大学物理 第三章3.1

合集下载

大学物理-第3章-静电场中的导体

大学物理-第3章-静电场中的导体

R2 R1
在金属球壳与导体球之间(r0 < r < R1时):
q r0
作过 r 处的高斯面S1
q
S1 E2 dS 0

E2 r
q
40r 2
q
E2 40r 2 er
在金属球壳内(R1< r < R2时):电场 E3 0
在金属球壳外( r > R2时): 作过 r 处的高斯面 S 2
S2
E4
dS
在它形成的电场中平行放置一无限大金属平板。求:
金属板两个表面的电荷面密度?
解:带电平面面电荷密度0 ,导体两面感应电荷面密度分 别为1 和 2,由电荷守恒有
1 2 0 (1)
导体内场强为零(三层电荷产生)
σ0 σ1
σ2
E0 E1 E2 0
(2)
E0
0 1 2 0
(3)
20 20 20
导体表面任一点的电场强度都与导体表面垂 直。
20
2.导体在静电平衡状态下 的一些特殊性质
❖ 导体是等势体,导体表面是等势面。
在导体内部任取两点P和Q,它们之间的电势差可以表示为
VP VQ
Q
E
dl
0
P
❖ 导体表面的电场强度方向与导体的表面相垂直。
❖ 导体上感应电荷对原来的外加电场施加影响,改
Q1
Q2
0
q
q
0

E4r
q
4 0 r 2
E4
q
4 0 r 2
er
43
思考:(3)金属球壳和金属球的电势各 为多少?
解:设金属球壳的电势为U壳 ,则:
U壳
R2 E4 dl

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理静电场3(电势)ppt课件

大学物理静电场3(电势)ppt课件

最新课件
9
单个点电荷的场的电势 U q
2)电势叠加原理(标量叠加)
q
Up Edl
Eidl
1
4
0r r1 r2
p
p
P Ei dl
qi
q2
4 0ri
或对连续分布带电体
U p
dq
4 0r
q
最新课件
dq
r
p
r3
ri
q3
qi
p
Up=?
10
Ua
i
qi
40ri
一个点电荷系的电场中,任一点的电势等于每一个点电 荷单独存在时在该点所产生电势的代数和。——电势 叠加原理
电势叠加原理 习题最指新课导件 P65 16
34
形状如图所示的绝缘细线,其上均匀分布着
正电荷。已知电荷线密度为λ,两段直线长 均为a,半圆环的半径为a。求环心O点的电 势?
电势叠加原理
求电势能和电力
习题指导P65 17
最新课件
35
3.有一边长为a的正方形平面,在其中垂线上距 中心O点a/2处,有一电量为q的正点电荷,如图所 示,则通过该平面的电场强度通量为:
b
W a W bA a bq 0 aE d r
二、电势差:
移动单位正电荷从电场中a 点到b点,静电力所做 的功,为静电场中两点的电势差:
U abU aU ba bEdr最 新W 课q 件aW qb 描只述与电电场场的有性关质6
➢某点 (a点) 的电势:
首先设定电势0点(b点):
Ua
b
Edr
积分与路径无关
最新课件
4
对任何静电场,电场强度的线积分都只取决于起 点和终点的位置而与积分路径无关--静电场的

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)2ωmR J J+ (B) 02)(ωR m J J + (C)02ωmR J(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度 在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

[答案:(E)]3.2填空题(1) 半径为30cm的飞轮,从静止开始以0.5rad·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度aτ= ,法向加速度a n= 。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理第三章1杨氏双缝干涉

大学物理第三章1杨氏双缝干涉

2. 实验解释
E
由S1和S2 射出的光波
S
1
具有相同的频率,
相位差的恒定,
●S
振动方向关系如何?
S 2
由于狭缝 S1 和 S2 靠近二者连线的中垂线两侧附近, 由 S1和 S2 射出的光波的光振动方向也近于平行。 所以从由 S1和 S2 射出的两列光波是相干光。
由于S1 和 S2 是同一波阵面的两部分,
波列
E
E 3

0 1.5eV
波列长L = c
E

2
3.4eV
(E E )/h
2
1
E
1


13.6eV
由上面的叙述,原子每一次发光所持续的时间,
是有限的而且很短,同时所发射电磁波能量也是
有限的,两个能级之差,
所以一个原子每一次发光就只能发出一段长度有限,
频率一定和振动方向一定的光波
这样一段光波称作一个波列
I Imax I1 I2 2 I1I2 (k=0,1,2,3…)
▲相消干涉(暗) (2k 1) ,
I Imin I1 I2 2 I1I2 (k=0,1,2,3…)
I I I 2 I I cos
1
2
12
2 1 (k1r1 k2r2 )
光强 I 随相位差 Δφ 的变化情况如图:
这些条纹都与狭缝平行,条纹间的距离彼此相等.
2. 实验解释
E
S 1
●S S
2
当一束单色光照射狭缝S 时,
通过S 形成一个柱面光波,
然后入射到狭缝 S1和S2 处,光通过S1和S2 ,
又形成两个柱面光波并在空间交叠起来。
2. 实验解释

大学物理教程第3章答案张文杰等主编中国农业大学出版社

大学物理教程第3章答案张文杰等主编中国农业大学出版社

思考题3.1 什么是连续性方程?答:假设以闭合外表内既无源,又无负源,那么根据质量守恒,进入该闭合外表的净流量等于闭合外表内物质的增加率,应用在稳定流动的流管中,我们得到连续性方程:ρ1A1v1=ρ2A2v2。

其中,ρ为密度,假设它在截面积 A处是均匀的; v为经过截面积A处的平均速度〔v与A垂直〕。

假设流体又是不可压缩的,连续性方程简化为A1v1=A2v2。

3.2 什么是伯努利方程?答:流体是稳定的,非黏性的,不可压缩的,伯努利方程给出同一流线任两点处的压强p,流速v,高度y满足p1+12ρv1²+ρgy1= p2+12ρv2²+ρgy2注意伯努利方程中每一项都是取的单位面积的内的量值。

方程指出:压力沿流线所作的功等于动能和势能的改变〔都指单位面积〕。

3.3 在定常流动中,流体是否可能加速运动?答:定常流动是指宏观上流体在空间某位置的流速保持不变,对某个流体质点而言,它在空间各点速度可能不同,也就是说,它可能是加速运动。

3.4 从水龙头徐徐流出的水流,下落时逐渐变细,为什么?答:据连续性原理知,,流速大处截面积小,所以下落时水的流速逐渐增大,面积逐渐减少变细。

3.5 两船平行前进时,假设靠的较近,极易碰撞,为什么?答:两船平行前进时,两条流线方向相同,,如果靠的较近,两船之间的流速将大于两船外侧的流速,这样两船都将受到一个指向对方的一个压力的作用,极易造成两船碰撞,稍有晃动,流线重合,船体就会相撞。

3.6 两条流线不能相交,为什么?答:如果两条流线相交,那么焦点处就会出现两个速度,这个结论是错误的,所以两条流线不能相交。

3.7 层流和湍流各有什么特点?引入雷诺数有哪些意义?答:流线是相互平行的流动称层流。

流体微团作复杂的无规那么的运动称为湍流。

无量纲的量雷诺数是层流向湍流过渡的一种标志。

以临界雷诺数为准,小于它为层流,大于它为湍流。

习题3.1 假设被测容器A内水的压强比大气压大很多时,可用图中的水银压强计。

《大学物理》第三章电势S

i
" p"
或: d
40 ri dq d 40 r
z • 你能否迅速算出“非均匀带电球面(只知道总电量)”
在球心处的电势? • 如果用“路径积分法”,本题应如何解?
例计算均匀带电q 的园环轴线上任一点的电势。 解: 用“电势叠加法” y (以无穷远处 先考虑点电荷dq对电势的贡献 dq 的电势为0) dq d 4 0 r r q dq q R d 0 4 r 40 r 0 x o x Q 2 2 4 0 x 2 R 2 r x R
球面A 产生的电势分布
球面B 产生的电势分布
qA r R A A 4 0 RA q r RA A A 4 0 r
r RB r RB
qB B 4 0 RB qB B 4 0 r
A B
qB
qA R A
r RA
qA qB 4 0 RA 4 0 RB
E



dr
P2
2
空间变化率:
d E cos dr d E ( d dr dr ) Max

0

E

有最大值
沿电场方向电势随空间的变化率最大,就把这一最大值称为
1
P 1

dr

P2
2
该点的电势梯度 d ( ) Max 定义电势梯度--- grad
则:E dl a b
dl
a
E
E dl
0
dl
b
——场强与等势面正交。

若再取小位移 dl 与电场同向(由点 a到点b′) 则:E dl a b 0 , a b

《大学物理简明教程》第三章课后习题答案


(6)氮气分子为双原子分子,有 5 个自由度。所以氮气分子的平均动能为
3.7 1 mol 氧气贮于一氧气瓶中, 温度为 27℃。 如果把它视为刚性双原子分子的理想气体,
能又称为内动能即理想气体的内能。若运输氧气瓶的运输车正以 10m/s 的速率行驶,这些氧气 分子的内能又是多少?
解: (1)刚性双原子分子有 5 个自由度,所以氧气分子的平均动能为


2ε t 2 × 0.1 × 1.60 × 10 −19 = = 773( K ) 3k 3 × 1.38 × 10 − 23
5
3.6 容器内储有氮气, 其温度为 27 o C , 压强为 1.013×10 Pa。 把氮气看作刚性理想气体,
平动能; (5 )氮气分子的平均转动动能; (6)氮气分子的平均动能。 (摩尔气体常量
解:当水银滴在正中不动时, N 2 和 O2 的压强和体积都相等,即
3

−1
3.2 技术上真空度常用 Toor(托)表示, 它代表 1mmHg 水银柱高的压强, 有 1atm = 760 托。

如果 T1 < T2 ,也有同样的结果。

3 −1
C1T1 + C 2T2 C1 + C 2

p N 2 = pO2 , V N 2 = VO2
o


快” (电热丝)加热。已知在通电使水从 25 o C 升高到 75 o C 的过程中,


图 3-32 习题 3.13 用图

o
Q = cm∆T = 4.2 × 10 3 × 1 × (75 − 25) = 2.1 × 10 5 ( J )
设水从周围环境吸收的热量为 Q ′ ,根据能量守恒定律有

大学物理上第3章 刚体的定轴转动


z
(ω, β )
r fi
F 两边乘以r 两边乘以ri ,有: it ri + f it ri = ∆mi ait ri
对所有质元的同样的式子求和, 对所有质元的同样的式子求和,有:
fit
∆mi
Fit
r Fi
Fir
o
Fit ri + ∑ f it r i = ∑ ∆mi ait ri = β ∑ ( ∆mi ri 2 ) ∑
表示合外力矩,记作M ∑ F r 表示合外力矩,记作 表示内力矩之和, ∑ f r 表示内力矩之和,其值等于零
it i
it i
(∆mi ri 2 ) 称为刚体对轴的转动惯量,记作J 称为刚体对轴的转动惯量,记作 ∑
则上式可简写成: 则上式可简写成:M = Jβ
11
M = Jβ
刚体定轴转动定律: 刚体定轴转动定律:刚体所受的对于某一固定转动 轴的合外力矩等于刚体对此转轴的转动惯量与刚体 在此合外力矩作用下所获得的角加速度的乘积。 在此合外力矩作用下所获得的角加速度的乘积。 说明: 说明: 1. 上式是矢量式(在定轴转动中力矩只有两个方向)。 上式是矢量式(在定轴转动中力矩只有两个方向)。 2. M、J、β是对同一轴而言的。 是对同一轴而言的。 3. 上式反映了力矩的瞬时效应。M = Jβ = J dω 上式反映了力矩的瞬时效应。 dt 4. 刚体转动定律的地位与牛顿第二定律相当。 刚体转动定律的地位与牛顿第二定律相当。 5. 转动惯量 是刚体转动惯性大小的量度。 转动惯量J是刚体转动惯性大小的量度 是刚体转动惯性大小的量度。
2
§3.1
3.1.1 刚体的运动
刚体定轴转动的描述
刚体的平动:刚体在运动过程中, 刚体的平动:刚体在运动过程中,其 上任意两点的连线始终保持平行。 上任意两点的连线始终保持平行。 可以用质点动力学的方法 来处理刚体的平动问题。 来处理刚体的平动问题。 刚体的定轴转动: 刚体的定轴转动:刚体上各点都绕同 一直线作圆周运动, 一直线作圆周运动,而直线本身在空 间的位置保持不动的一种转动。 间的位置保持不动的一种转动。这条 直线称为转轴 转轴。 直线称为转轴。

大学物理精品课件3.1 洛伦兹变换

2
伽利略变换式
牛顿的绝对时空观
第三章 相对论
伽利略速度变换公式
u' x u x v
s
y
vt
y
s'
y'
y'
u' y u y
u'z uz
加速度变换公式
v
x'
P ( x, y , z )
*
( x', y', z ' )
o
a' x ax
a' y a y
a a' F ma ' F ma
25
伽利略变换式
牛顿的绝对时空观
第三章 相对论
速度变换
考虑一质点 P 在空间 的运动,从 S 和 S′ 系来看,速度分别是:
y
S
y'
S'
V
P
O
v v'
x ( x' )
O'
z
z'
dx dy dz v x dt , v y dt , vz dt dx dy dz v'x dt , v'y dt , v'z dt
4
伽利略变换式
牛顿的绝对时空观
第三章 相对论
y
(1)同时的绝对性
V
y'
event 1
event 2
o
S系, t1 t 2
o'
x
x'
两个事件同时发生
据伽利略变换,S/系
同时的绝对性
t1 t 2
在其他惯性系中,两个事件也一定同时发生。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仅当m、Mf 均为0时, 才有T1 = T2
3-3 定轴转动的功和能 转动动能 1.力矩的功
1 1 2 E K J E K mv 2 2 2
d
F
v
F
dW F dr F dr F rd dW Md
W Md
1
2
总功
2
o
r
mij 刚体上的各质元在运动中都绕一固定 mi mi ②定轴转动: m i mi 轴作圆周运动。 mi mimi
③刚体的一般运动 ——平动+转动
刚体的运动可以表示为一个随质心的平动加上绕质心的转动。
3-1 刚体运动的描述

角坐标:
角速度:
角位移:

d dt 矢量, 与转动方向成右手螺旋关系。
o
O
x
一长为L、质量为m的均匀直棒,在重力(矩)
作用下,绕一端由水平位置无初速转至竖直 位置。试用力矩作功的定义式求出整个过

1 2 程力矩作的功及棒在竖直位置时的角速度。 J mL 3
O
单位:kgm2
决定转动惯量的因素 ?
① 刚体的质量; ③ 转轴的位置。 —— J 有相对性
04.12.26印度洋大地震(9.0),使T= –2.87微秒 ② 刚体的质量分布;
二、 转动定律 1.力矩 力臂 d=r sin
M
O
F
r

力矩 M=Fd=Frsin (3-3) 矢量式 M r F (3-4)
沿轴向 2.转动定律
d
垂直转轴并由转轴指向力的作用点 (3-7)
F ma
M: 合力矩 ~产生角加速度的原因 ~ F
d M J J dt
J:转动惯性大小的量度 ~m :角速度的变化率 ~a M 、J 是相对同一转轴的。
例:一轻绳跨过一定滑轮,滑轮视为圆盘,绳的两端分 别悬有质量为m1和m2 的物体,m1<m2.设滑轮的质量为 m,半径为r,所受的摩擦力矩为Mf.绳与滑轮之间无相对 T1 m1 滑动.试求物体的加速度和绳的张力. 解: 对 m1, 取向上为正 T1–m1g = m1a ① 分析运动情况 对m2, 取向下为正 对m,顺时针为正 m2g –T2= m2a T2r – T1r – Mf =J a = r
dr
(3-12)
x
2.定轴转动的动能定理
力矩作功与对应的状态变化间的关系.
2 2 d 1 1 2 2 J d W W M d mvJ d 对比 mv 2 1 1 1 2 1 dt2


1 2 1 2 W J 2 点组
J mr m r m r

n
2 11
2 2 2
2 3 3
r2
J mi ri 2 (3-5) 单摆 ? J = ml2
i 1

• m
2
m1
r1 r3

m3
2. 刚体
J r 2 d m (3-8)
V
飞轮的质量为什么 O` l 大都分布于外轮缘?
竿子长些还是短些 m • r 较安全? dm dJ=r2dm
a (m2 m1 ) g M f r
r
T2 m2
② ③ ④
T1
T2
m1g
m2g
r
m2 m1 m / 2 T2 T1 m2 [( 2m1 m 2) g M f r ] m1[( 2m2 m 2) g M f r ] T2 T1 1 m1 m2 m 2 m1 m2 m 2 J mr 2 2 T1 T2
合外力矩对绕定轴转动的刚体所 作的功等于刚体转动动能的增量 。
3-4 角动量定理和角动量守恒定律 一.角动量定理 d dω M J J ( J )
dt
M作用时间: t1~t2
dt
包括质点和刚体 角动量 L=J 质点的角动量 L=m r2 =m v r

t2
t1
M dt

J1
J 22
1
d( J ) J 2ω2 J1ω1
冲量矩 二.角动量守恒定律
当 M =0时, 由(3-22)得:

=恒矢量
说明: 1) 对刚体:J 不变,匀角速转动。 2) 对非刚体: J , 均变, 1/J 。 3) 角动量守恒定律适用范围:大到天体运动,小到电子绕 原子核的运动!
一花样滑冰运动员,当两臂伸展时,转动角速度为0、转动惯 量为J0;当两臂收拢时转动惯量变为0.5J0。忽略冰刀与冰面的 摩擦,问:此时他的角速度是多少?
1.力矩的功
总功
W Md
1
2
dW Md
d
v Ft
r
F
2.定轴转动的动能定理
dr
1 2 1 2 W J 2 J1 2 2


力 学

选 讲

(第六讲)
主讲教师:杨 培
预习:13.1、13.2

理想模型
第四讲 刚体的定轴转动 名词、概念较多 刚体:在任何情况下,形状和大小都不发生变化的力学研究对象。 即:其上任意两个质元的间距无论施加多大外力均保持不变。
ri j c
mj
刚体运动的几种形式 ①平动: 在运动过程中,其上任意两点的连线方向不变。 mi 刚体平动时,其上各点具有相同的 位移、速度、加速度、及相同的轨迹。m mj j mj m 只要找到其上任一点的运动规律, j 可知 mj mj m j 整个刚体的运动规律。 mj m m i 结论: 平动的刚体可以当成质点处理! mi m j
角加速度: 标量式
d dt

P
x
(3-2)
d dt2
2
d dt


v
=3t3+4t2+2 (rad)
刚体上各质点的线速度与角速度的关系
O
r
v r
v = r⊥ aτ= r⊥
P
(3-1)
3-2 刚体定轴转动定律
转动惯量
描述物体转动惯性的物理量
相关文档
最新文档