黑洞数

合集下载

阅读材料

阅读材料

阅读材料一:数字游戏产生“黑洞数”黑洞数又称陷阱数,是类具有奇特转换特性的整数。

有一种数字游戏,可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数,按照第二步的规则继续操作,直至这个数不再变化为止。

不管你开始写的是一个什么数,几步之后变成的自然数总是相同的。

最后这个相同的数就叫它为黑洞数。

在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。

阅读材料二:奇妙的6174苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。

不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。

6174有什么奇妙之处?请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同,例如3333、7777等都应该排除。

写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。

将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。

例如,开始时我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。

这里,经过两步变换就掉入6174这个“陷阱”。

需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。

再如,我们开始取数2187,按要求进行变换:2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。

黑洞数

黑洞数

黑洞数黑洞数又称陷阱数,是类具有奇特转换特性的整数。

任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。

"重排求差"操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数。

举个例子,三位数的黑洞数为495简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693 按上面做法再做一次,得到594,再做一次,得到495之后反复都得到495再如,四位数的黑洞数有6174但是,五位数及五位以上的数还没有找到对应的黑洞数神秘的6174-黑洞数随便造一个四位数,如a1=1628,先把组成部分1628的四个数字由大到小排列得到a2=8621,再把1628的四个数字由小到大排列得a3=1268,用大的减去小的a2-a1=8621-1268=7353,把7353按上面的方法再作一遍,由大到小排列得7533,由小到大排列得3357,相减7533-3367=4176把4176再重复一遍:7641-1467=6174。

如果再往下作,奇迹就出现了!7641-1467=6174,又回到6174。

这是偶然的吗?我们再随便举一个数1331,按上面的方法连续去做:3311-1133=2178 8721-1278=7443 7443-3447=3996 9963-3699=62646642-2466=4176 7641-1467=6174好啦!6174的“幽灵”又出现了,大家不妨试一试,对于任何一个数字不完全的四位数,最多运算7步,必然落入陷阱中。

这个黑洞数已经由印度数学家证明了。

在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。

苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。

不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。

109. 黑洞数123探秘

109. 黑洞数123探秘

黑洞数123探秘王凯成(陕西省小学教师培训中心 710600)设正整数A 中的偶数字个数为m(A 中没有偶数字时m=0),奇数字个数为n(A 中没有奇数字时n=0),A 是m+n 位数,把A 的偶数字个数m 、奇数字个数n 、总位数m+n 按照“偶奇总”顺序排列得到一个新的整数B(B 的首位可以为0),我们把从A 得到B 的过程叫做A 的黑洞数变换f ,即f(A)=B 。

例如:A=36925037186,A 中的偶数字个数为m=5,奇数字个数为n=6,A 是m+n=11位数。

把A 的偶数字个数5、奇数字个数6、总位数11按照“偶奇总”顺序排列得到一个新的整数B=5611。

从A=36925037186得到B=5611的过程就是A=36925037186的一次黑洞数变换,即有:f(36925037186)=5611。

任意一个正整数A ,经过有限次黑洞数变换f 后,总能得到123。

例如:A=3546980001有6个偶数字、4个奇数字,6+4=10,那么f(3546980001)=6410; 6410有3个偶数字、1个奇数字,3+1=4,那么f(6410)=314;314有1个偶数字、2个奇数字,是3位数,所以f(314)=123(将123黑洞数变换f 后仍然是123,即f(123)=123)。

A 经过三次黑洞数变换f ,最终成为123。

再如:A=555555有0个偶数字6个奇数字,0+6=6,那么f(555555)=066(066是形式上的3位数,本文仍然称为3位数,以下类同);066有3个偶数字0个奇数字,3+0=3,那么f(066)=303; 303有1个偶数字2个奇数字,1+2=3,所以f(303) =123。

命题1:设k 位数A= 12k a a a ⋅⋅⋅(i a 是数字),A 有m 个偶数字、n 个奇数字(m 、n 是自然数),m+n=k 。

则A 经过有限次黑洞数变换f 后,总能得到123。

数学定理

数学定理

1.点到直线的距离计算公式:2.6714(黑洞数)定理黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,6174.再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有3.阿基米德折弦定理(阿基米德中点定理)AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC>AB,M是弧ABC的中点,则从M向BC所作垂线之垂足D是折弦ABC的中点,即CD=AB+BD.折弦定义:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦4.伯特兰·切比雪夫定理伯特兰·切比雪夫定理说明:若整数n> 3,则至少存在一个质数p,符合n<p< 2n− 2.另一个稍弱说法是:对于所有大于1的整数n,存在一个质数p,符合n<p< 2n.5.陈氏定理:任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数(数学中,两个素数的乘积所得的自然数我们称之为半素数,也叫双素数,开始的几个半素数是4, 6, 9, 10, 14, 15, 21, 22, 25, 26, ... 它们包含1及自己在内合共有3或4个因子)的和。

6.婆罗摩笈多定理若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边.如图,圆内接四边形ABCD的对角线AC⊥BD,垂足为M.EF⊥BC,且M在EF上.那么F是AD的中点.7.拿破仑定理以三角形各边为边分别向外侧作等边三角形,则他们的中心构成一个等边三角形.‖该等边三角形称为拿破仑三角形.如果向内(原三角形不为等边三角形)作三角形,结论同样成立。

黑洞数6174的证明

黑洞数6174的证明

黑洞数6174的证明任意取一个四位数,它的4个数位上的数字不全相等,排成一个最大的四位数和最小的四位数,然后用大数减小数得到一个新的四位数。

则经过至多7次这样的操作,必定得到6174,6174即为黑洞数。

证明:设A>B>C>D第一次操作可能出现七种情况:(1)AAAB-BAAA(2)ABBB-BBBA(3)AABB-BBAA(4)AABC-CBAA(5)ABBC-CBBA(6)ABCC-CCBA(7)ABCD-DCBA考虑(1),AAAB-BAAA的个位数为10+B-A,十位、百位都是9,千位是A-B-1;考虑(2),ABBB-BAAA的个位数为10+B-A,十位、百位都是9,千位是A-B-1;考虑(3),AABB-BBAA的个位数为10+B-A,十位为9+B-A,百位是A-B-1,千位是A-B;考虑(4),AABC-CBAA的个位数为10+C-A,十位为9+B-A,百位是A-B-1,千位是A-C;考虑(5),ABBC-CBBA的个位数为10+C-A,十位、百位都是9千位是A-C-1;考虑(6),ABCC-CCBA的个位数为10+C-A,十位为9+C-B,百位是B-C-1,千位是A-C;考虑(7),ABCD-DCBA的个位数为10+D-A,十位为9+C-B,百位是B-C-1,千位是A-D。

注意到(1)中操作后新四位数的千位,个位的和为9,因此新四位数只可能是0999,1998,2997,3996,4995(后面的5994,6993,7992,8991,9990可以不用考虑去,因为下次操作时4995,5994计算结果相同,其余类似)同理,(2),(5)中操作后新四位数和(1)一样(3),(4),(6),(7)中操作后新四位数的千位,个位的和为10,百位,十位的和为8,因此新四位数只可能是去1089,1179,1269,1359,1449,2088,2178,2268,2358,2448,3087,3177,3267,3357,3447,4086,4176,4266,4356,4446,5085,5175,5265,5355,5445.所以我们只需验证上面的数经过不超过6次操作后可以得到6174即可。

4位黑洞数的证明及相关问题剖析

4位黑洞数的证明及相关问题剖析

A B C D - D C B A m n p kA B B D - D B B A m 9 9k 4位黑洞数的证明及相关问题剖析邬金华自原苏联人卡普耶卡提出4位数反复重排求差会得到黑洞数6174至今,这种看似简单的数字游戏隐含的数学道理已逐渐引起越来越多的人的兴趣,并很快被推演到更多位的情形。

网上有消息称,该问题已被“印度学者”和台湾中学生李光宇各自解决,大陆人王景之稍后也在网上公布了他的研究结论,但是,在可以搜索到的材料中却一直没有见到有关的严格的数学证明,而且,台湾李光宇和大陆王景之的结论也不完全一致。

为弥补这些缺憾,这里先介绍几种对经典4位黑洞数的证明方法和相关结论,随后再陆续公布对其它位数的研究结果。

一、操作过程中的差数在反复重排求差的演算过程中,除首次演算时的被减数是某个任意4位数(但4个数字不全相同)以外,以后操作的被减数都是上一次差数的重排,就是说,以后的操作都是在差数基础上进行的,而且黑洞数本身也是一个差数,只是较为特殊罢了。

为了揭示一般差数的特点,这里将重排求差时的最大数用大写字母ABCD的形式写出(最小数随之而定),差数用小写字母mnpk的形式写出。

按最大数中间二位数字是否相同,可将最大数和相应得到的差数分为两种类型。

类型1:最大数中间二位数字不同,即A≥B>C≥D,称无核类型(0核类型),或普通类型。

将相减操作写成竖式,可以得到被减数、减数和差数各构成数字之间的基本关系式:m=A-D m+k=10n=B-C-1 n+p=8p=C-B+9 m>nk=D-A+10很明显,所有差数的共同特点是:首尾二数字之和必为10,中间二数字之和必为8,首位数大于二位数。

这样,能作为差数出现的数并不多,这里将它们从小到大全部罗列如下,共1+2+3+……+9=45个:10892085 21783087 3177 32674086 4176 4266 43565085 5175 5265 5355 54456084 6174 6264 6354 6444 65347083 7173 7263 7353 7443 7533 76238082 8172 8262 8352 8442 8532 8622 87129081 9171 9261 9351 9441 9531 9621 9711 9801类型2:最大数中间二位数字相同,即A≥B=C≥D(不能同时都取等号),称有核类型。

卡普雷卡尔黑洞数证明abc

卡普雷卡尔黑洞数证明abc

卡普雷卡尔黑洞数证明abc文章标题:探秘卡普雷卡尔黑洞数证明abc:从简单到复杂的数学奇迹引言:在数学的广袤宇宙中,隐藏着许多令人着迷的数学奇迹,而卡普雷卡尔黑洞数证明abc便是其中之一。

abc猜想自从被提出以来,一直挑战着数学家们的智慧和想象力。

本文将以从简到繁、由浅入深的方式,带领读者揭开这个奇妙数学现象的面纱。

第一部分:初识卡普雷卡尔黑洞数与abc猜想1.1 卡普雷卡尔黑洞数的背景卡普雷卡尔黑洞数,亦称为卡普雷卡尔数,最早由维克托·卡普雷卡尔于1985年提出。

它是一个与数论密切相关的数列,定义为将每个正整数的数字按递增顺序排列后所得到的数。

数1234的卡普雷卡尔黑洞数即为1234。

1.2 abc猜想的由来与关键概念abc猜想是由法国数学家乔志尧在1985年提出的。

它涉及到三个正整数a,b,c,满足条件a+b=c,并且a,b,c没有大于1的公共因子。

猜想认为,对于任意给定的正整数ε>0,存在一个常数K(ε),当abc满足上述条件时,成立不等式:c<K(ε)·rad(abc)^{1+ε},其中rad(abc)是a,b,c的乘积的正因子的乘积。

第二部分:揭开卡普雷卡尔黑洞数与abc猜想的奇妙关联2.1 卡普雷卡尔黑洞数与高指数初等代数近年来,数学家们通过研究卡普雷卡尔黑洞数与高指数初等代数的关系,发现了它们之间的奇妙联系。

具体来说,他们发现了某种情况下,abc猜想与卡普雷卡尔黑洞数的性质相吻合。

2.2 卡普雷卡尔黑洞数证明abc的较简单策略根据数学家们的研究成果,他们提出了一种相对较简单的策略来证明abc猜想与卡普雷卡尔黑洞数的关联。

该策略通过引入一系列数论结构和代数理论,追溯卡普雷卡尔黑洞数的数学规律,并将其与abc猜想的条件进行对比和分析。

第三部分:个人观点与进一步思考3.1 我对卡普雷卡尔黑洞数与abc猜想的理解卡普雷卡尔黑洞数与abc猜想的奇妙关联使我对数学的美妙之处有了更深刻的认识。

谈谈黑洞数

谈谈黑洞数

黑洞数河北张家口市第十九中学贺峰一、一位黑洞数(0)黑洞数0:随意取4个数,如8,3,12,5写在圆周的四面。

用两个相邻数中的大数减小数,将得数写在第二圈圆周。

如此做下去,必会得到4个相同的数。

这个现象是意大利教授杜西在1930年发现的,所以叫作"杜西现象"。

其实把“杜西现象”再继续下去必会得到这个圆周的最外层是四个0。

因为得到的4个相同的数两两相减差为0,也就得到:任意地在圆周的四面写上4个数,用两个相邻数中的大数减小数(相同的也相减),将得数写在第二圈圆周。

如此做下去,必会得到4个0。

这就是黑洞0。

二、两位黑洞数(13)(2004重庆北碚区)自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷井”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”。

那么最终掉入“陷井”的这个固定不变的数R=__13_。

三、三位黑洞数(495、123)黑洞数123随便找一个数,然后分别数出这个数中的奇数个数和偶数个数以及这个数有多少位,并用数出来的个数组成一个新数,最后组成的数字总会归结到123。

举个例子,如:58967853,这里面有8、6、8共3个偶数,5、9、7、5、3共5个奇数,共8位数。

然后我们用新得到的几个数字重新组合,把原数中的偶数个数放在最左边,中间放原数的奇数个数,最右边表示原数的位数。

根据这个规则,上面的数就变成358了,然后按照这个规则继续变换下去,就会得到123。

再取任一个数,如:81872115378,其中偶数个数是4,奇数个数是7,是11位数,又组成一个新的数4711。

该数有1个偶数,3个奇数,是4位数,又组成新数134。

再重复以上程序,1个偶数,2个奇数,是3位数,便得到123黑洞。

反复重复以上程序,始终是123,就再也逃不出去,得不到新的数了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑洞数黑洞数又称陷阱数,是类具有奇特转换特性的整数。

任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。

"重排求差"操作即组成该数得排后的最大数去重排的最小数。

举个例子,三位数的黑洞数为495简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693按上面做法再做一次,得到594,再做一次,得到495之后反复都得到495再如,四位数的黑洞数有6174但是,五位数及五位以上的数还没有找到对应的黑洞数神秘的6174-黑洞数随便造一个四位数,如a1=1628,先把组成部分1628的四个数字由大到小排列得到a2=8621,再把1628的四个数字由小到大排列得a3=1268,用大的减去小的a2-a1=8621-1268=7353,把7353按上面的方法再作一遍,由大到小排列得7533,由小到大排列得3357,相减7533-3367=4176把4176再重复一遍:7641-1467=6174。

如果再往下作,奇迹就出现了!7641-1467=6174,又回到6174。

这是偶然的吗?我们再随便举一个数1331,按上面的方法连续去做:3311-1133=2178 8721-1278=7443 7443-3447=3996 9963-3699=62646624-2466=4174 7641-1467=6174好啦!6174的“幽灵”又出现了,大家不妨试一试,对于任何一个数字不完全的四位数,最多运算7步,必然落入陷阱中。

这个黑洞数已经由印度数学家证明了。

在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。

苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。

不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。

6174有什么奇妙之处?请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同或有完全相同趋向,例如3333、7777、7337等都应该排除。

写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。

将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。

例如,开始时我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。

这里,经过两步变换就掉入6174这个“陷阶”。

需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。

再如,我们开始取数2187,按要求进行变换:2187 →8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。

这里,经过五步变换就掉入了“陷阱”——6174。

拿6174 本身来试,只需一步:7641-1467=6174,就掉入“陷阱”再也出不来了。

所有的四位数都会掉入6174设的陷阱,不信可以取一些数进行验证。

验证之后,你不得不感叹6174的奇妙。

任何一个数字不全相同整数,经有限次“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。

"重排求差"操作即组成该数得排后的最大数去重排的最小数。

黑洞数的性质及应用【摘要】本文提出建立了黑洞数的概念,分别对整数黑洞数、模式黑洞数、方幂余式黑洞数的一般性质做了阐述。

并给出了二元一次方程ax- by- c =0的求根法则。

【关键词】黑洞数、整数黑洞数、模式黑洞数、方幂余式黑洞数。

【引言】在日常学习计算中,化简含有未知数的代数式或方程经常会得到x-x=0之结果。

此前,人们只是把这种情况定义为“此算式没有意义”而终结。

黑洞数理论的出现,让人们看到了代数式或方程中未知数可任意取值时的另一层含义。

本文提出证明的方幂余式黑洞数定理,揭示出a,m不互素条件下的余数循环规律,它将与欧拉余数定理互为补充,构造出全体整数的方幂式除法余数运算法则。

本文给出的二元一次方程ax-by-c=0的求根公式,将成为余数新理论应用的一个范例。

定义1、在含有未知数变量的代数式中,当未知数变量任意取值时其运算结果都不改变,我们把这时的数字结果叫黑洞数。

根据运算性质的不同,我们把黑洞数分为以下三种类型:Ⅰ、整数黑洞数Ⅱ、模式黑洞数Ⅲ、方幂余式黑洞数Ⅰ、整数黑洞数在前文《模根因数定理与模根剩余法判定素数》中,在建立选加因数概念后,我们证明了整数因数定理:若a、b都是大于1的整数,且有g = ab,则有:g+an=a(b+n)其中:n = 0、1、2、3……根据整数因数定理,我们即可得到如下整数黑洞数ab+an--------------- = ab+n其中:n = 0、1、2、3 ……这里,不论未知变量怎样取值,上式的结果都等于a.。

例如:取a=7, b=3,ab=21,则有:21+7n ---------------- = 73+n 其中:n = 0、1、2、3 ……应用方面的例子:全体偶数= 2 (n) + 2, (n = 0、1、2、3 ……)自然数中的全部合数= 4 +2n + h(2+n)其中:n = 0、1、2、3 ……对n的每个取值都重复取h = 0、1、2、3 ……Ⅱ、模式黑洞数模式黑洞数是指模的同余式mn+L条件下的黑洞数。

在前文《模根因数定理与模根剩余法判定素数》一文中,模根因数定理(1)式:若a>1,b>1,且ab = mk + L,则有:m(k+aN)+L -------------------------- = ab+mN 其中:N = 0、1、2、3 ……这时的a值就是模式黑洞数。

应用实例:取a=7,b=13, 则ab= 91=mk + L = 2×45×12(45+7N)+1 根据上式得到:-------------------------- =713+2N 其中:N = 0、1、2、3 ……应用实例:素数通式定理若ap是同余式2N+1模根数列的条件剩余数,当ap ≠ 4 + 3n + h (3 +2n ) 时其中:n = 0、1、2、3 ……对n的每个取值都重复取h = 0、1、2、3 ……则条件通式2+1 的值恒是素数。

模式黑洞数性质是我们建立素数代数理论体系的根本前提。

Ⅲ、方幂余式黑洞数在方幂余式除法a^n÷m ≡L关系中,当得到L^n÷m ≡L 时(n = 1、2、3 ……), 我们称这时的L为因数a的m值黑洞数。

例如:在3×5 = 15 关系时我们得到:3^4÷15 ≡ 6这时有:6^n÷15 ≡ 6 (n = 1、2、3 ……)所以我们称6是因数3的15值的方幂余式黑洞数。

为了方便,我们引入符号⊙(m)a = L 来表示方幂余式黑洞数关系。

即上式结果可表示为⊙(15)3 = 6,符号“⊙”在这里读作黑洞数。

下面我们将证明方幂余式黑洞数定理;定理1:如a>1,b>1,(a ,b)=1 且ab = m ;则有:a^ф(b)≡⊙(mod m)即这时:⊙^n ≡⊙(mod m)其中:n = 1、2、3 ……证:我们分别对b为素数,b为素数乘方,b为多个素数乘积时的情况加以证明。

当b为素数时:取a=7,b=19,则ab = 7×19 = 133由定理关系得到:7^ф(19)=7^18≡77 (mod 133)而77^n≡77 (mod 133)此时定理关系成立当b为素数的n次乘方时:取 a = 7,b=5^2=25,则ab = 7×25 = 175 由定理关系得到:7^ф(25)=7^20≡126 (mod 175)而126^n≡126 (mod 175)此时定理关系也成立当b为多个素数乘积时:取 a = 7,b= 3×11=33,则ab = 7×33 = 231 由定理关系得到:7^ф(33)=7^20≡133 (mod 231)而133^n≡133 (mod 231)所述定理关系式成立故定理1得证方幂余式黑洞数的一些性质及应用:1、因数a的黑洞数减1的平方除m的余数是因数b的黑洞数;即:如⊙(m)a = e1,则(e1-1)^2÷m ≡e2 = ⊙(m)b2、m所含黑洞数的个数等于m所含素因数个数做为2底方次数减2;即:m为素数没有黑洞数m有2个素因子时有2^2-2 = 2个黑洞数m含有3个素因子时有2^3-2 = 6个黑洞数3、在m定值后,如果把全部an (n = 1、2、3 ……但n≠b) 值都做为底数,这时的a^c÷m≡⊙的c值变化规律。

与m的余数循环节a^c÷m≡1规律具有相同的变节和不变节特性。

即:若7^10≡⊙(mod m)关系成立,则(7^2)5≡⊙(mod m)关系也成立;应用方面的例子:若b>c ,我们有以下二元一次方程ax -by -c = 0 求根法则:首先:取ab = m计算:a^ф(b)÷m ≡⊙计算:⊙×c ÷m ≡S1计算:(⊙-1)×c ÷m ≡S2x =S1÷a这时y =S2÷b这时的x,y 值是方程的最小整数根。

但方程ax- by- c = 0 有无限多组整数根,它的全部整数根集可表示为:x = S1÷a + b n y = S2÷b + a n其中:n = 0、1、2、3 ……实例1:求方程13x- 7y -3 = 0 的最小整数根和全部整数根?首先:取13×7 = 91 计算:13^ф(7)=13^6÷91 ≡78计算:78×3÷91 ≡52计算:(78-1)×3÷91 ≡49x =52÷13=4这时y =49÷7=7这时的x,y 值是方程的最小整数根。

但方程ax- by- c = 0 有无限多组整数根,它的全部整数根集可表示为:x = 4 + 7n y = 7 + 13n其中:n = 0、1、2、3 ……实例2:求方程13x- 8y +4 = 0 的最小整数根和全部整数根?首先:取13×8 = 104计算:13^ф(8)=13^4÷91 ≡65计算:65×(-4)÷104 ≡-52≡52计算:(65-1)×(-4)÷104 ≡-48≡56x =52÷13=4这时y =56÷8=7这时的x,y 值是方程的最小整数根。

相关文档
最新文档