高一数学排列组合问题的转化方法练习题

合集下载

高三数学排列组合20种解题方法汇总含例题及解析

高三数学排列组合20种解题方法汇总含例题及解析

排列组合解法解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A种方法。

排列组合专题各方法题型及其答案

排列组合专题各方法题型及其答案

排列组合题型总结一.直接法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

二.间接法当直接法求解类别比较大时,应采用间接法。

例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数三.插空法当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。

例44名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法七.染色问题例7 某城市中心广场建造一个花圃,花圃6分为个部分,现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).561432八.递推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有多少种十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例 11.圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

利用排列组合解决问题练习题

利用排列组合解决问题练习题

利用排列组合解决问题练习题排列组合是概率与统计中的一个重要概念,它在解决各种问题中起着关键作用。

本文就通过一些实际问题的练习题,来演示如何利用排列组合的知识来解决问题。

一、从n个元素中选取m个元素的排列问题排列是指从一组元素中选取一部分元素进行有序排列的方式。

假设有n个元素,要求从中选取m个元素进行排列,共有多少种排列方式呢?这个问题可以用排列数来解决。

排列数P(n, m)的公式如下:P(n, m) = n! / (n-m)!其中,"!"表示阶乘。

例如,当n=5,m=3时,排列数P(5, 3)的计算公式为:P(5, 3) = 5! / (5-3)! = 5! / 2! = 60 / 2 = 30所以,从5个元素中选取3个元素进行排列,共有30种排列方式。

二、从n个元素中选取m个元素的组合问题组合是指从一组元素中选取一部分元素进行无序组合的方式。

假设有n个元素,要求从中选取m个元素进行组合,共有多少种组合方式呢?这个问题可以用组合数来解决。

组合数C(n, m)的公式如下:C(n, m) = n! / (m! * (n-m)!)例如,当n=5,m=3时,组合数C(5, 3)的计算公式为:C(5, 3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 60 / (6 * 2) = 10所以,从5个元素中选取3个元素进行组合,共有10种组合方式。

三、排列组合在实际问题中的应用1. 教室座位问题假设有10个学生坐在一排座位上,求有多少种座位安排方式。

由于要求座位的有序性,这是一个排列问题。

根据排列数的公式,可以计算出座位安排的方式为:P(10, 10) = 10! / (10-10)! = 10! / 0! = 10! = 3,628,800所以,有10个学生坐在一排座位上,共有3,628,800种座位安排方式。

2. 奖项抽取问题某次抽奖活动中,参与者共有20人,要从中抽取一等奖、二等奖和三等奖各一名,求有多少种中奖方式。

高中数学专项排列组合题库(带答案)

高中数学专项排列组合题库(带答案)

排列组合排列组合问题的解题思路和解题方法解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。

下面介绍几种常用解题方法和策略。

一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。

例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有( )A.120种B.96种C.78种D.72种分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A 44=24种排法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数原理,排法共有24+54=78种,选C。

解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。

二、特殊元素与特殊位置优待法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例2、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A) 280种(B)240种(C)180种(D)96种分析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有14C种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有35A种不同的选法,所以不同的选派方案共有14C35A=240种,选B。

三、插空法、捆绑法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。

例3、7人站成一排照相,若要求甲、乙、丙不相邻,则有多少种不同的排法?分析:先将其余四人排好有A 44=24种排法,再在这些人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有C 35=10种方法,这样共有24*10=240种不同排法。

高中数学轻松搞定排列组合难题二十一种方法(含答案)

高中数学轻松搞定排列组合难题二十一种方法(含答案)

高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动好玩,但题型多样,思路敏捷,因此解决排列组合问题,首先要仔细审题,弄清晰是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采纳合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.驾驭解决排列组合问题的常用策略;能运用解题策略解决简洁的综合应用题。

提高学生解决问题分析问题的实力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类方法,在第1类方法中有m种不同的方法,在第2类方法1中有m种不同的方法,…,在第n类方法中有n m种不同的方法,那么完成这件2事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,须要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种1不同的方法,…,做第n步有m种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区分分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事务的一个阶段,不能完成整个事务.解决排列组合综合性问题的一般过程如下:1.仔细审题弄清要做什么事2.怎样做才能完成所要做的事,即实行分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必需驾驭一些常用的解题策略一.特别元素和特别位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特别要求,应当优先支配,位置.先排末位共有1C3然后排首位共有1C4最终排其它位置共有3A4434由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合专题各方法题型及其答案

排列组合专题各方法题型及其答案

排列组合题型总结一.直接法例1用1, 2, 3, 4, 5, 6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

二.间接法当直接法求解类别比较大时,应釆用间接法。

例2有五张卡片,它的正反面分别写0与1, 2与3, 4与5, 6与7, 8与9,将它们任意三张并排放在一是组成三位数,共可组成多少个不同的三位数三.插空法当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法四.捆梆法当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种五.阁板法名额分配或相同物品的分配问题,适宜釆阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法七.染色问题例7菜城市中心广场建造一个花圃,花囲6分为个部分,现要我种4种颜色的花,每部分我种一种且相邻部分不能我种同一样颜邑的话,不同的我种方法有 _________ 种(以数字作答).八・逼推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法九•几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种十.先选后排法例9有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担.从10人中选派4人承担这三项任务,不同的选派方法有多少种十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例11 •圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各•排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的究破口。

高中数学排列组合典型题大全含答案

高中数学排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学练习题附带解析排列与组合的计算

高中数学练习题附带解析排列与组合的计算

高中数学练习题附带解析排列与组合的计算高中数学练习题附带解析——排列与组合的计算一、知识点概述排列和组合都是概率统计中的基本算法,它们的计算方法对于各种领域都有着重要的应用,也是高中数学的重点内容。

排列和组合的计算主要有以下几个方面:1. 排列的计算方法2. 组合的计算方法3. 排列与组合的相互转化4. 排列组合的应用二、练习题及解析1、在一堆扑克牌中,从中随机选取4张牌,求其中恰好有2张红桃牌的概率。

解析:从13张红桃牌中选取2张,再从39张非红桃牌中选取2张,即可得到恰好有2张红桃牌的情况数。

由于这是无序选择,所以需要计算组合的方式,即C(13,2)*C(39,2)。

同时,一共从52张牌中选取4张牌的方案数为A(52,4)。

因此,恰好有2张红桃牌的概率为[C(13,2)*C(39,2)]/A(52,4),即19.1%。

2、某小组共有10人,其中有3男7女,从小组中选取5人,问其中至少有2男的选法数是多少?解析:考虑分两种情况,即选定了2男3女或选定了3男2女,然后分别计算对应的选法数,最后相加即可。

对于选定了2男3女的情况,选法数为C(3,2)*C(7,3)。

对于选定了3男2女的情况,选法数为C(3,3)*C(7,2)。

因此,至少有2男的选法数是C(3,2)*C(7,3)+C(3,3)*C(7,2),即1310种。

3、有7个人参加招待会,其中3个人是A公司的,4个人是B公司的。

现在需要从其中选取3人担任招待,问选出来的3人中至少有2个是A公司的人的概率是多少?解析:首先计算所有选法的总数,即A(7,3)=35种。

然后计算选出来的3人中,至少有2个是A公司的人的情况数。

这个情况数可以拆分成两个部分,即选出2个A公司人和1个B公司人的情况数,以及选出3个A公司人的情况数。

对于选出2个A公司人和1个B公司人的情况,情况数为C(3,2)*C(4,1)=12。

对于选出3个A公司人的情况,情况数为C(3,3)*C(4,0)=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题的转化方法
班级 学号 姓名
有些排列组合问题,直接考虑不易解决,分类讨论又
十分麻烦,如果运用转化思想,转换角度,将其转化为等价的问题,不但能拓宽思路,还能避繁就简,变难为易.
1.转换角色
有些排列组合题,从表面上看是可重复元素的问题,若交换元素与位置的关系,就可以化为相异元素的排列组合问题.
例1 有两个a ,三个b ,四个c 共九个字母排成一排,有多少种排法?
练习:(1)一排6张椅子上坐3人,每2人之间至少有一张空椅子,求共有多少种不同的坐法?
(2)有6个座位连成一排,现安排3人就坐,其中恰有两个空位相连的不同的坐法有多少种?
2.换位思考
把过程与结果换位思考,可以使问题更易操作.
例2 某人射击8枪,共命中4枪,并且这4枪中有且仅有3枪连中,那么对于该人射击8枪,按“中”与“不中”报告结果,不同的结果共有多少种?
练习:(1)马路上有编号为1,2,3,…,8,9的九只路灯,为节约用电,可以把其中的三只路灯关掉,
但不能同时关掉相邻的两只或三只,也不能关掉两端的路灯,满足条件的关灯方法有多少种?
(2)从1,2,3,…,2000这两千个自然数中,取出10个互不相邻的自然数,有多少种方法?
3.化归处理
通过构造模型可以将陌生问题,转化为常见题型的方法来处理。

例3 6人带10瓶汽水参加春游,每人至少带1瓶汽水,有多少种不同的带法?
练习:(1)求方程10=++z y x 的正整数解的个数。

(2)有9名实习老师准备分到高二年级的6个班中实习,每班至少1名,共有多少种不同的分法?
4.构造模型
例 4 共10级台阶,一人准备用8步走完,每步可走一级、二级或三级,共有多少种不同的走法?
练习:甲、乙两队各出7名队员,按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负
者淘汰,胜者再与负方2号队员比赛,…,直到有一方队员全被淘汰为止,另一方获胜,形成一种比赛过程,那么所有可能出现的比赛过程有多少种?
☆5.转换说法
转换语言和变换说法,可以把比较隐晦的问题转化为直观问题,把抽象问题转化为具体的问题. 例5 已知集合A 和集合B 各含有12个元素,A ∩B 含有4个元素,试求同时满足下列两个条件的集合C 的个数.
(1)C ⊂A ∪B ,且C 中含有3个元素;
(2)C ∩A ≠Φ(Φ表示空集).
等价说法1
集合A 有12个元素,集合B 有8个元素,且A ∩B =Φ,求在集合A ∪B 中取3个元素,其中至少含有A 的1个元素构成的集合C 的个数.
为了更形象地理解题意,找出相应的实际问题作为模型,这样更有利于推进问题的解决。

显然,本题与下列实际问题等价.
等价说法2
某建筑队只会瓦工或只会木工的各有8人,同时既会瓦工又会木工的有4人,现从中挑选3人,至少有一人会瓦工,有多少种不同选法?
由于对于集合C 中所含有的集合A 的元素,无需考虑它是否属于A ∩B ,故本题还有另一等价说法. 等价说法3
有男生12人,女生8人,从中选取3人作代表出席一次会议,代表中至少有1名男生,问有多少种选法?
解法1 (分类法)10843121821228112=++C C C C C .
解法2 (排除法) .108438320=-C C
即集合C 有1084个。

相关文档
最新文档