初二数学第一学期第一次月考试卷1

合集下载

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。

(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。

(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。

初二数学试卷第一次月考

初二数学试卷第一次月考

一、选择题(每题3分,共30分)1. 下列数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. 2/32. 如果a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a / b < 1D. a / b > 13. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 - 4x + 5C. y = 3x^3 - 2x + 1D. y = x^2 - 34. 一个长方体的长、宽、高分别为a、b、c,那么它的体积V可以表示为()A. V = a + b + cB. V = abcC. V = a^2 + b^2 + c^2D. V = (a + b) / c5. 在等腰三角形ABC中,底边BC的长度为8cm,腰AB和AC的长度相等,且AB = AC = 10cm,那么三角形ABC的面积S可以表示为()A. S = 40cm²B. S = 32cm²C. S = 40cm²D. S = 32cm²6. 若x² - 5x + 6 = 0,那么x的值为()A. 2 或 3B. 1 或 4C. 2 或 4D. 1 或 37. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 半圆D. 等腰梯形8. 下列方程中,解集为空集的是()A. 2x + 3 = 0B. x² - 1 = 0C. x² + 2x + 1 = 0D. x² + 3x + 2 = 09. 下列数中,绝对值最小的是()A. -5B. -4C. 0D. 310. 若a、b、c是等差数列,且a + b + c = 18,那么a² + b² + c²的值为()A. 54B. 72C. 90D. 108二、填空题(每题5分,共50分)11. 已知x + y = 5,xy = 6,那么x² + y²的值为______。

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。

第一次月考试卷初二数学

第一次月考试卷初二数学

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -3/52. 下列各式中,正确的是()A. 3a + 2b = 5(a + b)B. (x + y)^2 = x^2 + 2xy + y^2 + 2x + 2yC. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2 - 2ab3. 已知 a + b = 5,ab = 6,则 a^2 + b^2 的值为()A. 25B. 36C. 37D. 494. 若 a,b 是方程 x^2 - (a + b)x + ab = 0 的两个实数根,则 a^2 + b^2 的值为()A. 0B. 1C. 2D. 45. 已知三角形的三边长分别为 3,4,5,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形6. 在直角坐标系中,点 A(2,3)关于原点对称的点的坐标是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)7. 下列函数中,有最小值的是()A. y = x^2 + 2x + 1B. y = x^2 - 2x + 1C. y = -x^2 + 2x - 1D. y = x^2 - 2x - 18. 下列方程中,有唯一解的是()A. x^2 - 2x + 1 = 0B. x^2 + 2x + 1 = 0C. x^2 - 2x - 1 = 0D. x^2 + 2x - 1 = 09. 已知 a,b,c 成等差数列,且 a + b + c = 15,则 a^2 + b^2 + c^2 的值为()A. 45B. 50C. 55D. 6010. 下列不等式中,正确的是()A. -3 < -2 < -1B. 1 < 0 < -1C. 2 < 1 < 0D. -1 < 0 < 1二、填空题(每题3分,共30分)11. 已知 x + y = 5,xy = 6,则 x^2 + y^2 的值为 _______。

八年级数学第一学期第一次月考试题

八年级数学第一学期第一次月考试题

第一学期第一次月考试卷八年级数学题号 一 二 三 总分 得分题号 1234 5678910答案A.-2B.±2C.-4D.±4 2.下列算式正确的是( )A.-√(−3)2=-3B.(-√6)2=36C.√16=±4D.√121=±√11 3.如图,矩形ABCD 恰好可分成7个形状大小相同的小矩形,如果小矩形的面积是3,则矩形ABCD 的周长是( ) A.7 B.9 C.19 D.21 4.已知整数m 满足m <√38<m +1,则m 的值为( ) A.4 B.5 C.6 D.7 5.在-√4,3.14,π,√10,1.5⋅5⋅,27中无理数的个数是( ) A.2个 B.3个 C.4个 D.56.若25x 2-mxy +81y 2是一个完全平方式,那么m 的值为( ) A.±45 B.90 C.±90 D.-907.下列运算正确的是( )A.a 6÷a 3=a 2B.2a 3+3a 3=5a 6C.(-a 3)2=a 6D.(a +b )2=a 2+b 2 8.若(x 3)m =x 9,则m 的值为( )A.1B.2C.3D.4 9.计算(-xy 2)3的结果是( )A.x 3y 6B.-x 3y 6C.-x 4y 5D.x 4y 5 10.如果设5a =m ,5b =n ,那么5a -b 等于( ) A.m +n B.mn C.m -n D.mn二、填空题(本大题共10小题,共30分)11.若m 是√16的算术平方根,则m +3= ______ .12.在5,0.1,227,-√3,3π.,√16中,无理数有 ______ 个. 13.实数a 在数轴上的位置如图,则|a -√3|= ______ . 14.若a m =2,a n =3,则a m -n 的值为 ______ .15.已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为 ______ . 16.计算:(43)2014×(-34)2015= ______ . 17.计算:(-2a 2)•3a 的结果是 ______ . 18.计算2a 2b (2a -3b +1)= ______ . 19.计算(3x +9)(6x +8)= ______ .20.若a +2是一个数的算术平方根,则a 的取值范围是 ______ .三、解答题(本大题共6小题,21题20分,22、23每题6分,24题8分,25、26每题10分) 21. 计算(1)(x -2y )(x +2y -1)+4y 2(2)(a 2b )[(ab 2)2+(2ab )3+3a 2].(3)√4+√−13-√925×√1+(43)2 (4)(-a 2)3•(b 3)2•(ab )422. 求式中的x 的值: 3(x -1)2=12.23.已知一个数的平方根是3a +2和a +10,求a 的值.24.化简求值:(2x -1)2-(3x +1)(3x -1)+5x (x -1),x =-19.25.已知(x 3+mx +n )(x 2-3x +1)展开后的结果中不含x 3和x 2项. (1)求m 、n 的值; (2)求(m +n )(m 2-mn +n 2)的值.26.已知a x=5,a x+y=30,求a x+a y的值.。

八年级(上)第一次月考数学试卷

八年级(上)第一次月考数学试卷

八年级(上)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分&#215;10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD 关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC 的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD 的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC 绕点P按逆时针方向旋转180°到△PFD的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.八年级(上)第一次月考数学试卷答案1.A.2.C.3.B.4.D5.B6.D.7.C.8.D.9.5.10.25.11.11.12.AB=DC.13.5.14.3.15.10.16.SSS.17.4个18.135.19.解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.解:如下图所示:21.解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),=S△CEG,∴S△DEH∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.。

八年级(上)数学(第一二章)第一次月考试卷(含答案)-

八年级上册数学第一次月考试卷一、选择题:(每题3分,共36分)1、如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A、同位角B、内错角C、对顶角D、同旁内角2、已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A、160°B、140°C、40°D、无法确定3、如图,若a∥b,∠1=40°,则∠2=()度;A、40°B、140°C、50°D、150°4、如图,已知AB∥ED,则∠B+∠C+∠D的度数是()A、180°B、270°C、360°D、450°5、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°6、等边三角形的对称轴有()A、1条B、2条C、3条D、4条7、等腰三角形的顶角的外角为70°,那么一个底角的度数为()A、35°B、55°C、65°D、110°8、以下列各数为边长,不能组成直角三角形的是()A、2,3,5B、3,4,5C、4,5,6D、7,24,259、如图,CD是Rt△ABC斜边上的高,∠A=40º,则∠1=()(A)30º(B)40º(C)45º(D)60º10、如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A、AD与BDB、BD与BCC、AD与BCD、AD、BD与BC11、如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为()A、18B、17C、20D、2512、如图,在△ABC中,AB=AC,∠BAC=108°,∠ADB=72°,DE平分∠ADB,则图中等腰三角形的个数是()A、3B、4C、5D、6DA BCE(第4题)BDC A(第10题)DB ACE(第11题)AB CDE(第12题)(第1题)(第9题)1CA D B12ab(第3题)二、填空题:(每空2分,共20分) 1、(1)如图,在长方形ABCD 中,AB=3cm ,BC=2cm ,则AB 与CD 之间的距离为 cm ; (2)如图,若∠ =∠ ,则AD//BC ;(3)如图,DE//BC ,CD 是∠ACB 的平分线,∠ACB=50°,则∠EDC= 度;2、已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为 ;3、如图,已知BD ⊥AE 于B ,C 是BD 上一点,且BC=BE ,要使Rt △ABC ≌Rt △DBE ,应补充的条件是∠A=∠D 或 或 ;4、已知等边三角形的边长为8cm ,则它的高为___ ____cm ;5、已知直角三角形的两直角边长为3cm 和4cm ,则斜边上的中线长是 cm ,斜边上的高为 cm ;6、有一块田地的形状和尺寸如图所示,则它的面积为 。

初二数学第一次月考试卷及答案

初二数学第一次月考试卷及答案八年级数学第一次月考试卷一、选择题:(本大题共12小题,每题3分,共36分)1、25的平方根是( )A 、5B 、5-C 、5±D 、5±2、下列说法错误的是 ( )A 、无理数的相反数依旧无理数B 、开不尽根号的数差不多上无理数C 、正数、负数统称有理数D 、实数与数轴上的点一一对应3、以下列各组数为边长,能组成直角三角形的是( )A .8,15,17B .4,5,6C .5,8 ,7D .8,39,404、有下列说法:(1)带根号的数是无理数;(2)不带根号的数一定是无理数;(3)负数没有立方根;(4)是17的平方根,其中正确的有( )A .0个B . 1个C .2个D .3个5、下列各式中, 差不多化简的是 ( ) A. 31 B. 20 C. 22 D. 121 6、假如一个数的立方根是那个数本身,那么那个数是( ) A 、1 B 、1- C 、1± D 、0,1±7、当14+a 的值为最小值时,a 的取值为( )A 、-1B 、0C 、41- D 、1 8、满足53<<-x 的整数x 是( ) A 、3,2,1,0,1,2-- B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1-9、2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±610、小刚预备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A. 2m;B. 2.5m;C. 2.25m;D. 3m.11、已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为 ( )(A ) 80cm (B ) 30cm (C ) 90cm (D ) 120cm12、若9,422==b a ,且0<ab ,则b a -的值为 ( )(A ) 2- (B ) 5± (C ) 5 (D ) 5-2a+2 二、填空题:(本大题共4小题,每题3分,共12分)13、5-的相反数是_________,绝对值是________,倒数是_________;14、2)3(-=________,327- =_________, 0)5(-的立方根是 ;15、比较大小:2_______2, -2________-4.2,3-π______016、若03)2(12=-+-+-z y x ,则z y x ++= 。

初二的第一次月考数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(无限循环小数)D. √-12. 已知x²-5x+6=0,则x的值为()A. 2或3B. 1或4C. 2或4D. 1或33. 下列函数中,y是x的一次函数是()A. y=x²+1B. y=2x+3C. y=√xD. y=3/x4. 已知平行四边形ABCD中,∠ABC=60°,则∠BCD的度数是()A. 120°B. 60°C. 90°D. 30°5. 在平面直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的中点坐标是()A. (1,1)B. (-1,2)C. (2,-2)D. (1,-2)6. 下列各数中,无理数是()A. √9B. 0.123456789101112…C. -πD. 0.33333333…7. 已知三角形ABC中,∠A=45°,∠B=60°,则∠C的度数是()A. 75°B. 120°C. 45°D. 60°8. 下列方程中,一元二次方程是()A. 2x+3=5B. x²+2x-3=0C. x²-2x+1=0D. x²-3x+2=09. 下列图形中,是轴对称图形的是()A. 矩形B. 菱形C. 正方形D. 三角形10. 下列各数中,偶数是()A. 2B. 3C. 5D. 6二、填空题(每题5分,共20分)11. 等腰三角形底边长为8cm,腰长为10cm,则底角是____°。

12. 已知a²-6a+9=0,则a的值为____。

13. 已知函数y=kx+b(k≠0),若当x=2时,y=3,当x=5时,y=9,则k的值为____。

14. 在平面直角坐标系中,点P(-1,3),点Q(2,-1),则线段PQ的长度是____。

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(A.带①去B.带②去C.带③去D.带①和②去3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C 都可以4.下面四个图形中,线段BE 是△ABC 的高的图是()A.B.C.D.5.适合条件∠A= ∠B= ∠C 的△ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.一个多边形的内角和比它的外角和的2 倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.87.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,E,∠B=40°,∠BAC=82°,则∠DAE=()A.7 B.8° C.9° D.10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()A.67° B.46° C.23° D.不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BFC.∠A=∠DD.AB=BC12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是15.三角形的三边长分别为5,1+2x,8,则x的取值范围是16.十边形的外角和是度;如果十边形的各个内角都相等,那么它的一个内角是度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于度.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=.cm,∠C=度.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=度.17题19题18题20题三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?24.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于E点.求证:∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.人教版八年级(上)第一次月考数学试卷答案一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选A.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.4.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.5.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.7.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半【考点】命题与定理.【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3 条高,其中2 条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选B.8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,【分析】由于AB=AC,∠BAD=∠CAD,利用等边对等角,等腰三角形三线合一定理,可知AD⊥BD,BD=CD,∠B=∠C,从而易证△ABD≌△ACD.【解答】解:∵在△ABC 中,AB=AC,∠BAD=∠CAD,∴AD⊥BD,BD=CD,∠B=∠C,∴△ABD≌△ACD(SSS).故选D.9.如图,在△ABC 中,AD 平分∠BAC 交BC 于D,AE⊥BC 于E,∠B=40°,∠BAC=82°,则∠DAE=()【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理可求得∠BAE 的度数,再根据角平分线的定义可求得∠BAD 的度数,从而不难求解.【解答】解:∵AE⊥BC 于E,∠B=40°,∴∠BAE=180°﹣90°﹣40°=50°,∵AD 平分∠BAC 交BC 于D,∠BAC=82°,∴∠BAD=41°,∴∠DAE=∠BAE﹣∠BAD=9°.故选C.10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=(A.67° B.46° C.23° D.不能确定【考点】全等三角形的判定与性质.【分析】此题可先连接AC,由已知AB=CD,BC=AD,又AC=AC 证△ABC≌△ACD,得∠D=∠B=23°.【解答】解:连接AC,∵AB=CD,BC=AD(已知),AC=AC,∴△ABC≌△ACD,∴∠D=∠B=23°.故选:C.11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是11cm或13cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当三边是3,3,5时,能构成三角形,则周长是11;当三边是3,5,5时,能构成三角形,则周长是13.所以等腰三角形的周长为11cm或13cm.故填11cm或13cm.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.16.十边形的外角和是360度;如果十边形的各个内角都相等,那么它的一个内角是144度.【考点】多边形内角与外角.【分析】任何凸多边形的外角和都是360度.因而每个外角的度数是360°÷边数,内角与外角互为邻补角,即可求得它的一个内角.【解答】解:∵任何多边形的外角和都等于360度,∴十边形的外角和是360度;∵每个外角的度数是360°÷10=36°,∴它的一个内角是180°﹣36°=144度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于360度.【考点】三角形内角和定理.【分析】由题意知,这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可知.【解答】解:∵∠A+∠E+∠C=180°,∠D+∠B+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是AE=BF(此题答案不唯一).【考点】全等三角形的判定.【分析】要使△ADE≌△BCF,现有条件为二角分别对应相等,只要再添加一边对应相等即可,任意一边都可.【解答】解:∵AE∥BF,∴∠A=∠B,又∵∠E=∠F,AE=BF,∴△ADE≌△BCF(ASA).故填AE=BF(此题答案不唯一).19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=5cm,∠C= 40度.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等,全等三角形的对应角相等即可解决.【解答】解:∵△ABE≌△ACD,∴AE=AD=5cm;∠C=∠B=40°.故分别填5,40.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=70度.【考点】全等三角形的判定与性质.【分析】由SSS先证明△ABD≌△CDB,得出∠CBD=∠ADB=30°,再由SAS证明△ABE≌△CDF,得出∠DFC=∠AEB=100°,利用三角形的外角的性质得∠BCF=∠DFC﹣∠CBF=70°【解答】解:∵AB=DC,AD=BC,又BD=DB,∴△ABD≌△CDB,∴∠CBD=∠ADB=30°,∠ABD=∠CDB,又AB=CD,BE=DF,∴△ABE≌△CDF(SAS),∴∠DFC=∠AEB=100°,∴∠BCF=∠DFC﹣∠CBF=100°﹣30°=70°.故填空答案:70°.三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.【考点】全等三角形的判定与性质.【分析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.【解答】证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【解答】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【考点】平行线的判定与性质.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.,∴△ADF≌△【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学第一学期第一次月考试卷
一、相信自己,把每题的唯一正确答案填入括号内(每题2分,共20分)。

1、下列交通标志图中,属于轴对称图形的是 ( )
A B C D
2、下列各组数中不能作为直角三角形的三边长的是 ( ) A. 1.5, 2, 3; B. 7, 24, 25; C. 6, 8, 10; D. 9, 12, 15.
3、小王在镜子里看到他背后墙上的电子钟示数为12:01,则此时实际时刻为 ( ) A 、21:01 B 、10:21 C 、10:15 D 、10:51
4、下列说法中正确的是 ( ) ① 角平分线上任意一点到角的两边的线段长相等 ② 角是轴对称图形 ③线段不是轴对称图形
④ 线段垂直平分线上的点到这条线段两个端点的距离相等
A.①②③④
B.①②③
C.②④
D.②③④
5、等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为 ( ) A 、7cm B 、3cm C 、7cm 或3cm D 、5cm
6、下列图形中,不是轴对称图形的是 ( ) A 、有两个外角相等的三角形 B 、有一个内角为0
45的直角三角形 C 、有一个内角为060,另两边相等的三角形 D 、有一内角为0
35的直角三角形
7、36的平方根是 ( ) A.±6 B. 6 C. 6 D. ±6
8、如图字母B 所代表的正方形的面积是 ( )
(A ) 12 (B )13 (C ) 144 (D )194
9、下列叙述中,正确的是 ( ) A. a 的平方根是a B. (-a)2
平方根是 -a
C.一个数总有两个平方根
D. –a 是a 2
的一个平方根
10、下列说法不正确的是 ( ) A 、等腰梯形同一底上的两底角相等 B 、同一底上的两底角相等的梯形是等腰梯形 C 、等腰梯形对角线相等 D 、对角线相等的四边形是等腰梯形 二、能干的你一定可以把正确答案填入空格(每空2分,共20分)。

11、在日常生活中,事物所呈现的对称性能给人们以平衡与和谐的美感. 我们的汉语也有类似的情况,呈现轴对称图形的汉字有 (请举出两个..例子,笔画的粗细和书写的字体可忽略不计). 12、等腰三角形一个底角为40°,则此等腰三角形顶角为______。

13、若a 的平方根是±5,则a =___________.
14、等腰梯形是_____对称图形。

15、等腰直角三角形的一条直角边为1cm ,则斜边上的高为
16、在直角三角形中,已知一条直角边的长为6,斜边上的中线长为5,则另一条直角边的长为_________。

169
B 25
17、如图(1),所有的四边形都是正方形,所有的三角形都是直角 三角形,其中最大的正方形的边长为7cm ,则正方形A ,E ,C , D 的面积之和为___________
18、一根24m 高的旗杆,下午三时其影长7m ,此时旗杆的顶端与影子的顶端之间的距离是 m .
19、用30根火柴棒首尾顺次连接,组成一个直角三角形,它的三条边分别由 、 、 根火柴棒首尾顺次连接而成.
20、如图,将标号A 、B 、C 、D 的正方形沿图中虚线剪开后,得到标号为P 、Q 、M 、N 的四个图形。

按照“哪个正方形剪开后得到哪个图形,”的对应关系,填空:A 与______对应,B 与 ______对应,C 与______对应,D 与______对应。

A
B
C
D
P Q M N
三、动手画一画(每题5分,共10分)
21、请用1 个等腰三角形,2个矩形,3个圆,在下面设计一个轴对称图形,并用简炼的文字说明你的创意。

22、如图所示,要在街道旁修建一个牛奶站,向居民区A 、B 提供牛奶,牛奶站应建在什么地方,才能使A 、B 到它的距离之和最短?(要求:用尺规作图,保留作图痕迹,写出作法,不用证明).
四、沉着思考,冷静解答以下各题, 23、求下列χ的值;(每题4分,共8分)
(1)2042=x (2) 049162=-x
街道 居民区B · 居民区A · E D
A
C
7cm
24、如图AD 是△ABC 的中线,∠ADC=60°,BC=4,把△ADC 沿直线AD 折叠后,点C 落在C ′的位置上,那么BC ′的长度是多少?请说明理由。

(8分)
25、在等腰Rt △ABC 中,BC DE A ⊥︒=∠,90,BD 是∠ABC 的平分线,且BD =13,AB=12,△DEC 的周长是多少?请说明理由。

(8分)
26、巳知:如图,在梯形ABCD 中,AB =CD ,AD ∥BC ,点E 在AD 上,且EB =EC ,则AE 与DE 相等吗?为什么?
(8分)
27、“中华人民共和国道路交通管理条理”规定:小汽车在城市街路上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪”正前方30米处,
过了2秒后,测得 “小汽车”与“车速检测仪”间的距离变为50 米,这辆“小汽车”超速了吗? (8分)
28、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。

(1)写出点O 到△ABC 的三个顶点 A 、B 、C 的距离的关系。

(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。

(10分)
附加题:
1、如图,在四边形ABCD AC BD E AC DAB 中,对角线与相交于点,若平分∠,且
2、两条公路OM 、ON 相交成300角,沿公路OM 方向80米A 处有一所小学(如图),当拖拉机沿ON 方向行驶时,路旁50米以内受到噪音的影响,已知拖拉机的速度为18千米/时,问该校是否受到噪音影响?若受影响,则影响时间为多少?若不受影响,说明理由。

(12分)。

相关文档
最新文档