题要特别注意画等边三角形的时候,必须以相邻等分点为顶点向外作小等边三角形,所以有n等分点的时候,一边可以作(n-2)个等边三角形;计算面积的时候,主要是根据面积比是边长的平方比进行计算.。
沪科版七年级上册数学期中试题附答案(人教版通用)

七年级上册数学期中考试试题一、单选题1.2019的相反数是( )A .-2019B .2019C .12019-D .120192.在-2,-1,0,1这四个数中,最小的数是( )A .-2B .-1C .0D .13.2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( )A .1.61×109B .1.61×1010C .1.61×1011D .1.61×1012 4.下列式子计算正确的是( )A .5a +a =6a 2B .253-+=a b abC .22422-=m n mn mnD .22234xy y x xy -=-5.下列说法中正确的是( )A .a -表示负数B .若x x =-,则0x <C .绝对值最小的有理数是0D .a 和0不是单项式 6.如果单项式312m x y +-与432n x y +的和是单项式,那么(m +n )2019的值为( ) A .-1 B .0 C .1 D .201927.已知代数式x -2y =3,则代数式1-2x +4y 的值是( )A .-6B .-5C .6D .78.实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .|a|<1<|b|B .1<–a<bC .1<|a|<bD .–b<a<–1 9.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位10.定义一种对正整数n 的“F ”运算:①当n 为奇数时()F n =3n+1;②当n 为偶数时,()F n =2k n (其中k 是使()F n 为奇数的正整数)……,两种运算交替重复进行,例如,取n =24则:若n =13,则第2019次“F”运算的结果是( )A .1B .4C .2019D .42019二、填空题11.单项式225xy π-的系数是____________。
人教版七年级上学期期中数学试卷(含解析)
人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。
【6套打包】上海市七年级上册数学期中考试测试题(含答案解析)
人教版数学七年级上册期中考试试题(含答案)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107 2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣223.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣35.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣26.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7 7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100 8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是,次数是.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费元.(用含a,b的代数式表示)12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=,b=.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.计算4a﹣2b+3(3b﹣2a).20.化简:5x2y﹣2xy﹣4(x2y﹣xy)21.解方程:7+2x=12﹣2x.22.解方程:x﹣3=﹣x﹣4.23.先化简,再求值:,其中x=﹣3,y=.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=(用含m,n的式子表示).27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=;(2)数轴上表示数x和数﹣3两点之间的距离可表示为.(3)直接写出方程|x﹣3|+|x+1|=6的解是.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是,此时x 的值是.2018-2019学年北京市朝阳区垂杨柳片区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7550000用科学记数法表示为:7.55×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣22【分析】根据相反数、绝对值和乘方的定义逐一计算可得.【解答】解:A.﹣(﹣2)=2,是正数;B.|﹣2|=2,是正数;C.(﹣2)2=4,是正数;D.﹣22=﹣4,是负数;故选:D.【点评】本题解题的关键是掌握有理数的乘方的定义与相反数、绝对值的定义.3.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个【分析】根据题意:设大于﹣4.5的负整数为x,则取值范围为﹣4.5<x<0.根据此范围易求解.【解答】解:符合此两条件:(1)x是负整数,(2)﹣4.5<x<0的数只有四个﹣4,﹣3,﹣2,﹣1.故大于﹣4.5的负整数有﹣4,﹣3,﹣2,﹣1.故选:B.【点评】本题考查了比较有理数的大小,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣3【分析】把x=﹣2代入方程,即可求出答案.【解答】解:把x=﹣2代入方程x+4a=10得:﹣2+4a=10,解得:a=3,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的方程是解此题的关键.5.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣2【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=2x2,不符合题意;B、原式=﹣5a2,不符合题意;C、原式=3a﹣3,不符合题意;D、原式=﹣2x﹣2,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7【分析】根据等式的性质逐个判断即可.【解答】解:A、∵x=y,∴x﹣y=0,而x+y不一定等于0,如2=2,2+2=4,故本选项不符合题意;B、∵x=y,∴x=y,不一定x=y,故本选项不符合题意;C、∵x=y,∴﹣x=﹣y,∴2﹣x=2﹣y,故本选项符合题意;D、∵x=y,∴x+7=y+7,x+7和y﹣7不一定相等,故本选项不符合题意;故选:C.【点评】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100【分析】根据题意,可以用代数式表示出购买该商品实际付款的金额.【解答】解:由题意可得,购买该商品实际付款的金额是:(80%x﹣100)元,故选:A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,故①正确,②错误;∵a<0<b,∴ab<0,故③错误;∵a<0<b,而且|a|>|b|,∴a+b<0,b﹣a>0,∴b﹣a>a+b,故④正确.综上所述,说法正确的①④.故选:B.【点评】此题主要考查了数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是判断出:a<0<b,而且|a|>|b|.二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是﹣,次数是3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣,3.【点评】本题考查单项式的知识,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为 4.8.【分析】把百分位上的数字8进行四舍五入即可.【解答】解:4.7893取近似数并精确到十分位,得到的数为4.8.故答案为4.8.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费(4a+10b)元.(用含a,b的代数式表示)【分析】根据单价×数量=总费用进行解答.【解答】解:依题意得:4a+10b;故答案是:(4a+10b).【点评】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=2,b=﹣3.【分析】直接利用绝对值的性质以及偶次方的性质进而得出a,b的值.【解答】解:∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故答案为:2,﹣3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是m+2n.【分析】根据题意可以得到所求的多项式,本题得以解决.【解答】解:2m﹣(m﹣2n)=2m﹣m+2n=m+2n,故答案为:m+2n.【点评】本题考查整式的加减,解题的关键是明确整式加减的计算方法.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:=.【分析】根据“(物品价格+多余的3元)÷每人出钱数=(物品价格﹣少的钱数)÷每人出钱数”可列方程.【解答】解:设这个物品的价格是x元,则可列方程为:=,故答案是:=.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是等式的性质.【分析】方程移项合并,利用等式的性质将系数化为1即可.【解答】解:“系数化为1”这一步骤的依据是等式的性质,故答案为:等式的性质【点评】此题考查了解一元一次方程,熟练掌握等式的性质是解本题的关键.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是5、26、131.【分析】根据输出的结果是656列出一元一次方程,然后依次进行计算,直至x 不是整数即可.【解答】解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0(不符合题意),故x的值可取131,26,5.故答案为:5、26、131.【点评】本题考查了代数式求值,解一元一次方程,难点在于最后输出656的相应的x值不一定是第一次输入的x的值.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.【分析】先算乘方,再算乘法,最后算加法即可.【解答】解:(﹣)×(﹣8)+(﹣6)2=4+36=40.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】先算乘方与绝对值,再算除法,最后算加减即可.【解答】解:﹣14+(﹣2)÷(﹣)﹣|﹣9|=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.计算4a﹣2b+3(3b﹣2a).【分析】先去括号,然后合并同类项求解.【解答】解:4a﹣2b+3(3b﹣2a)=4a﹣2b+9b﹣6a=﹣2a+7b.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.20.化简:5x2y﹣2xy﹣4(x2y﹣xy)【分析】先去括号,然后合并同类项即可.【解答】解:原式=5x2y﹣2xy﹣4x2y+2xy=x2y.【点评】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.21.解方程:7+2x=12﹣2x.【分析】根据等式的基本性质依次移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x+2x=12﹣7,合并同类项,得:4x=5,系数化为1,得:x=.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.解方程:x﹣3=﹣x﹣4.【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=﹣x﹣8,移项合并得:3x=﹣2,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解.23.先化简,再求值:,其中x=﹣3,y=.【分析】直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:原式=7x2﹣3xy﹣6x2+2xy=x2﹣xy.当x=﹣3,y=时,原式==10.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.【分析】原式先去括号,再合并同类项化简,继而由x2﹣2y﹣5=0知x2﹣2y=5,代入原式=2(x2﹣2y)计算可得.【解答】解:原式=3x2﹣6xy﹣x2+6xy﹣4y=2x2﹣4y,∵x2﹣2y﹣5=0,∴x2﹣2y=5,则原式=2(x2﹣2y)=2×5=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第①步开始出现错误,错误的原因是利用等式的性质漏乘.请帮小明改正错误,写出完整的解题过程.【分析】检查小明同学的解题过程,找出出错的步骤,以及错误的原因,写出正确的解题过程即可.【解答】解:第①步开始出现错误,错误的原因是利用等式的性质漏乘;故答案为:①;利用等式的性质漏乘;正确的解题过程为:解:方程两边同时乘以6,得:×6﹣×6=6,去分母,得:2(2﹣3x)﹣3(x﹣5)=6,去括号,得:4﹣6x﹣3x+15=6,移项,得:﹣6x﹣3x=6﹣4﹣15,合并同类项,得:﹣9x=﹣13,系数化1,得:x=.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=3m+2+n(用含m,n的式子表示).【分析】(1)根据a⊙b=a(a+b)﹣1,可以求得题目中所求式子的值;(2)根据题意只要写出一个符合要求的式子即可,这是一道开放性题目,答案不唯一.【解答】解:(1)∵a⊙b=a(a+b)﹣1,∴(﹣2)⊙3=(﹣2)×[(﹣2)+3]﹣1=(﹣2)×﹣1=(﹣3)﹣1=﹣4;(2)∵5⊕3=20,∴m⊕n=3m+2+n,故答案为:3m+2+n.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.【分析】先对整式A,B关于字母x进行降幂排列,再写出其各项系数,列出竖式计算A﹣B即可.【解答】解:A=2x4﹣2x3y﹣4x2y2﹣5xy3,B=3x3y+2x2y2﹣4xy3﹣y4,A的各项系数为:2+2﹣4﹣5+0,B的各项系数为:0+3+2﹣4﹣1,列竖式计算如下:,所以,A﹣B=2x4﹣x3y﹣6x2y2﹣xy3+y4.【点评】本题考查了整式的加减,多项式的排列,掌握合并同类项的法则是解题的关键.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|.(3)直接写出方程|x﹣3|+|x+1|=6的解是﹣2或4.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是4,此时x的值是1.【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离公式解答;(3)分x<﹣1,﹣1≤x≤3,x>3三种情况去掉绝对值,解之即可得出结论;(4)|x+1|+|x﹣1|+|x﹣3|可看作是数轴上表示x的点,到表示3、﹣1、1点的距离之和.【解答】解:(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为:5,|x+3|,﹣2或4.4,1.【点评】此题主要考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.人教版数学七年级上册期中考试试题(含答案)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107 2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣223.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣35.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣26.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣77.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100 8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是,次数是.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费元.(用含a,b的代数式表示)12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=,b=.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.计算4a﹣2b+3(3b﹣2a).20.化简:5x2y﹣2xy﹣4(x2y﹣xy)21.解方程:7+2x=12﹣2x.22.解方程:x﹣3=﹣x﹣4.23.先化简,再求值:,其中x=﹣3,y=.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=(用含m,n的式子表示).27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=;(2)数轴上表示数x和数﹣3两点之间的距离可表示为.(3)直接写出方程|x﹣3|+|x+1|=6的解是.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是,此时x 的值是.2018-2019学年北京市朝阳区垂杨柳片区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7550000用科学记数法表示为:7.55×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣22【分析】根据相反数、绝对值和乘方的定义逐一计算可得.【解答】解:A.﹣(﹣2)=2,是正数;B.|﹣2|=2,是正数;C.(﹣2)2=4,是正数;D.﹣22=﹣4,是负数;故选:D.【点评】本题解题的关键是掌握有理数的乘方的定义与相反数、绝对值的定义.3.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个【分析】根据题意:设大于﹣4.5的负整数为x,则取值范围为﹣4.5<x<0.根据此范围易求解.【解答】解:符合此两条件:(1)x是负整数,(2)﹣4.5<x<0的数只有四个﹣4,﹣3,﹣2,﹣1.故大于﹣4.5的负整数有﹣4,﹣3,﹣2,﹣1.故选:B.【点评】本题考查了比较有理数的大小,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣3【分析】把x=﹣2代入方程,即可求出答案.【解答】解:把x=﹣2代入方程x+4a=10得:﹣2+4a=10,解得:a=3,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的方程是解此题的关键.5.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣2【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=2x2,不符合题意;B、原式=﹣5a2,不符合题意;C、原式=3a﹣3,不符合题意;D、原式=﹣2x﹣2,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7【分析】根据等式的性质逐个判断即可.【解答】解:A、∵x=y,∴x﹣y=0,而x+y不一定等于0,如2=2,2+2=4,故本选项不符合题意;B、∵x=y,∴x=y,不一定x=y,故本选项不符合题意;C、∵x=y,∴﹣x=﹣y,∴2﹣x=2﹣y,故本选项符合题意;D、∵x=y,∴x+7=y+7,x+7和y﹣7不一定相等,故本选项不符合题意;故选:C.【点评】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100【分析】根据题意,可以用代数式表示出购买该商品实际付款的金额.【解答】解:由题意可得,购买该商品实际付款的金额是:(80%x﹣100)元,故选:A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.。
上海市 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共4小题,共12.0分) 1. 下列代数式x−12,2x 23,7a3b ,-2,b ,4x 2-4x +1中,单项式有( )A. 1个B. 2个C. 3个D. 4个2. 下列计算中,正确的是( )A. x 2+x =x 3B. −x 5−(−x)5=0C. (−x)4⋅(−x)6=−x 10D. −(x −1)x =−x 2−x 3. 下列各式能用完全平方公式计算的是( )A. (2a +b)(a −2b)B. (a +2b)(2b −a)C. (2a +b)(−2a −b)D. (b −2a)(−2a −b)4. 如图1,把一个长为m 、宽为n 的长方形(m >n ),沿虚线剪开,将其与阴影部分所表示的小正方形一起拼接成如图2所示的长方形,则下列说法不正确的是( )A. 图2所示的长方形是正方形B. 图2所示的长方形周长=2m +2nC. 阴影部分所表示的小正方形边长=m −nD. 阴影部分所表示的小正方形面积=(m−n)24二、填空题(本大题共14小题,共28.0分) 5. 计算:(x 4)3= ______ .6. 用代数式表示:x 与y 的2倍的平方和______ .7. 小明跑100米用了a 秒,用字母a 表示小明跑步的平均速度是______ 米/秒. 8. 代数式3x 4-23x 2-54的二次项系数是______ . 9. 将多项式3+5x 2y -5x 3y 2-7x 4y 按字母x 的降幂排列是______ . 10. 整式1+3x 2与-x 4-1的差是______ . 11. 计算:(x +4)•(x -5)= ______ . 12. 计算:(-3x -4y )(3x -4y )= ______ . 13. 计算:(a -3b )2= ______ .14. 计算:(-a -b )4(a +b )3= ______ (结果用幂的形式表示). 15. 若3a n +7b 4与-b m a m 是同类项,则m +n = ______ . 16. 计算:如果a n =2,a m =5,则a m +2n ═ ______ .17. 若2a 2-a -1=0,则代数式5+2a -4a 2的值是______ . 18.某校为了美化校园,准备在一块长a 米,宽b 米的长方形场地上修筑横纵各一条道路,道路宽度均为x 米,(如图所示)余下部分作草坪,则草坪面积用代数式表示为______ .三、计算题(本大题共1小题,共7.0分)19. 已知x +y =4,xy =1,求代数式(x 2+1)(y 2+1)的值.四、解答题(本大题共8小题,共53.0分) 20. 计算:2a 3•a 4-(a 2)3•a +5a 2•a 5.21. 计算:a 2b 4•(-12ab )2+14a •(-2ab 2)3.22. 计算:x (x 2-x -1)+3(x 2+x )-13x (3x 2+6x ).23. 利用乘法公式简便计算:101×99-99.52.24.利用平方差公式计算:(a+2b-c)(2b-a-c).25.解不等式:2x-(5-x)(x+1)>x(x+3)+7并求出最大整数解.26.按如下规律摆放三角形:第(1)堆三角形的个数为5个,第(2)堆三角形的个数为8个,第(3)堆三角形的个数为______ ;第(4)堆三角形的个数为______ ;第(n)堆三角形的个数为______ .27.今年的里约奥运会,为了体现“零碳奥运”的精神,一座神奇的太阳能建筑被设计出来!创新的太阳能瀑布塔位于Cotonduba岛上,它海拔高度105米,白天依靠太阳能水泵将海水抽至顶部,而到了夜间则将海水从顶部放下带动涡轮旋转,从而产生能量供电,有效地利用了能源.(如图1、图2所示)假设图2中的每一块太阳能电板可以看成图3中的阴影部分(如图3所示),图3由长方形ABFE和正方形FECD组成,其中AB=a,BF=b,GF=b-a,(1)用a、b表示三角形AGD的面积S△AGD= ______ ;(2)用a、b表示一块太阳能电板的面积;(3)如果a=30米,b=50米,则此时一块太阳能电板的面积是多少?答案和解析1.【答案】C【解析】解:代数式,,,-2,b,4x2-4x+1中,单项式有,-2,b,所以单项式有3个.故选:C.根据单项式是数与字母的乘积,单独一个数或一个字母也是单项式,可得答案.本题考查了单项式,单项式是数与字母的乘积,单独一个数或一个字母也是单项式.2.【答案】B【解析】解:A、x2+x不能合并,所以选项A不正确;B、-x5-(-x)5=-x5+x5=0,所以选项B正确;C、(-x)4•(-x)6=(-x)10=x10,所以选项C不正确;D、-(x-1)x=-x2+x,所以选项D不正确;故选B.分别根据多项式中的整数幂的性质进行计算,并做出判断.本题考查了多项式与单项式的运算,明确①合并同类项:字母和相同字母的指数都相同时,才能合并;②负数的偶次幂是正数,负数的奇次幂是负数;③同底数幂相乘,底数不变,指数相乘.3.【答案】C【解析】解:(2a+b)(a-2b)不能用完全平方公式计算;(a+2b)(2b-a)能用平方差公式计算;(2a+b)(2a-b)能用完全平方公式计算;(b-2a)(-2a-b)能用平方差公式计算.故选C.根据完全平方公式和平方差公式对各选项进行判断.本题考查了完全平方公式:(a±b)2=a2±2ab+b2.完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.4.【答案】C【解析】解:设小正方形的边长为a,C、根据图形的拼法可知:m-a=n+a,∴a=,∴C选项不符合题意;A、∵图2中长方形相邻两边长度分别为n+a,n+a,∴图2所示的长方形是正方形,∴A选项符合题意;B、∵图2所示的长方形周长=4(n+a)=4(n+)=4×=2m+2n,∴B选项符合题意;D、∵阴影部分所表示的小正方形面积=a2==,∴D选项符合题意.故选C.设小正方形的边长为a,C、根据图形的拼法可得出关于a的一元一次方程,解之即可用含m、n的代数式表示出a的值,由此得出C选项不符合题意;A、观察图形2找出图形2中长方形的相邻两边长,由此可得出该长方形为正方形,即A选项符合题意;B、根据正方形的周长公式即可找出图形2的周长,再代入a值即可得知B选项符合题意;D、根据正方形的面积公式,再代入a值,即可得知D选项符合题意.综上即可得出结论.本题考查了完全平方公式的几何背景、正方形的周长及面积,根据图形的拼法找出小正方形的边长,再逐一分析四个选项的正误是解题的关键.5.【答案】x12【解析】解:原式=x12故答案为:x12根据幂的乘方即可求出答案.本题考查幂的乘方,属于基础题型.6.【答案】x2+(2y)2【解析】解:x与y的2倍的平方和是:x2+(2y)2,故答案为:x2+(2y)2.根据题意可以用相应的代数式表示出题目中对的语句,本题得以解决.本题考查列代数式,解题的关键是明确题意,列出相应的代数式.7.【答案】100a【解析】解:∵小明跑100米用了a秒,∴小明跑步的平均速度是:米/秒,故答案为:.根据题意可以用相应的代数式表示出小明跑步的平均速度,本题得以解决.本题考查列代数式,解题的关键是明确题意,列出相应的代数式.8.【答案】-23【解析】解:∵代数式3x4-x2-的二次项是-,∴二次项的系数为-,故答案为:-.先找出代数式的二次项,再确定出它的系数.此题是多项式,主要考查了多项式的项的确定和项的系数的确定,特别注意:多项式的项的系数要连同前面的符号.9.【答案】-7x4y-5x3y2+5x2y+3【解析】解:原式=-7x4y-5x3y2+5x2y+3,故答案为:-7x4y-5x3y2+5x2y+3按x的指数,从大到小进行排列.本题考查多项式的概念,涉及升降幂排列,属于基础题型.10.【答案】2+3x2+x4【解析】解:(1+3x2)-(-x4-1)=1+3x2+x4+1=2+3x2+x4.故答案为:2+3x2+x4.先根据题意列出式子,然后去括号,再合并同类项,即可求出结果.本题主要考查了整式的加减,在解题时要注意去括号和结果的符号是解题的关键.11.【答案】x2-x-20【解析】解:(x+4)(x-5),=x2-5x+4x+20,=x2-x-20.根据多项式与多项式相乘的法则进行计算.本题考查了多项式乘多项式,比较简单,熟练掌握多项式与多项式相乘的法则是关键,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.12.【答案】16y2-9x2【解析】解:原式=(-4y)2-(3x)2=16y2-9x2.故答案为:16y2-9x2.根据平方差公式将原式展开即可得出结论.本题考查了平方差公式,熟练掌握平方差公式是解题的关键.13.【答案】a2-6ab+9b2【解析】解:原式=a2-6ab+9b2.故答案为a2-6ab+9b2.利用完全平方公式展开即可.本题考查了完全平方公式:(a±b)2=a2±2ab+b2.完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.14.【答案】(a+b)7【解析】解:(-a-b)4(a+b)3,=(a+b)4(a+b)3,=(a+b)4+3,=(a+b)7.故答案为:(a+b)7.先整理成底数为(a+b),再根据同底数幂相乘,底数不变指数相加进行计算即可得解.本题考查了同底数幂的乘法,熟记运算法则是解题的关键,要注意互为相反数的偶数次幂相等.15.【答案】1【解析】解:由题意,得n+7=m,m=4.解得n=-3.m+n=4+(-3)=1,故答案为:1.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,注意同类项与字母的顺序无关,与系数无关.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.16.【答案】20【解析】解:∵a n=2,a m=5,∴a m+2n═a m•a2n,=a m•(a n)2,=5×22,=5×4,=20.故答案为:20.逆运用同底数幂的乘法和幂的乘方的性质进行计算即可得解.本题考查了同底数幂的乘法,幂的乘方与积的乘方的性质,熟记性质并灵活运用是解题的关键.17.【答案】3【解析】解:∵2a2-a=1∴原式=-2(2a2-a)+5=-2×1+5=3故答案为:3将代数式进行适当的变形后,将2a2-a=1代入即可求出答案.本题考查代数式求值,涉及整体的思想.18.【答案】(a-x)(b-x)【解析】解:草坪面积用代数式表示为(a-x)(b-x),故答案为:(a-x)(b-x).如果设路宽为xm,阴影的长应该为a-x,宽应该为b-x,进而解答即可.本题考查列代数式,难度中等.可将阴影面积看作一整块的矩形的面积,根据矩形面积=长×宽求解.19.【答案】解:∵x+y=4,xy=1,∴x2+y2=(x+y)2-2xy=42-2×1=16-2=14∴x2y2=(xy)2=12=1,∴(x2+1)(y2+1)=x2+y2+x2y2+1=14+1+1=16【解析】首先根据x+y=4,xy=1,求出x2+y2、x2y2的值各是多少;然后应用代入法,求出代数式(x2+1)(y2+1)的值是多少即可.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.20.【答案】解:原式=2a7-a7+5a7=6a7.【解析】先根据幂的运算法则计算,再合并可得.本题主要考查整式的混合运算,熟练掌握整式的运算法则解题根本和关键. 21.【答案】解:原式=a 2b 4•(-12ab )2+14a •(-2ab 2)3=14a 4b 6-2a 4b 6 =-74a 4b 6.【解析】首先计算乘方,然后计算单项式的乘法,最后合并同类项即可求解.本题考查了整式的混合运算,正确理解运算法则,注意指数的运算是关键. 22.【答案】解:原式=x 3-x 2-x +3x 2+3x -x 3-2x 2=2x .【解析】去括号,合并同类项即可.本题考查了单项式乘以多项式,利用乘法分配律进行计算,注意符号和运算顺序.23.【答案】解:原式=(100+1)×(100-1)-(100−12)2,=1002-12-(1002-100+14),=1002-1-1002+100-14, =9834. 【解析】将101×99变形为(100+1)×(100-1),再利用平方差公式以及完全平方式将其展开,计算后即可得出结论.本题考查了平方差公式以及完全平方式,将101×99变形为(100+1)×(100-1)是解题的关键.24.【答案】解:原式=(a +2b -c )(2b -a -c ),=(2b -c )2-a 2,=4b 2-4bc +c 2-a 2.【解析】将2b-c 看成一个整体,利用平方差公式将原式展开即可得出结论. 本题考查了平方差公式,将2b-c 当成一个整体是解题的关键.25.【答案】解:2x -(5-x )(x +1)>x (x +3)+7,2x +x 2-5x +x -5>x 2+3x +7,2x -5x +x -3x >7+5,-5x >12,x <-125,所以不等式的最大整数解是-3.【解析】 去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,一元一次不等式的整数解的应用,能求出不等式的解集是解此题的关键.26.【答案】11;14;3n +2 【解析】解:第(3)堆三角形的个数为11;第(4)堆三角形的个数为14;第(n )堆三角形的个数为3n+2, 故答案为:11,14,3n+2.根据图形得出3×3+2、3×2+2、3×3+2、3×4+2、…,即可得出答案. 本题考查了图形的变化类的应用,能得出规律是解此题的关键. 27.【答案】a 2+12ab -12b 2【解析】 解:(1)S △AGD =(a+b )(2a-b )=a 2+ab-b 2;(2)S 阴影=(a+b )b-(a+b )(2a-b )-a 2=2b 2-a 2+ab(3)当a=30,b=50时,S 阴影=2×502-×302+×50×30=4400(m 2)故答案为:(1)a 2+ab-b 2;根据三角形面积公式,长方形面积公式,正方形面积公式即可求出答案.本题考查列代数式,涉及整式混合运算,以及代入求值问题.。
人教版2022--2023学年度第一学期七年级数学上册期中测试卷及答案
8.下列判断正确的是( )
A.两个数相加,和一定大于其中一个加数B.两数相减,差一定小于被减数
C.两数相乘,积一定大于其中一个因数D.|a|一定是非负数
9.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()
A. B.14 C.5 D.7
10.一根 长 绳子,第一次剪去绳子的 ,第二次剪去剩下绳子的 ,如此剪下去,第100次剪完后剩下绳子的长度是()
【详解】解:如图所示:
【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
例:三个有理数 , , 满足 ,求 的值.
解:由题意得, , , 三个有理数都为正数或其中一个为正数,另两个为负数.
①当 , , 都是正数,即 , , 时,
则: ,
②当 , , 有一个为正数,另两个为负数时,设 , , ,
则: .
综上, 的值为3或-1.
请根据上面的解题思路解答下面的问题:
(1)已知 , ,且 ,求 的值;
则 .
故答案为:55.
【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.
15.30
【解析】
【分析】将代数式化为:2(x2+3x)+8,由于代数式x2+3x-5的值等于6,那么x2+3x=11,将其代入代数式并求出代数式的值.
【详解】解:由题意得:
x2+3x-5=6,
即:x2+3x=11,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上学期期中试题
(考试时间90分钟,满分100分)
一、选择题(本大题共6小题,每小题2分,满分12分)
1.在代数式3、4a +、2
2
a b -、25ab -、22
4
a b +中,单项式的个数是……( )
(A )2个; (B )3个; (C )4个; (D )5个.
2. 多项式3244327x x y x -+-的项数和次数分别是…………………………( ) (A )4, 9; (B )4, 6; (C )3, 9; (D )3, 10.
3. 下列各式正确的是 ……………………………………………………………( ) (A )422x x x =+;(B )236x x x ⋅=;(C ) 9336)2(x x -=- ;(D )347()()x x x -⋅-=-.
4. 下列去括号、添括号的结果中,正确的是……………………………………( )
(A )22(3)3m n mn m n mn -+-+=-++
(B )2244(2)442mn n m mn mn n m mn +--=+-+ (C )()()a b c d a c b d -+-+=--++ (D )533(5)22b b a b b a ⎛⎫⎛
⎫
-+-=-+
-- ⎪ ⎪⎝⎭⎝⎭
5.已知2,3m
n
a a ==,则32m n a +的值是…………………………………………( )
(A )24; (B )36; (C )72; (D )6.
6.下列多项式中,与x y --相乘的结果是22
x y -的多项式是…………………( )
(A )y x -; (B )x y -; (C )x y +; (D )x y --.
二、填空题(本大题共12小题,每小题3分,满分36分) 7.用代数式表示:“a 的3
5
倍的相反数”: . 8. 当3a =时,代数式3(1)
2
a a -的值是_____ __ . 9.若单项式
n
y x 23
2与32y x m -的和仍为单项式,则m n 的值为 .
10.把多项式
223123
1
5432x xy y y x -+-
按照字母
x
降幂排
列: .
11.若,a b 互为相反数,,m n 互为倒数,则2a b mn ++的值是______________. 12.计算:
)4(2
1422
b a ab -⋅ = . 13. 计算:54()()a b b a -⋅-= .(结果用幂的形式表示) 14. 计算:2011201220.5⨯=________________. 15.计算:()()=-+312x x .
16.如果224x mx ++是完全平方式,则m 的值是______ ___.
17.某工厂一月份生产a 个零件,第二个月比第一个月增加%x ,第三个月比第二个月增加%x ,
则三个月共生产零件个数为____________. 18.若210a a +-=,则代数式43a a +的值为___ __ ___.
三、简答题(本大题共6小题,每小题4分,满分24分)
19.计算:2533
a a a a a ⋅+⋅⋅ 20.计算:222(321)a
b a b ab ⋅--
解: 解:
21.计算:()()()
2224x x x -⋅+⋅+ 22.计算: 23
22
33
()()()x x x x --⋅---
解: 解:
23.用乘法公式简便计算: 24.计算:(31)(31)x y x y +++-
2201720162018-⨯
解: 解:
四、解答题(本大题共4小题,第25、26每小题6分,第27、28每题8分,满分28分)
25.化简求值:22
2()(2)(2)(2)x y x y x y y x +--+--,其中2
1
-
=x ,1-=y . 解:
26.如图,正方形ABCD 与正方形BEFG ,且,,A B E 在一直线上,
已知AB a =,()BE b b a =<. (1)用a b 、的代数式表示ADE ∆的面积.
(2)用a b 、的代数式表示DCG ∆的面积.
(3)用a b 、的代数式表示阴影部分的面积.
27.阅读:将代数式223x x ++转化为2()x m k ++的形式,(期中,m k 为常数), 则222232113(1)2x x x x x ++=++-+=++其中1,2m k ==.
(1)仿照此法将代数式2615x x ++化为2()x m k ++的形式,并指出,m k 的值.
(2)若代数式26x x a -+可化为()2
1x b --的形式,求b a -的值. 解:(1)
B
E
第26题图
(2) 28.
(1)在④和⑤后面的横线上分别写出相应的等式;
④;
⑤;
(2)根据上面算式的规律,请计算:13599
++++=;(3)通过猜想写出与第n个点阵相对应的等式.
解:(3)
……
……
①1=12;②1+3=22;③1+3+5=32;④
;
⑤
;
第一学期七年级数学期中试卷参考答案及评分标准
一、选择题(本大题共6小题,每小题2分,满分12分)
(1) A (2) B (3) D (4) B (5) C (6) A 二、填空题(本大题共12小题,每小题3分,满分36分) (7)35a -
(8)9 (9)9 (10)32214
321235
x y x xy y -+- (11)2 (12)36
2a b - (13)9()a b - (14)
1
2
(15)2
253x x -- (16)2± (17)2(1%)(1%)a a x a x +⋅++⋅+ (18)2 三、简答题(本大题共6小题,每小题4分,满分24分) (19)2533a a a a a ⋅+⋅⋅
777
2=22a a a
=+分分
(20)222(321)ab a b ab ⋅--
33232
642(2+1+1)a b a b ab =--分分分
(21)()()()
2224x x x -⋅+⋅+
224
(4)(4)2=16
2x x x =-⋅+-分
分
(22)23
22
33
()()()x x x x --⋅---
64910
3=21x x x x x
=⋅+⋅分分
(23)2201720162018-⨯
2222
2
2017(20171)(20171)1=2017(20171)1=2017201711=1
1=--⋅+---+分
分分
分
(24)(31)(31)x y x y +++-
222(3)11961
3x y x xy y =+-=++-分分
四、解答题(本大题共4小题,第25、26每小题6分,第27、28每题8分,满分28分) (25)222()(2)(2)(2)x y x y x y y x +--+--
22222222222222
22
2(2)(4)(44)324244413811
,12
11
=3()8()(1)(1)22
1=214
x xy y x y y xy x x xy y x y y xy x x xy y x y =++----+=++-+-+-=-+-=-=--⨯-+⨯-⨯---分分
分
当时
原式分
(26)①2111()(1+1222ADE
S
a a
b a ab =⋅+=+分分) ②2111()(1+1222
DCG
S a a b a ab =
⋅-=-分分)
③222222
111111()()(1+1222222
DGE
S a b b a ab a ab b =+--+--=分分)
(27)①
222
615699151(3)623,6
1x x x x x m k ++=++-+=++==分分则分
②
()222
6(3)9118,325
1x x a x a x b a b b a -+=-+-=--==-=-分则分分
(28)①2
13574+++= ,2
135795++++= 22(分+分)
②2500
2分
③2135721n n ++++-=
2分。