气隙偏心对汽轮发电机定转子振动特性的影响_图文(精)
汽轮发电机振动的原因分析及措施

汽轮发电机振动的原因分析及措施摘要:汽轮发电机组的振动对于设备的稳定运行有重要的影响,直接关系到企业的安全生产。
对产生振动的影响因素进行分析,具有多方面的原因,设计、制造、安装以及后期的管理等,都可能会导致汽轮发电机组的振动。
下面将从几个方面对影响振动的因素进行分析,为汽轮发电机组的稳定运行提供基础的理论依据。
关键词:汽轮机异常振动影响因素解决措施一、设计制造环节的失误汽轮发电机最为重要的运行设备,其设计的每一个环节都非常重要。
在运行的过程中,其转子的运行速度非常快,如果在旋转中心方面发生偏离,将会对轴承造成激荡力,导致整个机组的振动。
所以为了防止中心的偏离,在设计的过程中应该对生产工艺做出严格的规定,在进行转子装配时,每安装一级叶片就做一次平衡试验,在整体完成后再进行一次整体试验,只有保证整体的平衡性,才能够控制振动的产生。
在对机组进行加工制造的过程中,受到加工精度的影响会导致工艺质量不过关,易造成振动现象的产生。
为了减少因为制造环节出现的振动,应该提高机械加工的精度,保证生产的质量。
在生产的过程中,应该使用先进的生产工艺和材料,提高稳定性,降低因为生产环节造成的振动。
二、安装与检修方面的因素对汽轮发电机组的安装需要具有很高的技术,并且在安装的过程中要严格按照说明书进行。
在后期运行的过程中,要做好检修工作,保证汽轮发电机组能够正常的运行。
在安装与检修的过程中,会因为工艺水平不高或者没有按照规范的要求执行,都会导致机组发生振动,所以在这两个环节要给予高度的重视。
1 轴承中心高的选择在汽轮发电机安装的过程中,需要轴承作为支撑,所以轴承的设置极为关键,两侧轴承的中心高一定要在同一水平线上,保持汽轮发电机的平衡。
如果两侧的轴承中心高不同,那么其所承担的荷载也就不同,在负荷较轻的一端,就会出现自激振动,而较重的一端就会因为负荷较强而产生较大的承载压力,从而引起轴瓦温度的上升,导致机组振动。
针对这种现象可以在安装汽轮发电机组之前,详细阅读厂家的安装说明,严格按照技术要求执行,根据现场的实际情况,对轴承的中心高进行准确的测量,通过垫片的调整到合理的位置后,再进行机组的安装。
浅析汽轮发电机组振动的影响因素

浅析汽轮发电机组振动的影响因素摘要:汽轮机组从设计到运行的过程都可能产生振动,必将影响整个系统的功能发挥,对此,必须引起管理部门的重视,本文从其设计、制造、安装和检修几个方面进行分析,找出影响机组振动的因素,提出具有针对性的措施。
关键词:汽轮发电机振动影响因素汽轮机组的轴承振动程度直接影响到机组整体的运行情况,只有保证安全的运行才能保证收益,引起发电机组异常振动的原因很多,可能是由于振动制造的问题,也可能是运行过程中的管理问题,或者是安装检修不当造成的振动,本文就对其进行详细的分析。
1、设计制造不当导致的机组振动汽轮发电机属于高速运转的机械,一旦质子与旋转中心无法重合,会产生离心力,对轴承产生激振力而使之引起机组振动异常。
这就要求在安装时要对每片叶片进行平衡检查,保证其不平衡的数值在一个合格的范围内。
从制造的角度来看,造成汽轮发电机组转子不平衡的最大原因是由于对机械的精度处理不当,装配工艺无法满足生产需求,因此,必须提高机械加工的精度,保证质量,降低转子的原始不平衡。
设计不当也会引起机组振动,轴承的选取,稳定性不足都会导致振动,引发机组运转危险。
2、安装检修不当导致的振动安装与检修过程中的工艺质量对于机组振动的影响十分大,经过实践分析,由于安装和检修引起振动的情况十分普遍,其中主要有以下几个方面:2.1 标高安装不当由于轴承的标高没有按照设计的要求安装将会导致两端不平衡,引发自激振动、油膜振动和汽流激振等;而负荷较重的一边,由于吃力太大,会引起轴瓦温度升高,当轴瓦乌金温度达到一定值时,很容易产生轴瓦乌金过热现象,从而造成机组的振动。
这就要求在安装过程中根据设计的要求进行安装,结合现场的实际情况调整标高,保持平衡。
2.2 轴承自身特征决定轴承的轴瓦、顶隙对轴承的稳定性有一定的影响,外界因素影响下极容易导致振动,而其连接状况则主要影响其刚度,如果刚度不足,引起的异常振动将较大,这就要求必须做好刚度的控制。
定子和转子之间的气隙原理

定子和转子之间的气隙原理
定子和转子之间的气隙原理是基于磁力原理的。
在电机工作时,定子上通电产生的磁场与转子上感应的磁场相互作用,产生力矩,驱动转子运动。
当定子上通电时,产生的磁场线会穿过气隙,作用于转子上。
转子上感应到的磁场与定子产生的磁场相互作用,形成力矩,让转子开始转动。
气隙的大小会直接影响转子受到的磁场的大小和强度。
一般情况下,转子与定子之间的气隙越小,转子受到的磁场越强,转动的力矩也会增大。
然而,如果气隙过小,可能会造成定子和转子之间发生磁短路,导致电机性能下降或损坏。
因此,气隙的设计和控制对电机的正常运行和性能至关重要。
一般通过精确控制定子和转子的加工工艺和装配过程,以及合理选择磁性材料和绝缘材料来控制气隙的大小,以确保电机的正常工作和性能。
汽轮发电机转子工频振动的原因分析与诊断

动 故 障 之 一 , 用 已有 的测 试 数 据 准 确 地 推 断 故 障 原 利 因 , 决 定采取何种措施 消除工频 振动的关键 。 是 造 成 工 频 振 动 大 的 原 因 通 常 有 汽 轮 发 电 机 气 隙
子 励 磁 线 圈 匝 问 短 路 故 障 占故 障 总 数 的 比重 较 大 , 且 匝 问 短 路 故 障会 导 致 励 磁 绕 组 一 点 甚 至 两 点 接 地 , 导
致恶性 事故的发生 。
侧 负 荷 增 大 , 子 铁 心 变 形 等 危 害 。 下 面 主 要 分 析 动 定
偏心 对转子振动 的影响 。
0 引言
汽 轮 发 电机 与 其 他 旋 转 机 械 运 行 时 的振 动 原 因 有很大 的不同之处 , 了凶发 电机 所用 的 绝缘 材料 、 除
对 偏 心 率 占=g/ g 。按 余 弦 规 律 , 隙 表 达 式 为 气
g( , )=g [ 1一占 0 (O — ) c s tt ] () 1
陈学杰 杨 薛亮 ,
(. 山西 柙林 电力 有 限责 任 公 司, 1 山西 省 柳 林 市 03 1 ; 3 34
2 .贵州电建二公司, 贵州省 贵阳市 5 1 1 ) 5 48
摘 要 :分析 并 总 结 了汽轮 发 电机 气 隙偏 心 、 励磁 绕 组 匝间短 路 、 子 冷 却 风 道局 部 堵 塞 、 转 励磁 绕 组 与 转 子 本 体及 护 环 不
力 。 静 偏 心 时 磁 拉 力 的 方 向是 恒 定 的 , 为 转 子 的 偏 即 心方 向 , 会旋转 变化 , 不 因此 引起 转 子 的 振 动 , 仪 它
发电机定转子气隙标准值

发电机定转子气隙标准值发电机的核心部分是转子和定子。
转子是由导磁体和导电体组成的部件,通过转子的旋转运动,将机械能转换为电能。
在转子和定子之间,需要保留一定的气隙,以确保转子的顺利旋转并避免磨损。
而定转子气隙标准值是指在设计和制造发电机时,需符合的规定的气隙大小。
发电机定转子气隙标准值的确定是非常重要的,因为气隙的大小直接影响到转速、效率和寿命等一系列关键指标。
合适的气隙可以确保转子的顺利旋转,并且能够降低电机内部的损耗。
不正确的气隙大小可能会导致转子和定子之间出现磨损和卡阻现象,从而影响机器的正常工作。
发电机定转子气隙标准值的确定通常遵循以下几个原则:根据发电机的类型和规格确定气隙标准值。
不同类型和规格的发电机,其转子和定子之间所需的气隙大小可能会有所不同。
小型发电机的气隙标准值通常较小,而大型发电机的气隙标准值较大。
根据发电机的工作条件和负载情况确定气隙标准值。
发电机在不同的工作条件和负载情况下,所需的气隙大小也会有所变化。
在高温环境下,由于材料膨胀,气隙标准值可能需要相应增大。
根据发电机的制造标准和技术要求确定气隙标准值。
不同的制造标准和技术要求对发电机的气隙大小有着明确的规定。
制造商需要根据相关标准和要求进行设计和制造,确保气隙在合理范围内。
发电机定转子气隙标准值的制定还需要考虑以下几个因素:材料的热膨胀系数:不同材料的热膨胀系数不同,需要根据转子和定子的材料选取合适的气隙标准值,以避免因温度变化而引起的气隙变化。
转子的尺寸和重量:转子的尺寸和重量也会对气隙的大小产生影响。
较大尺寸和重量的转子可能需要更大的气隙,以减小转子和定子之间的摩擦和磨损。
转速和振动:高速转动的转子对气隙的要求较高,以确保转子的顺利旋转和减小振动。
发电机定转子气隙标准值是根据发电机的类型、规格、工作条件、负载情况、制造标准和技术要求等因素来确定的。
合适的气隙标准值可以确保发电机的正常工作、提高效率和延长寿命。
在设计和制造发电机时,需要根据相关原则和要求来确定气隙的大小,以确保发电机的性能和可靠性。
汽轮发电机组转子不对中引起的振动故障诊断和处理

民营科技2 0 1 3 年第9 期
汽 轮发 电机组转子不 对 中引起 的振动 故障诊 断和处理 。
李玉生 ’ 高
欣
( 1 、 哈 药 集 团 制 药 总厂 , 黑龙江 哈 尔滨 1 5 0 0 4 6 ; 2 、 深圳建筑股份有 限公 司, 广 东 深圳 5 1 8 0 4 9 )
个 轴 系 的稳 定 眭。
转子不对中通常指相邻转子的轴心线与轴承中心线的倾斜或偏 移程度。转子不对中可以分为联轴器不对中和轴承不对中。 1 . 1 联轴器不对中。联轴器不对中是指相邻两根转轴轴线不在同一 直线上 , 或不是一条连续 的光滑 曲线 , 在联轴器部位存在拐点或 阶跃 点。 联轴器不对中包括三种 隋况 : 一是联轴器端面与轴心线不垂直( 端
1 转子不对 中的分类和产生原 因 量为主, 但有时也会有一些 3 X振动分量。 ’
2 . 2 联轴器不 同心产生 的振动现象和端面瓢偏 时的振动相类似 , 但 其表现为较大的径向振动,且沿联轴器两端轴承测量振动相位相差 1 8 0 度, 此时" 2 X振动分量常大于 1 X分量 , 其大小决定于联轴器类型 和结构。而且, 联轴器两侧轴承容易发生油膜失稳 。 2 . 3 当联轴器端面瓢偏或不同心较严重时 ,可能产生更高频率的振 面瓢偏 ) 形成偏角不对 中; 二是联轴器的有关圆柱面和连接螺栓孔节 动谐波分量( 4 x 一 8 X) , 而目 这 时联轴器结构会对振动频谱的特征产生 园中心与轴颈不同心( 圆周偏差 ) 形成平行不对中( 不同心 ) ; 三是前两 重要影响。需要说明的是 , 当汽轮发电机组联轴器不对中J 隋况一般较 种不对 中的组合 , 即平行偏角不对中。 为轻微时 , 振动频谱仍基本上呈 I X分量为主。 联轴器存在端面瓢偏时 , 拧紧连接螺栓后使轴产生变形 , 此时轴 2 4 轴承不对中造成各轴承负荷分配的变化和轴承动特性的改变 , 颈会出现较大的晃度 , 有时由于联轴器圆周方向连接螺栓紧力存在差 从而影响转子和轴承系统的稳定 陛; 支撑负荷的变化引起轴系临界转 异, 旋转时因附加的弯矩作用而产生强迫振动 ; 联轴器不同心时 , 联轴 速变化 , 激发结构共振, 也会造成工作转速下轴系振型变化, 使不平衡 器连接后会产生偏心( 即两轴产生中心偏差) , 旋转时也会引起附加强 灵敏度发生改变。 迫力而产生振动。总之, 联轴器不对中会在转子连接处产生附加的弯 矩和剪切力 , 以及相邻轴承承受径 向作用力 , 它们都将使轴承受方 腈 况恶化 , 产生振动 , 对结构和安全产生不利影响。 1 . 2 轴承不对中。轴承不对中包括偏角不对中和标高变化两种 隋况。 由于目前机组多使用 自位轴承 , 因此 , 一般程度的轴承偏角不对中容
汽轮发电机转子典型故障机理分析及诊断方法

汽轮发电机转子典型故障机理分析及诊断方法摘要:由汽轮发电机转子常见故障入手,分析了常见故障的机理成因,故障造成的危害,在此基础上提出了偏心故障的诊断方法,不对称冷却的预防措施和不对称摩擦的诊断方法,为发电子转子日常维护提供了理论依据。
关键词:偏心;不对称;摩擦力1导致转子发生故障的因素1.1冷却系统故障对于氢内冷发电机,通风孔是转子热交换的主要风路通道,通风孔变形、杂物堵塞等会引起通风孔通流面积减小,这将破坏冷却的对称性,使转子横截面的温度不对称,进而引起热弯曲。
该故障的特点是:随着氢温的升高,发电机转子的冷却效果会变差,但转子不对称冷却程度就相对减小,最终导致热不平衡振动减小。
为此,进行了变氢温试验,试验中发现7,8号轴承振动与氢温变化的相关性不大。
1.2转子线圈膨胀受阻发电机的磁场由转子绕组的励磁电流建立,励磁电流通过绕组并加热线圈,线圈受热后向两端膨胀。
如果这种膨胀不受约束,并不会在转子上产生内应力,而在旋转过程中线槽中的铜线承受巨大离心力,使线圈紧贴在槽楔和护环的内壁,导致结合面存在很大的摩擦力,阻碍线圈膨胀;如果有些线槽中的线圈完全膨胀出来,膨胀受阻的线圈将产生一个反作用力,通过槽楔和护环作用在转子上,使转子弯曲。
该故障的特点是:线圈膨胀量随着转子电流增大而加大,这类振动总体上与电流大小有关。
但由于存在一定的摩擦力,线圈受热膨胀及冷却收缩均会受阻,2 者都可以引起转子的弯曲。
所以当转子电流增加后振动上升,但电流恢复到初始状态时,振动不会完全恢复,往往更高。
另外,经过一段时间的运行后,这类故障随着线圈多次膨胀、收缩后,会慢慢消失。
1.3转子绕组匝间短路因发电机短路,定子膛内被污染,未被彻底清理的污染物可能会进入转子通风槽或其他部位,引起匝间短路。
通过以下试验,并与转子修后返回的交接试验进行比对验证,结果如下:空载特性曲线与交接试验曲线符合性好;转子直阻与出厂值比较在合格范围内,且较出厂值略大;转子绕组静态交流阻抗试验数据正常;动态转子绕组 RSO 脉冲试验显示,正、负2 条相应曲线出现了不吻合部分,不吻合部分的电压最大偏差接近 250 mV。
汽轮机转子偏心异常分析

汽轮机转子偏心异常分析摘要:汽轮机在盘车阶段需对转子的偏心值进行监测,当偏心值较大时必须查明原因并进行消除,否则会造成机组启动后转子振动大。
本文对产生转子偏心大的原因进行了分析,并结合某电厂案例介绍处理的方法。
关键词:汽轮机、转子偏心、盘车、保温一、概述:汽轮机转子偏心值是指转子由于弯曲变形导致轴心发生的偏移量。
在汽轮机盘车阶段会对该值进行监测,当偏心值较大时则认为转子弯曲变形较大,此时启动汽轮机必然会造成转子振动大,所以必须查明原因并使转子偏心值符合标准后方可运行机组。
转子偏心值通常采用涡流传感器测量。
一般情况下汽轮机转子偏心测量装置位于机头前箱内,测点位于转子垂直中心线的顶部或水平位置上。
转子偏心检测的是探头与转子之间的间隙变化,在低速时,该值被作为偏心值进行记录,在高速时该值被作为振动值。
故当汽轮机转速超过一定值后偏心测量退出监视。
二、转子偏心值大的原因及处理方法:一般情况下转子偏心值偏大的原因有以下几点:1、转子刚度不足,转子在经过长期运行或长时间静置后产生弯曲变形。
如果转子产生弹性变形,可经过长时间的盘车使转子恢复正常状态;如转子已产生塑性变形,则需对转子进行直轴处理。
2、偏心测量装置测量误差较大或损坏。
对测量装置进行检验,确保测量精度符合使用要求,如不能达到精度要求或者已损坏,则进行修理或更换。
3、测量位置转子表面存在局部损伤或局部磨损。
对转子测点部位的圆周表面进行外观检查,通过尺寸测量来判断转子是否存在局部磨损,如测点部位表面存在损伤或磨损,可对该部位的转子表面进行修复,或将测点移至转子表面正常部位。
4、汽轮机联轴器中心不合格,连接后转子偏心大。
汽轮机轴系由多根转子组成,转子之间采用刚性联轴器进行连接,在中心调整时如果联轴器开口值较大,连接后会产生一个折角,导致转子转动时发生甩尾现象。
故在联轴器中心调整时必须保证中心值满足设计要求。
5、汽轮机转子出现热弯曲。
由于转子材质不均或应力释放不足等原因,转子在受热后产生弯曲变形,此种现象现场很难进行处理,可联系生产厂家进行分析处理,严重时需更换转子。